Compressed sensing using spin-glass concepts

Marc Mézard

Ecole normale supérieure - PSL Research University, Paris and CNRS, Université Paris Sud

Cargèse, August 2014

General perspective

Major trend of 21st century scientific research, in all fields (including social sciences and humanities): massive data acquisition, often noisy.

How to search efficiently in a database? How to make sense of it? What to search?

Models vs statistical analysis

Extract relevant information from data

Linear regression: Output variable y

N Input variables F_i $i=1,\ldots,N$

Linear regression: Output variable y

N Input variables F_i $i=1,\ldots,N$

Seek a linear correlation between y and the inputs F_i

$$y \simeq \sum_{i=1}^{N} x_i F_i + \eta$$
 $x = \text{parameter vector}$

Linear regression: Output variable y

$$N$$
 Input variables F_i $i=1,\ldots,N$

Seek a linear correlation between y and the inputs F_i

$$y \simeq \sum_{i=1}^{N} x_i F_i + \eta$$
 $x = \text{parameter vector}$

Linear regression: Output variable y

$$N$$
 Input variables F_i $i=1,\ldots,N$

Seek a linear correlation between y and the inputs F_i

$$y \simeq \sum_{i=1}^{N} x_i F_i + \eta$$
 $x = \text{parameter vector}$

M measurements = (input,output pairs)

$$(y^\mu,F_1^\mu,\dots,F_N^\mu)$$
 $\mu=1,\dots,M$ Find $\{x_i\}$ such that $\sum_{\mu}\left(y^\mu-\sum_iF_i^\mu x_i\right)^2$ is minimal

M measurements = (input,output pairs)

Find
$$\{x_i\}$$
 such that $\sum_{\mu} \left(y^{\mu} - \sum_{i} F_i^{\mu} x_i\right)^2$ is minimal

Least squares method (Legendre 1805, Gauss 1795-1809)

M measurements = (input,output pairs)

Find
$$\{x_i\}$$
 such that $\sum_{\mu} \left(y^{\mu} - \sum_{i} F_i^{\mu} x_i\right)^2$ is minimal

Least squares method (Legendre 1805, Gauss 1795-1809)

New strategy: include many input variables (large N) but ask that many of the regression coefficients x_i be zero

M measurements = (input,output pairs)

Find
$$\{x_i\}$$
 such that $\sum_{\mu} \left(y^{\mu} - \sum_{i} F_i^{\mu} x_i\right)^2$ is minimal

Least squares method (Legendre 1805, Gauss 1795-1809)

New strategy: include many input variables (large N) but ask that many of the regression coefficients x_i be zero-LASSO= solve linear regression with L_1 constraint

Tibshirani 1996

$$\sum_{i} |x_i| < s$$

M measurements = (input,output pairs)

Find
$$\{x_i\}$$
 such that $\sum_{\mu} \left(y^{\mu} - \sum_{i} F_i^{\mu} x_i\right)^2$ is minimal

Least squares method (Legendre 1805, Gauss 1795-1809)

New strategy: include many input variables (large N)

but ask that many of the regression coefficients x_i be zero

-LASSO= solve linear regression with L_1 constraint

Tibshirani 1996

$$\sum_{i} |x_i| < \varepsilon$$

-Compressed sensing: ask that only R regression coefficients be non-zero, ... See YK's last slide

- Explain data by decomposing it into unknown factors
- Include many factors in the analysis
- Ask that most factors do not contribute
- Useful if data has some structure (Science!)

- Explain data by decomposing it into unknown factors
- Include many factors in the analysis
- Ask that most factors do not contribute
- Useful if data has some structure (Science!)

A new way of doing science? Discover subtle hidden « factors », then look for an explanation (or not...) e.g. personalized medicine.

- Explain data by decomposing it into unknown factors
- Include many factors in the analysis
- Ask that most factors do not contribute
- Useful if data has some structure (Science!)

A new way of doing science? Discover subtle hidden « factors », then look for an explanation (or not...) e.g. personalized medicine.

Not limited to linear problems. e.g.:

- Discrete tomography
- Group testing
- Infer regulatory interactions in gene expression network

- Explain data by decomposing it into unknown factors
- Include many factors in the analysis
- Ask that most factors do not contribute
- Useful if data has some structure (Science!)

A new way of doing science? Discover subtle hidden « factors », then look for an explanation (or not...) e.g. personalized medicine.

Not limited to linear problems. e.g.:

- Discrete tomography
- Group testing
- Infer regulatory interactions in gene expression network
- How does the brain work?

