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INTRODUCTION OF COMPRESSED
SENSING



Sparse signal

Definition: Signal that is composed of many zeros when it is
expressed by a certain basis

“Sparseness” can be useful for various purposes of signal
processing
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Ex) Data compression

[Romberg and Wakin, 2007]




Ex) Data compression

[Romberg and Wakin, 2007]
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Ex) Data compression

[Romberg and Wakin, 2007]
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Ex) Data compression

[Romberg and Wakin, 2007]
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Ex) Data compression

[Romberg and Wakin, 2007]
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What is compressed sensing?

A framework that enables signal recovery of the sparse
signals from a fewer number of measurements than
conventional theory requires.

Application domain
— Refraction seismic survey (mine examination)
— Tomography (X-ray CT, MRI)
— Single pixel camera
— Noise removal of image
— Data streaming computing
— Group testing
— etc.



Candes-Ronberg-Tao (2006)

Simulation of tomography

LT: Original(Logan-Shepp Phantom)
#512x512

RT:Sampling 512 points of 2D FT from
22 directions.

LB : Recovery of pseudo-inverse (standard)

RB: Recovery utilizing the “sparseness” of
spatial variations. “Original” is
perfectly recovered.

Perfect recovery is realized by 1/50
samples of what Nyquist-Shannon’s
theory requires.

© @ —>Breaking of the conventional limit!
EJ Candes J Romberg and T. Tao, IEEE Trans. IT Vol. 52, 489—502 (2006) K<Y




Single pixel camera

Gang Huang@Bell Lab et al.

s L

Aperture
assembly

e Collect lights from various directions
randomly changing aperture of each window.

Measure the signals many times by a single sensor.
#No need for “calibration”=Accurate measurement

- Bottom: The scene can be recovered
from 1/4 data of convention.



Background 1:
AD conversion and sampling theorem

« AD conversion: Analogue signal y(¢) is sampled at a fixed
period 7.

 Question: Can we perfectly recover y(¢) from the set of
sample values y(nT,) (n=0,+1,%2,...)?
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Sampling theorem

 Assumption: The maximum frequency of the original signal is
/., in the Fourier domain.

(o

Proposition: The perfect recovery of y(7) from

~\

y(nT,) (n=0,£1,%2....) is possible if the sampling frequency
f. =T, satisfies f, >2f,.
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Fourier transform —fm
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What sampling theorem means

» Let us assume that ¥(#) is periodic with period T.
—>can be expressed as Fourier series.
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What sampling theorem means

Sampling of a fixed period provides a set of independent linear
equations for determining the Fourier coefficients.

k
. 2rknT 2rknT
y(nTs):ao+Z(akcos( nin sj+bksin( 7r1;n Sn

n=1

#Unknown variables = 2k +1.

This indicates that the perfect recovery is possible if the number
of sampling in period T is greater than 2k +1.

Condition for getting a unique solution

#Equations > #Unknown variables



Matrix expression

/ Trigonometric function of a fixed frequency

r 21 [ 2m 4r . ( 2k, 71
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To get sampling theorem

Expression by sampling rate

N e 2 2k, +1 /\/
@ Divide the both sides by T /\//\/% --- %
Newe 2k +1 _k 1 \ ’
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Origin of “2” is 2 varieties of “sin” and “cos”.



“sin, cos” or “+, -”

0 o
 Euler'sformula: €~ =cos@+isin@

: _ 0 —i0
el@ N i0 . e’ —e !
cosB = sin@ = :
21
* This enables us to interpret that “sin and cos” is a combination
of “+ and —” of imaginary exponentials of an identical frequency.
Since this interpretation is convenient in calculation, we often
express the degree of freedom of signals using frequency band
that symmetrically spreads in “+ and —” directions.
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Consideration

 Sampling theorem gives the condition that the Fourier
coefficients of the objective signal is uniquely determined.

Fourier coefficients
Sample values

/ (what we want to know)
(measured) e y — FX

.\ Fourier basis
(known)



Consideration

* The followings are not essential.
— Sampling of a fixed period

* Only need #independent samples™  #unknown Fourier coefficients.

— Fourier basis
* One can multiply any invertible matrix to the both sides.
* Any basis is OK. Even the orthogonality is not necessary for the basis.

* More generally, Matrix = Measurement x Basis.
Measurgent result Measurement matrix

y = My;M (FX) = AX

* From now on, we mathematically express the measurement

roblem as
p y = AX




Background 2:
Statistical property and sparse representation

 Keep in mind that the Sampling Theorem is a worst case
condition.

 We can easily show an example to which the perfect recovery
is possible by a fewer samples than that S.T. requires.

km
y(nT,)=) (ak cos(zﬁinTs )+ b, sin(2ﬂ§nTs )]

n= kO

For example, introduce “min. “ wave number

—T_lkm o, T7'%k
Tk Tk, \ 7 % : T 'k,
0 f 0 " f

The signal can be recovered by 2(k, —k, +1) measurements.



Expression by equations

* This corresponds to a situation in which low frequency
components are guaranteed to be zero.

