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Dynamics of closed quantum systems

Thermalization Many-body localization
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Quantum information stored Local qu.antur.n.information
in local objects is rapidly lost persists Indeiutely
Classical hydro description Need quantum description
of remaining slow modes of long time dynamics.

(e.g. diffusion) Ground-state-like

Thermal eigenstates high energy eigenstates
(highly entangled): (low entanglement):
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Outline

* Thermalization in closed quantum systems
Eigenstate thermalization hypothesis and its breaking

* What we understand about MBL dynamics
RG, distinct phases, dynamical critical points.

 The many-body localization phase transition
RG approach: transport, entanglement scaling and a surprise!



Eigenstate thermalization hypothesis (ETH)
Deutsch 91, Srednicki 94
In a high energy eigenstate:

Z A

Extensive Von-Neuman entropy:

Sa o< LY

PA

Example where ETH falls:
Anderson localization

“Area law” entropy as in ground state Saoc L1
also holds in high energy eigenstates

MBL = stability of the area-law to adding interactions



Generic exception to ETH: Many body localization

Anderson localization of N Ne/ S . o
non interacting particles:
TE/
Perturbative stability to interactions delocalized
(Basko, Aleiner, Altshuler 2005) thermalizing

Localized
(k =0, 0=0)
non thermalizing

Delocalization transition at a critical
energy density, disorder or interaction
strength.

Disorder strength
Stability of MBL supported by other approaches:
Numerics — Oganesyan & Huse 2010, Pal & Huse, Bardarson et. al 2012 ...
RG — Vosk an EA 2012, Vosk and EA 2013, Pekker et. al. 2013 .
Mathematical proof — Imbrie 2014

A lot of insight into the nature of the MBL phase



Outline

* Thermalization in closed quantum systems
Eigenstate thermalization hypothesis and its breaking

* What we understand about MBL dynamics
RG, local integrals of motion, slow entanglement.

 The many-body localization phase transition
RG approach: transport, entanglement scaling and a surprise!



Ultra slow growth of the entanglement entropy

Zindaric et. al. 2008; Bardarson, Pollmann & Moore. 2012
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RG Solution of time evolution

R. Vosk and EA, PRL (2013); R. Vosk and EA, arXiv:1307.3256
H:Z JPofol o+ hiof +JFolol 4+ ... e W)
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t
Pick out largest couplings 2 = max (J, h;) "

Short times (f =1/Q): System evolves according to H;,
Other spins essentially frozen on this timescale.

Longer times (t >>1/Q): Eliminate fast modes (order €2)
perturbatively to obtain effective evolution for longer timescales.

Related RSRG-X: Pekker, Refael, EA, Demler & Oganesyan arXiv:1307.3253



Outcome of RG: integrals of motion = (frozen spins)

Example: strong transverse field h; T©¢

Hzg [Jiafafﬂ h;o; Viafafﬂ]

v

T J
Heogr = hi6® + Vi 6%0% + Vg 6F0% + 228

hi

010,00+ ...

The transformation generated a quasi-local integral of motion

~

+ = Zo; + exponential tail
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Fixed point Hamiltonian

Hpp =Y hi5} +Zm 5767 + Y Vigoyoror + .
1 17k
Vij ~ Ve_| r;—x;|/§
Note the analogy with Fermi-liquid theory!

Independently of the RG, the fixed-point theory may serve
as a useful phenomenological description of the phase.

Oganesyan & Huse (2013); Serbyn, Papic & Abanin (2013)

Phase transitions between distinct localized phases:

P.aramagnetic 5_33 ) - 5.2 Broken symmetry in
eigenstates T - () eigenstates (“Eigenstate glass”)

Huse et. al. 2013; Vosk and EA 2013:; Pecker et. al. 2013;



Result from the RG flow

log htyp A
“Paramagnet” /
; Int
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Sa(t) ~logt

e
“glass”: <(7f(t)>Tconst~A2_q)
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. is an emergent integral of motion in the glass

Glass order parameter!  (5%(00))?2

Critical point:
1

o)

¢ =(1++/5)/2 ~1.618

( golden ratio )

Sa(t) ~log¥?t

Dynamical transition
between distinct
localized states



Limitation of the RG scheme: resonances

Resonances between decimated sites can generate a slow mode
that is not accounted for by the RG

2—0Q2

WC)T OO

If J >80

Resonances do not proliferate in MBL phase! (Irrelevant in RG sense).
(Vosk and EA 2013)

This RG scheme is limited to the MBL phase!



Outline

* Thermalization in closed quantum systems
Eigenstate thermalization hypothesis and its breaking

* What we understand about MBL dynamics
RG, distinct phases, dynamical critical points.