Sample size is reduced! @
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Generalization

Cutoff of low frequencies may not be common in practice.

But one can still empirically find many zeros below the max
(Nyquist) frequency f,, for real world signals.

Such cases, however, can be reduced to the previous example
by reordering the positions if the zero positions are known.

-l = I,

reordering




Compressed sensing

* Then, what can we do if the positions of zeros are unknown?
— Compressed sensing

 Recovery problem of compressed sensing

— Recover a sparse signal in which the positions of zeros are unknown
from a fewer samples than S.T. requires.

y o N :Signal length

! . K :#Non-zeros

M(<N)-

:#Samples
(#measurements) L

Positions are unknown.
But, the sparseness is guaranteed.



Practical motivation

* In practical signals in real world, many components usually vanish
or nearly vanish statistically even below /.

— Sound, image, seismic wave, ....

— It is a waste of resources to take all the frequencies belowfﬂl into account.

256x25§‘ 10

0 2 4 6
X 104

* This motivates us to efficiently recover the signal by identifying
the zero components. = Compressed sensing




Two major points at issue

* Algorithm development
— Develop practical procedures for doing it.

* Performance analysis/guarantee
— Clarify the recovery condition for the developed algorithms.



ALGORITHMS FOR SIGNAL
RECOVERY



Underdetermined linear system

* Compressed sensing problem is expressed as an
underdetermined linear system.

— For theoretical simplicity, we mainly focus on the case of /.i.d.
random matrices from now on.

y o N :Signal length

! . K :#Non-zeros

M (< N)-

:#Samples
(#measurements) L

Positions are unknown.
But, the sparseness is guaranteed.



Regularization

 Astandard method to solve such problems is to minimize an
appropriate cost function J(x) under the measurement
constraint.

(PJ) . minJ(x) subj. toy = Ax

— What J (X) should we use?



| -recovery

Answer : The choice of J(x)=|[x|| (= #non-zeros in x) is
optimal if we need not care about computational cost.

— Reason
« M > K — Correct solution is always found.

« M < K — Correct solution cannot be found in principle even if the
positions of zeros are known.



| -recovery

algorithm

#Assume that any combinations of M — 1
#columns are linearly independent.

Try the following for all combinations .§
of M —1 columns.

y -

Test
y — Ax, = 0 or not

<
1
<
1
N

y

[

4LS

included in §.

e

R =

Pseudo inverse solution

M -1 XS

M -1

Pick up only columns

SI<:M" = ASI}M—l



Consideration

« K <M —1- Correct solution is provided by certain combinations.

— Correct solution passes the test. ) )
P Correct solution is the one that

passes the test.

— Otherwise, fails.

>|M > K - |,-recovery can always find the solution.

# Many (N—K CM—I—K) combinations correspond to the solution.

* Unfortunately, this recovery becomes computationally difficult as
the number of non-zeros increases.

— Computational cost for /,-recovery

O(yCy,)~O(exp(YN)) if M o< N



Practical solutions

* Greedy algorithms

— Greedy construction of “support”(=column combination) by adding one-
by-one/best choice at each iteration.

— Orthogonal Matching Pursuit (OMP), MP, Weak MP, LS-OMP, Iterative
Hard Thresholding, ...
* Convex relaxation
— Approximation of the cost by convex functions.
— Basis Pursuit (BP)(=/,-recovery), Iterated-Reweighted-Least-Squares
(IRLS), ...
* Probabilistic inference

— (Approximate) Employment of probabilistic inference.
— Approximate message passing (AMP), EM-BP, ...



Greedy algorithms

* Basicidea
— Sample vector Y stands for a linear combination of columns a. of A.

y N
ala2 aN

Xy

p— A =x4a tx,a,+...+tx,a,

Xy

— Construct an appropriate set of columns whose coefficients are non-zero,

which is termed SUPPOIT, in a greedy manner.



Approximation by a single column

4, Greedy strategy

The support size is increased one-by-one.

* Choose the column that has the largest projection.
* Remove the approximated part.
/ * |teratively employ the same procedure to the residual.

(al-y) a al

(ai-y)

|2

A .

X, = arg m1n|y — xiai|2 =
X |a~

l

2
: ;-
e(i)= n}:nIy — Xl-a,-|2 = |y|2 - ( |a Tz) Quality of approximation

Approx. = projection




Orthogonal Matching Pursuit (OMP)

* [nitialization: Initialize k=0 , and set
X'=0,r'=y-Ax"=y, S"'=¢
 Main iteration: Increment £ by 1 and perform the followings:

— Sweep: , , (a.-r"‘l )2
e(i) = min|x,a, — rk_l‘ = ‘rk_l‘ :
X

———>— | Rating of columns
a.

l

— Update Support:
INES argmin{e(i)}, st =g u{io}

igsk!

— Update Provisional Solution: Best approximation
2
& = arg min‘y— AX. by the support of
X, 51 1 the moment

N

— Update Residual:
r'=y-A,x"

— Stopping Rule: Stop if ‘r"‘ <¢, holds. Otherwise, apply another iteration.



Consideration

 Computational cost
k, : final support size

OMP Exact enumeration
p)
O(MNk,) «—— O(MN"* k)
Drastic
reduction

(when k, ~ O(1))



Varieties

LS-OMP: In Sweep, approximation error G(i)is evaluated
for " U{il.
— More accurate evaluation although cost increases.

MP: In Update Provisional Solution, x‘=%"'+

— Get lazy in approximating solution for saving cost.

Weak-MP: In Sweep, get lazy in optimizing E(i)

\2
stop the sweep when ™ )5 ot (4 ¢[0,1])

2

i

— Stop the searching column if a certain condition is satisfied.



Thresholding Algorithm

Given a support size k. Support is fixed by the result of the
first quality evaluation.

— Quality Evaluation:

(a, .y)z

|2

e(i) = min|xa, - y[ =[y[’ -
i a

l

— Update Support:

S : set of indices of k lowest values of (i)

— Update Provisional Solution:

A . 2
X = arg mm‘ASXS — y‘

Xs

— Output: Output X



Average and Relative l,Z—Error
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= .S-OMP
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Weak-MP (t=0.5) ]
- Thresholding

Cardinality of the true solution

1 |,-Error with true sol.

M =30

| N=50

A : 1.1.d. Gaussian

. Elad (2010) Sparse and Redundant Representations (NY: Springer)



Performance comparison

0.8 I | | 1 I I I I o
— | S-OMP
s OMP
0.7 ——MP
Weak-MP (t=0.5)
0.6} - Thresholding

o
n

Probability of Error in Support
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w N

o
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Cardinality of the true solution
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Support error
with true sol.

dist(S,S)
S } -8 ]

|

9

max{‘S’ S

9

M =30
N =50

A : 1.1.d. Gaussian
x, €|-2,-1]uU[1,2]

ifx, #0

M. Elad (2010) Sparse and Redundant Representations (NY: Springer)



Iterative Hard Thresholding

* Given a support size k. Iterate the following until convergence.
+1 t T t
:Hk(x +A (y—AX ))

Hk () . Setall but K largest (in amplitude) components to zero

Comput. cost: O(MN) [ iteration

* Guarantee for convergence to local minimum of /,-cost
— Blumensath and Davies (2009)

x' converges to a local minimum of

<l X = minly - Ax|,

= [Z|f
JI)



Performance comparison

e A sufficient condition of correct recovery is obtained by RIP
theory that is mentioned later.

* But, experimentally observed performance of the naive IHT is
not so good as that for Basis Pursuit (/,-recovery).
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Normalized Iterative Hard Thresholding

* Given a support size k. Iterate the following until convergence.
x"'=H, (xt + ,quT(y — Axt)) [’ step size
Hk () . Setallbut k largest (in amplitude) components to zero

Comput. cost: O(MN) [ iteration

e Step size ['is controlled using the information of deviation
y — AX

and A, appropriately.
(Blumensath and Davies (2010))



theory for the normalized version as well.

Performance comparison

* A sufficient condition of correct recovery is obtained by RIP

* Experimentally observed performance is as good as /-

recovery.

probability of exact recoverty

S
o0

< S
- (@)}

S

o
T

[a—
T

Advantageous as the
comput. cost is lower

than /,-recovery.




Convex relaxation

e Basicidea

— l,recovery is difficult since it is formulated as discrete optimization
problem - How about approximating the cost by continuous function?

l[,-norm | x |7 profiles
v ‘ ‘ ‘

— 14 p
[x]l, = lim 2%

lp—norm

N
Ix[, =| X1x 1
i=1

I/p




Convex relaxation

Among them, convex functions are preferred. —> P > 1
— Optimization is easy
* Uniqueness guarantee of solution
* Various versatile packages

| x 17 profiles

Necessity for producing
sparse solutions

— p <1

Promising candidate

[,-norm

x| Z|x |



Norm and solution

Purple plane:
y = AX
Green figures:
x| = const
p
(/,-ball)

B: p=1

RB: p<l1

M. Elad (2010) Sparse and Redundant Representations (NY: Springer)



|,-recovery = Basis Pursuit (BP)

(P,): min|x|, subj.toy=Ax

A4

(P): min|x| subj.toy=Ax



Conversion to linear programing

X Keep positive entities as they are,
U.InX, set negative entities to zeros
X=UuUu—%V
V . In X, Set positive entities to zeros
Set negative entities to their amplitudes

T
7 = I:llT,VT:I e R*Y

x| =1" (u+v), Ax=A(u—-v)=[A,-A]z
(P) < min 1"z subj.toy =[A,—A]z andz >0

\ J

|
Linear Programming



How to carry out /,-recovery

Utilize various algorithms and packages for convex
optimization.
— Algorithms
* Simplex method, interior point method, homotopy method, etc.
— Packages
* LAPACK, GPLK, I1-magic, CVX, L1-LS, Sparselab, etc.
Computational cost is guaranteed to be O(N3).
— Proof for interior point method
— Simplex method is also efficient empirically for many problems.