* The many-body localization phase transition
RG approach: transport, entanglement scaling and a surprise!



Coarse Grained Model of coupled blocks
I, g I, 2,3 I, 214 Iys 8us

Block = chain of / microscopic spins r

The block parameters: T:
:
|

A. Single block level spacing

—

I, Relaxation rate of intra +=T"1 time for entangling the two sides
block product states

g; = I';/A; Number of coupled levels

gi <1  “insulating block”
g, > 1 “thermalizing block” T, g, T,

Relation to thermal conductance: I'=G Ttr — [T



Coarse Grained Model of coupled blocks

I, g I; 255 I, ;4 Lys 84s

Link parameters: Parameters of new block if blocks 1 and 2 were joined

I, g L i '
PRE 8, =%, ~ Effectiveness of coupling

[ [, r,
&1 &> 812 Requirement: {Fii+l}< {rz}




RG scheme

1. Join blocks coupled by the fastest rate T,

I, g, I'y; 82 [ g="

2. Renormalize couplings to left and right blocks

Two cases:

- T _ F12F23 > = 8128
(i) If g,<<1 or g,;<<I then we show I'= I g —g2
i) If g5, g,,>>1

(ii) 812> 823 | B ! . |
then assume ohmic transport Tp  Tip @ Dys

Note: the scheme is controlled if the distribution of g;; is wide



Outcome of the RG flow
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How does diffusion disappear ?



RG results — dynamical scaling exponent for transport

Relation between transport time t,. and length / of blocks:
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Surprise! The transition is from localized to anomalous diffusion.

Seen also in recent ED studies: Bar-Lev et al 2014 ; Agarwal et al 2014

Scaling relation between transport and entanglement spreading:
T = Tr /1 Sp ~tT-a



Anomalous diffusion = Griffith phase

S
i

l>>§2l0 0.5, - ~ —0 0 0 ©
0.4 . 0

A

Exponentially rare insulating
puddles in the metal

P(Z)Nlo_le_l/g 0.2 X o
. 1L ~logtV O ~ 1@ L~At |

7(1) = o€/t :gooogod® .

Strength of coupling

" Critical point

Scaling exponent

Exponentially long delay

All “insulating” puddles ultimately thermalize

Broad distribution of times: but at broadly distributed times!
l
P(r) =" 70 +% Infinite randomness but thermal
= T critical point at £ — o0



Scaling in the localized phase
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Suggests also: S ~ logt



Entanglement scaling in eigenstates

( ) (
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(192 ~ # of 2-block product states in an
Se(L/2) ~logy [g(L) + 1] eigenstate of the coupled system

Near critical point expect 5
distribution of S to scale:
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In particular all moments:
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Entanglement scaling in eigenstates
é ) é )

G Q J

912 ~ # of 2-block product states in an

Se(L/2) ~log, |g(L) + 1] eigenstate of the coupled system
Near critical point expect R
distribution of S to scale: il S/L s —"
1 ~(S L - > 100
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Kjall et. al. (2014) — scaling of entanglement fluctuations in ED of small systems.
Found v~ 0.7 , which is inconsistent with the Harris inequality (but L<14)



Eigenstate entanglement from Griffith model

P(r)=1" (E)H%@ A = 7‘0_12_L

T

S(L/2) =log(1+g) =log [1+ (7A)"]

Scaling function for the distribution:

5 (% §> _ Ps ) ~ eA)\_ 1€AS Fluctuation of S(L/2)
~ flat distribution at the critical point 5,52 ool

6S./S. = const L2 o
In the Griffith phase: "
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5Se/Se ~ €/ e




The Many-Body Localization Transition

Two possible transitions are consistent with entanglement
entropy strong subadditivity (T. Grover arXiv:1405.1471)

1
) Localized Ergodic
2) Localized Doz Pz Ergodic
Non-Ergodic J

Our scheme gives case 1: the Giriffith phase is ergodic!

S, (/) at the critical point is thermal for a subsystem of an infinite system.
But fluctuations are maximal (~L) when [=L/2



Summary

1. RG approach in the MBL state: ‘g‘/
- Dynamical phases and phase transitions. >
- Emergent integrals of motion. g S
o /
2. RG theory of the MBL transition. “Glass”
0.5 . o—o—o—e
Found intermediate phase! . o
Thermal but anomalous diffusion. g |
“Griffiths phase” % 0.3} 2
Infinite randomness at the critical 3 1L logt O ~ @ ieif

point shows up in entanglement W
- - 0

2

4 6

Strength of coupling

Many open questions

1. Generalization to 2d and 3d ? Does the Griffiths phase survive?

2. How to see MBL physics in experiments? Cold atoms?