How is the solution related to the /,-solution?

— Sufficient conditions are known for the coincidence of the /,- and /-
solutions.



| ,-recovery

Relaxation to lp-norm(O < p<1) often leads to good
performance although it is not formulated as convex
optimization.

(P ): mini‘xi‘p subj. to y = Ax
Yol

p

But, performing the optimization is a nontrivial task.



Core idea

* Exceptionally, one can analytically solve the optimization of

quadratic functions.

B = diag(b,). (B+)i =

(M): miy:AX

\

fb;l, (b, #0)

0, (b =0)

Weighted quadratic norm

x=BA' (ABA")'y

* Employ this formula for iterative optimization of | -cost

function.



Iterated-Reweighted-Least Squares (IRLS)
- x“: Solution obtained at the k th iteration

) ()=

X, = diag(xl.

Iterate the following until convergence

(Mk ; mmE( kl) ‘x‘ subj. toy = Ax

=X, IAT(AXk Ay

Comput. cost: O(N3)/iter

> Converges to a local minimum of (Pp)



0.45

Performance comparison

Probably, for p=1

0.4H

— OMP

e BP by Linear Prog.
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M =30
N =50

A : 1.1.d. Gaussian
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ifx, #0

Comput. cost
BP, IRLS >> OMP
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M. Elad (2010) Sparse and Redundant Representations (NY: Springer)



Probability of Error in Support

Performance comparison

Probably, for p=1

0.45 1 1 I T T T T
— OMP
IRCICT IRL
b4 e BP by Linear Prog.
0.35r .
0.3 .
0.25} R
0.2 R
0.15 .
0.1 .
0.05} 'f
Oe - -+ o =""¢
1 2 3 4 5 6 7 8

Cardinality of the true solution

Support error
with true sol.

dist(S,S)
B max {‘S

S}—\ﬁms\

|

9

max{‘S’ S

9

M =30
N =50
A : 1.1.d. Gaussian

x, €|-2,-1]U[1,2]
itx, #0

Comput. cost
BP, IRLS >> OMP

M. Elad (2010) Sparse and Redundant Representations (NY: Springer)



Probabilistic inference

* Basicidea
— Signal recovery = Probabilistic inference from measurements

— Knowledge of generative model may lead to better performance

Bayes formula

P(xly,A)= %5(Y—AX)P(X)

. Sparse prior
Posterior P P

— Unfortunately, extracting information from large scale distributions is
computationally difficult in general.

— Utilize various approximate inference algorithm studied in machine
learning/artificial intelligence.



| -recovery as probabilistic inference

Prior Noisy measurement model
1 1
P(x)o<exp|—B|x P(y|X,A,62)= exp(
(x) = exp(~B|1; ) o) 0
Posterior
1
P(xly.A.07) "~ il

I (1
- xp[ [ Sly-axP o ||x||§))

Maximum a posteriori (MAP) inference :Ip-recovery

2

.1 o2 . .
(©,)5 min{3ly—axf +po? x| —=5(7): minl? subj. 10y = Ax

P




How to solve p=1 case

Subderivative

Ay anf 4o [, =0 — A" (ax-y)+ fo” s ()=
X —_ Y
X—(ATZ+X) = —ksgn(x) f

\ ) X =1, (ATz+x)

h Z=y— AX

\

x—h
A / \ 1, (h)=(h—ksgn(h))o(|n|- k)
/ — > Xy

// O/ /—ksgn(X) / "k ;l




Naive iteration does not work well

Each column ofA is assumed to be normalized to unity.

s

X=1, (ATZ-|-X)
Z =Yy — AX

Reason

Self-feedback between t and t+1

is cancelled. But, that for
t-1 and t+1 is too large.

{}

Knowledge of prob. inference

(

X't = n, (ATZt +Xt)
J
j‘> z' = y— AX'

iteration

\Doesn’t worKk well
1 t r—1

Cancelled

Not cancelled



Approximate Message Passing (AMP)

* In t+Istupdate, remove self-feedback effect from t-1°t update.

— Analytical evaluation is possible if entries ofA independently obey a
distribution of zero mean and variance O(M).

X'l = n, (ATZt n Xt)

1

z' = y— Ax' + EZH <n,i‘1 (Ath_1 +x )>
h N
Where O = %, <u> = %Z‘ul

* Appropriately reduce the thresholding parameter Kk as
update number t grows.

Donoho, Maleki and Montanari, PNAS 109, 18914 (2009)



Consideration

Approximation of /,-recovery, which is computationally
feasible originally. The gain is reduction of comput. cost.

O(N’)— O(N?)

The obtained approximate solution is guaranteed to typically
converge to the exact solution as N — oo.

— Performance analysis by the State Evolution (SE).
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Performance
Donoho, Makeli and Montanari, PNAS 109, 18914 (2009)

Full curves:
Theoretical prediction

Broken curves:

Experimental results of
AMP for N=1000



For performance improvement

If we need to construct an approximation, it is reasonable to
do it for the best possible inference scheme.

Best possible scheme in Bayesian framework
=Inference using the true generative model

Generative model

X ~ P(X] :Sparse prior

y ~ P(y X,A) — 5(y — AX) : Measurement process

Performance measure

MSE:<

Result by an arbitrary recovery scheme

A 2
X-(/y,A) — XH > : Mean Squared Error (MSE)

X,y



Bayes optimal scheme

 The following inequality holds.

MSE > <HxH2 >X,y — <H<X>xly

)

 The lower bound is achieved by the Bayes optimal recovery

(MMSE recovery, in this case). ZXP (yI1x,A) P(x)

- EXP (x1y.A) Ep(ylx A)P(x)

= <X>XIy : conditional mean for given measurement Yy




[\
S~ <
i N

R

[\®)
S~ — A
e <

Completing square

Minimizing the quadratic function w.r.t. f((y,A)

X (y’A) = <X>le



Gaussian-Bernoulli prior

 We assume that the sparse prior can be well approximated by a

mixture distribution of & (x)(=always returns "zero") and Gaussian.
— Bernoulli-Gaussian prior

N

P (X,p,xwz)=l;[((l—p)(S(x,-)w sz?exp[—(x"z;f)zn

Noise free case

P(ylx,A)=6(y— Ax)

Need for determjining hyper-parameters

Posterior distribution %
1 )

P(X I y,A,p,Gz) = EP(y I x,A)P(X,p,,u,G )




EM-BP

e Optimal recovery in the Bayesian framework

X = <§<>le = JdXP(X | y,A,p,,u,Gz)X

Carried out by a variant of AMP AN
 Hyper-parameter estimation forP,,U,(T2 aration
(f),ﬁ,&z) — argmax{logZ(p,,u,Gz,A.y)} "
po’

:argmax{log(_’.dXP(y|X»A)P(X’p"u’62))}

puo’

Carried out by EM algorithm

Vila and Schniter (2011),
Krzakala et. al., Phys. Rev. X 2, 021005 (2012)



Consideration

Comput. cost (similar to original AMP)

O(N’)— O(N?)

Better performance than /,-recovery.

By introducing spatial-coupling design for the measurement
matrix, the theoretical recovery limit o, (p)=p is achieved

for N = oo.

— Talk by Marc Mezard.



Performance

0.8 // (\.\\ |,-recovery
b _// r
//
[ {— EM-BP
0.6 A5 '
. {  EM-BP + spatial coupling
_ 3 ' (experiment)
0.4 - _\ . ..
L x{Po) _ Theoretical limit
= Ogy56Pg) !
N « s-BP,N=10*
0.2 s sBPN=10’ | - M K
' =P, : T |C=Po| T
! . N N
O 2 2 2 1 2 2 2 1 2 : N 1 2 2 - 1 2 2 2
0 0.2 0.4 0.6 0.8 1

Po

Krzakala et. al., Phys. Rev. X 2, 021005 (2012)



METHODS FOR PERFORMANCE
ANALYSIS/GUARANTEE



Basic method



Naive consideration

 Measurement provides a linear combination of columns of the
used matrix A

y N
a,a, --- Ay

— A T =xa tx,a,+...+x,a,

An

* If a certain pair of columns are identical (in direction), recovery

of Y — X is impossible. U

Any pairs of columns in A should be as different as possible.



Mutual coherence

A measure for quantifying the difference of columns (in
direction) for given matrix A.

* Evaluation is computationally feasible.
— O(N*M)

aTa Max. of direction cosine between
i Al € . A
two columns in a matrix A.

U(A)= max

1<i,j<N i#j

4, 2 HaJH2




Guarantee for OMP

e Suppose that true signal x' satisfies the following condition.
Then, OMP is guaranteed to search it by onuosteps.

)

#From now on, we assume that each column in A is normalized to 1.

IA
t»—t
N

IA
- =

=
IA A
B E
>
IAIA
T =
>

2

a. :1(ISViSN) G=ATA=

l

A IA
=
>
A IA
==
2=
N
=
>

A
R~

=~




Orthogonal Matching Pursuit (OMP)

* [nitialization: Initialize k=0 , and set
X'=0,r'=y-Ax"=y, S"'=¢
 Main iteration: Increment £ by 1 and perform the followings:

— Sweep: , , (a.-r"‘l )2
e(i) = min|x,a, — rk_l‘ = ‘rk_l‘ :
X

———>— | Rating of columns
a.

l

— Update Support:
INES argmin{e(i)}, st =g u{io}

igsk!

— Update Provisional Solution: Best approximation
2
& = arg min‘y— AX. by the support of
X, 51 1 the moment

N

— Update Residual:
r'=y-A,x"

— Stopping Rule: Stop if ‘r"‘ <¢, holds. Otherwise, apply another iteration.



Proof

0 . :
Let us suppose ko = HX Hd Without loss of generality, we can assume
0 0 0 _ _ _ _
‘xl ‘ 2\x2 ‘ >... 2\xk0 ‘ >0,% =% ,=-..=Xxy =0.

Then, the measurement is expressed as

kO

0 0
y=AX = th a.
t=1

A sufficient condition that a column indexed by 1< 7 < k, is chosen in the
first Sweep step

a."y|2[a)"y] (77> k),



Proof

Lower bound of LHS
ko ko
T | _|.T 0o_ | _1].0 of_T
‘al y‘— a, Zx = |x, +th (alat)
=2

= () =1 (k1))

<'|[(afa,)

|-

> ] b &

Upper bound of RHS

a zx (jTat)S

‘a y‘ = ‘x10‘k0:u(A)

=1

Lower bound of LHS > Upper bound of RHS

11 (6, = 1) (4) > e (4

1 1 Then, the first step successfully finds
— ko <—| 1+ . 3. .
2{ u(A)) acolumnof 1< 7 <k, in the true support.




Proof

After the first step

Proved by method of mathematical induction.

Suppose that columns of the true support were correctly chosen up to k-th step.

Then, k
* Update Residual guarantees that the residual I’ is also a linear combination

of the true support columns.
* Update Provisional Solution guarantees that once a column was chosen, the column

has no possibility of being chosen again.
Therefore, a column in the true support is chosen at k + 1-th step.

These mean that OMP finds all ko columns in the true support by ko steps, which
guarantees the correct recovery.

Q.E.D.



Guarantee for /,-recovery

. 0 .. .
e Suppose that true signal X satisfies the below condition.
Then, /,-recovery (basis pursuit) is guaranteed to search it.

Kl <o | 1+

2 u(A)

— Complicated proof. (skip)

— The same expression to that for OMP. But, keep in mind that these are
sufficient conditions. Actual performance is different between the two
methods and objective signals.




Guarantee for Thresholding

 Suppose that true signal x" satisfies the below condition.
Then, Thresholding is guaranteed to search it.

o1 1 |x
HX HOSE 1+,LL(A) .XO

— Complicated proof. (skip)

— As this is a poor-man’s version of OMP, the recovery bound becomes
lower than that of OMP.



Advanced methods



Necessity for advanced methods

* The method of mutual coherence is relatively easy to follow.

Unfortunately, its evaluation is not so accurate even in terms
of order estimation.

Ex) Random matrix

T
aa)

- O(M—I/Z)

u(A) = max

1<i j<N ,i# ] ‘ |ai‘ |2 ‘ ‘aj‘

1)

2

off <11
Rl <31

- 0(M1/2)~ O(Nl/z) |:>

No guarantee for O(1)
non-zero density

For overcoming this drawback, several advanced methods
have been developed so far.




Method by Candes and Tao

 Candes and Tao (2006) developed a method introducing a
novel notion termed restricted isometric property (RIP) to
matrix A.



Restricted Isometric Property: RIP

HWe assume that each column in A is normalized to 1.

+ |If the following holds for any S-sparse vector
(1=8 )IIxll, <|lAx]f, < (1+8 )|l

matrix A is said to satisfy the S-restricted isometric
property (RIP) with the RIP constant 0.

— Characterization of how much the length of S-sparse vectors can
be modified by A.

* One can show that the solution of /.-recovery accords
with the correct solution if 525 <J2 -1



RIP and max/min eigenvalues

* In general, the change of the vector length is characterized by
max,/min eigenvalues.

Roin (A" A) Il <[|AX]], < 4,,,, (A"A )l

* When X isrestricted to S-sparse vector whose non-zero
positions are fixed, this inequality is reduced to that for a

submatrix of A, A,.

N=6 X Xr
A 8 = AT .



Evaluation of RIP constant

e Using the relation, we have an explicit formula for evaluating
RIP constant as

S, :max{l— min  A..(A7A;),  max imaX(A;AT)—l}

rTc{12,. NYrl=s  ™n 7112, NYT|=S

* But, unfortunately, this evaluation is computationally difficult.



Statistical evaluation

« However, one can still statistically evaluate it for ensembles
of matrices.

— For several types of random matrices, it has been shown that
the /.-recovery condition typically holds for large systems if

M = const X S1og(N /S)

is satisfied.

« Employment of large deviation analysis of the largest/smallest
eigenvalues of random matrices by Davidson and Szarek (2001).

 Guarantee for correct reconstruction of /,-recovery for O(1) non-
zero density.



Comments on CT method

* Advantage
— Mathematically rigorous
— Wide applicability

» Applicable to matrix completion and analysis of other recovery
schemes as well.

 Drawback
— The assessment is not so good in terms of the estimation of the
actual critical condition although the order estimation is accurate.

« The bound is generally far from a threshold suggested by
experimental observations.



Method by Donoho and Tanner

* |dea: Follows geometrical argument on convex
(linear) programming
« EXYN=2,M=1,§=1

— l,-reconstruction is successful with a prob. of 1/2

f £, ~N(0,1/N)

Xy

x [11 ”
Success 2 successful Failure

Contours of lIx I,



In large system limit

« Surprisingly, the success prob. can also be evaluated in higher-
dimensional cases in a similar manner

« The problem is finally reduced to that of counting the number of S-
dimensional faces for M-dimensional random projection of N-
dimensional polytopes

[ Q, : N-dimensional polytope
~ [fﬁ]l(.?gN))]A > PS ( ]]‘\47 , ]f] ) 4 FQ, : M-dim proj. of Q, by A
S N

| f¢(Qy): # of S-dim. faces of O
« As M,N,S 5 oc,aa=M/N~O(),p=S/N~0Q)

Py exhibits a “phase transition” €L
(~

>ac(p): SUCceSS ....................................
& Failure Success

<o, (p): ftalure
‘ . (p)

F




Donoho and Tanner (2009)

Sepwito with FORghrazhiokd z-Ni0 10 Nomdlizod L, oo p-200

Curve:
Critical relation
(theory)

Red:
Low success prob.

Blue:
High success prob.

DL Donoho and J Tanner, arXiv:0906.2530 (2009)



Comments on DT Method

* Advantage
— Mathematically rigorous

— Accurate

* The threshold is excellently in accordance with experimental
behavior.

« Even finite size effects are exactly evaluated!

 Drawback

— Application to advanced settings is technically difficult.

« Even a slight change of setting makes it difficult to follow the DT
method



Method by Monatnari et al

* |dea: Reduce AMP to a macroscopic dynamics, which is
termed state evolution, and prove that it holds exactly for
large system limit N — oo.

. . : Holds exactly for
AMP(=microscopic dynamics) v SE(=macroscopic dynamics)

N — oo ,
Described by dynamics of MSE O,

) DD e
t — _A t _ t—1 t—1 AT t—1 t—1 2
| Z =y—AX +5Z <77k ( Z +X )> \P(az)EE{{n(X+%Z;/IGj—X} }

Where O = —, <u>5—2ui

=X



Fixed point analysis

e Criticality of convergence to o> =0 exactly accords to DT

condition for i.i.d. matrices.

A 0.056

0 0.5
X

+Gauss signal

C 0.05

Gauss signal

0.5

E 0.01

2

0.5

0.5
X

+1,-1 signal

Red: Unique solution 6> =0

- Blue: Critical

Green: Two solutions

Donoho, Makeli and Montanari,
PNAS 109, 18914 (2009)



Comments on SE
* Advantage

— Mathematically rigorous
— Accurate

« The threshold is excellently in accordance with experimental
behavior.

— Wide applicability
* Applicable to EM-BP
* Applicable to non-uniform nonzero signal density

 Drawback

— Application has been limited to i.i.d. matrices so far.

« Employment for orthogonal matrices, which are practically relevant,
is non-trivial due to weak correlations among entries.

— Very recently, a group from Hong Kong posted a paper on the
generalization of SE under three assumptions to orthogonal matrices to
arXiv.

Ma et al, "Turbo compressed sensing with partial DFT sensing matrix”,
arXiv:1408.3904




Replica method

* |dea: Follow the Bayesian framework

* Assumptions
— Data generation (correct prior)

P(XO) — ﬂ ((1 — p)5(xlo ) + pf(_xlo )) [f(x): arbitrary dist}

unit variance

— Matrix ensemble (Gaussian i.i.d.)

Just for simplicity

A,Lti ~ N(O . ]\]_1 ) One can generalized the analysis

to more advanced ensembles.

— Large system limit

M,N —oo,00=M /N ~O0()



Bayesian formulation

* Model (mismatched) prior based on /-cost

Py (X) o< eXp(—,B I x ||p) (B>0: inverse temp.)

o Posterior distribution

p(xix0 ay = SRR ¥>i<OAz; y(= Ax"))

* |,-reconstruction corresponds to the maximum a
posterlorl (MAP) estimator for V3 >0



Performance measure

» MAP accords to the posterior mean of [ — oo
« Typical mean square error (per element)

L x— 02> —0—
mse—NNX X‘ ﬁ%wL,F Q-2m+p

1 ) _1r,
=ﬁ|:<|x| >ﬂeoo:|X0’F m=ﬁ|:x <X>[H°°]x°,F

* Criterion of successful reconstruction

Negligible errors in N—eo

e < =0: success are allowed
(Different from CT(2006)

\ >0: failure and DT(2006))




Difficulty and solution

* Exact evaluation of the nested average [<0(X)>] is technically
difficult in general.

* Forlarge system limit N — oo, one can do it utilizing the saddle
point method under the assumption that the following analytical

continuation of ¢(n,f) is allowed (= Replica method).

o(n,B)= %log[(zﬁ(xo,A))n} (neN)

o(n,B)= %log[(zﬁ(xo ,A))n} (neR)

* The critical relation is evaluated by monitoring "mse=0 — >0".



Results

YK, Wadayama and Tanaka, J. Stat. Mech. (2009) L0O9003
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Experiments for /.-reconst.

Employed CVX (Grant and Boyd (2009))

— Excellent agreement between theory and experiments

0=0.5

106 experiments for
each of N=10,12,...,30.
a.(p,N—=) is inferred by
the quadratic fitting with
respect to 1/N

Theoretical prediction

0.=0.83129...

O-.
0.83F H o (05N =031"N  * -0z2oN ! -083
E H"'\"'E‘.;::E
Q;{J. 82 4‘?1
E:_:l I-j\g‘\u
0.81 .
0.8 ' |
0 0.05 1/N 0.1

YK, Wadayama and Tanaka, J. Stat. Mech. (2009) L0O9003

Experimental value

0.=0.83165...




Comments on replica method

* Advantage

— Accurate

« The threshold is excellently in accordance with experimental

behavior.
— Wide applicability

* Applicable to wide classes of matrix ensembles.

Ex) Random orthogonal matrices

A=UDV"' vy

Drawback
— Mathematically non-rigorous

D :

MxN diagonal matrix whose diagonal entries
asymptotically follow a certain dist.

« Sample from uniform dist. of NxN

orthogonal matrices

YK, Vehkapera and Chatterjee (2012)
Vehkapera, YK and Chatterjee (2014)
YK and Vehkapera (2014)



Comparison among the advanced methods

Characteristics of each method may be summarized as follows.

Math. Validity Accuracy Applicability

Candes-Tao O @
(RIP)

Donoho-Tanner

(combinatorics)

State evolution Q

Replica method

O0]|0OX

X
O
©




SUMMARY AND DISCUSSION



Summary

* What | talked about

— Problem setup of noiseless compressed sensing
— Introduction of several signal recovery algorithms
— Introduction of several methods for performance analysis/guarantee

* What | did not talk about
— Many
v Noisy compressed sensing
v Advanced matrix ensembles (union of random orthogonal matrices)
v’ Expectation consistency scheme for signal recovery
v’ Matrix completion

v’ Dictionary learning, matrix factorization
V..



Summary

 What | currently am interested in
1. Analysis of greedy algorithms

v

v

v

No accurate analysis yet. But, excellent performance is observed in
experiment.

Other two strategies, convex relaxation and probabilistic inference, are a
good match with equilibrium stat. mech. because cost (energy) function
is provided. But, analysis of greedy algorithms is nontrivial.

Dynamical theory may be required. Formalisms of Path integral,
dynamical replica, statistical neurodynamics, ..., may be useful.

2. Matrix completion

v

v
v

RIP analysis was applied to the critical condition of /,-recovery (Recht et
al. (2010),(2011)).

But, little quantitatively accurate analysis.
Replica theory may be able to provide more accurate estimation.



Matrix completion

* Inference of missing entries of a matrix from existing entries
— Important for recommendation system and so on.

Ex) Matrix of cinema rating
E‘é?:ﬁ;zr/ Alice Bob Charles David
Star Trek 2 4
Rain Man 1 3
Godzilla 3 4
Psycho 3
Titanic 5 2 3




Mathematical formulation

"Signa|"= matriX: X — (X]) RNIXNZ

Measurement of ] entry of X
Set of “measurement {Al ,Az AN }
matrices”: = A = A ” = (6 ><5 )

Measurement: Y Tr(( ) ) ZA (,LL:1,2 ..... M)

Signal density of X : rank (X)

min(N;,N, )

1/p
“l;-norm™: ||X||p :[ Z ‘Gi (X)‘p) (Schatten p-norm)

i=1



Problem to solve and convex relaxation

* [,-recovery
— Computationally hard

minrank(X) subj.to Y, :Tr((A“)T X) (,LL:1,2,...,M)

X

* [,-recovery
— Computationally feasible

. . T
rnX1n||X|1 subj. to YuzTr((A“) X) (u=12,....,M)
(
<:>I§{1,izn\ ‘0{ (Z) ]subj.to[ ;T )Z( JEO, Yﬂ:Tr((Au)Tx) (u:1,2,...,M)

Soluble by semi-definite programming by convex packages

# Greedy algorithm and probabilistic inference may also be candidates (maybe).



RIP analysis

* Linear measurement
T
YzAX(:)Yu:Tr((A“) X)zZAgXU (u=12,....,M)

L,]
* RIP constant 5,, for operatorA
— Min of 5 that satisfies the following for any X whose rank < 7.

(1-8)IXI, <[AX], < (1+8)]X],

« Condition for /.-recovery for i.i.d. Gaussian A
_ 55r <1/10 = Matrix whose rank S I can be recovered by /,-recovery.

— This condition typically holds for large systems if the number of
measurements satisfies the following.

M = O(I’(N1 + N, )) [Recht et al. (2010),(2011)]



Last slide

Conventional principle of information processing

= “Least square method”
— Why? = Analytically feasible.

* Unique feasible option before computers were developed.

Background of compressed sensing

— Computers have become fast and cheap.
—> Now, we do not necessarily rely on analytically feasible methods.

Consequence of game change
— “Least square” - “Sparsity”

— Revolution in the level of principle.
This research trend probably continues substantially long.



Thanks for your attention