L angles:

 L^2 measurements

 L^2 pixels

sample size L

pixel size 1

 \uparrow domain size ξ

If the size of domains is \gg pixel: possible to reconstruct with $\ll L^2$ measurements

 $\xi \gg 1$

If the size of domains is \gg pixel: possible to reconstruct with $\ll L^2$ measurements

 $\xi \gg 1$

This picture, digitalized on 1000×1000 grid, can be

reconstructed fom measurements with

16 angles

Gouillart et al., Inverse problems 2013

If the size of domains is \gg pixel: possible to reconstruct with $\ll L^2$ measurements

Back to the simplest problem: getting a signal from some measurement= linear transforms

Consider a system of linear measurements

Random F: «random projections» (incoherent with signal)

Pb: Find s when M < N and s is sparse

Phase diagram - random Gaussian F

 L_1 : Find a N - component vector x such that the M equations y=Fx are satisfied and ||x|| is minimal Gaussian random matrix

Phase diagram - random Gaussian F

 L_1 : Find a N - component vector x such that the M equations y=Fx are satisfied and ||x|| is minimal Gaussian random matrix

Alternative approach, able to reach the optimal rate $\alpha = \rho$

Krzakala Sausset Mézard Sun Zdeborova 2011

- Probabilistic approach
- Message passing reconstruction of the signal
- Careful design of the measurement matrix

NB: each of these three ingredients is crucial

Alternative approach, able to reach the optimal rate $\alpha = \rho$

Krzakala Sausset Mézard Sun Zdeborova 2011

- Probabilistic approach
- Message passing reconstruction of the signal
- Careful design of the measurement matrix

NB: each of these three ingredients is crucial

Assumption: original signal components are independent and sparse (in an appropriate basis)

$$s_i = 0$$
 with probability $1 - \rho_0$

Step 1: Probabilistic approach to compressed sensing

Probability P(x) that the signal is x:

I) x must be compatible with the measurements:

$$\sum_{i} F_{\mu i} x_i = y_{\mu}$$

II) A priori measure on x favours sparsity

« Gauss-Bernoulli » prior:

with probability ρ : $x_i = 0$

with probability $1-\rho$: drawn from Gaussian

Theorem: with this measure, the original signal x = s is the most probable (even for wrong prior: not obvious!)

$$P(\mathbf{x}) = \prod_{i=1}^{N} [(1-\rho)\delta(x_i) + \rho\phi(x_i)] \quad \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right) \qquad \text{Gaussian} \quad \phi$$

Prior

$$P(\mathbf{x}) = \prod_{i=1}^{N} [(1-\rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right) \qquad \text{Gaussian } \phi$$

Prior

$$P(\mathbf{x}) = \prod_{i=1}^{N} [(1-\rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right) \qquad \text{Gaussian } \phi$$

$$\prod_{\mu=1}^{P} \delta \left(y_{\mu} - \sum_{i} F_{\mu i} x_{i} \right)$$

Prior

$$P(\mathbf{x}) = \prod_{i=1}^{N} [(1-\rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right)$$

Gaussian ϕ

«Native configuration»= stored signal $x_i = s_i$ is infinitely more probable than other configurations. Efficient sampling? Not so easy.

Prior

$$P(\mathbf{x}) = \prod_{i=1}^{N} [(1-\rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right)$$

$$\prod_{\mu=1}^{P} \delta \left(y_{\mu} - \sum_{i} F_{\mu i} x_{i} \right)$$

«Native configuration»= stored signal $x_i = s_i$ is infinitely more probable than other configurations. Efficient sampling? Not so easy.

«Mean field»:

belief propagation

(spin glass mean-field equations, TAP)

$$P(\mathbf{x}) = \prod_{i=1}^{N} \left[(1 - \rho)\delta(x_i) + \rho\phi(x_i) \right] \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right)$$

$$\prod_{\mu=1}^{P} \delta \left(y_{\mu} - \sum_{i} F_{\mu i} x_{i} \right)$$

«Native configuration»= stored signal $x_i = s_i$ is infinitely more probable than other configurations. Efficient sampling? Not so easy.

«Mean field»: belief propagation (spin glass mean-field equations, TAP)

constraints

Each constraint involves all the variables: «long-range» weak interactions (e.g. Curie Weiss model for magnets).

Mean field is exact*

Belief propagation = mean field equations

«Factor graph»

$$P(\mathbf{x}) = \prod_{i=1}^{N} [(1-\rho)\delta(x_i) + \rho\phi(x_i)] \left[\prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right) \right]$$

Belief propagation = mean-field like equations

Local order parameters:

$$a_{i \to \mu} = \langle x_i \rangle_{\mu}$$
$$v_{i \to \mu} = \langle x_i^2 \rangle_{\mu} - (\langle x_i \rangle_{\mu})^2$$

where $\langle \cdot \rangle_{\mu}$ denotes the mean, in absence of constraint μ («cavity»-type measure)

Belief propagation = mean-field like equations

Local order parameters:

$$a_{i \to \mu} = \langle x_i \rangle_{\mu}$$
$$v_{i \to \mu} = \langle x_i^2 \rangle_{\mu} - (\langle x_i \rangle_{\mu})^2$$

where $\langle \cdot \rangle_{\mu}$ denotes the mean, in absence of constraint μ («cavity»-type measure)

Belief propagation = mean-field like equations

Local order parameters:

$$a_{i \to \mu} = \langle x_i \rangle_{\mu}$$
$$v_{i \to \mu} = \langle x_i^2 \rangle_{\mu} - (\langle x_i \rangle_{\mu})^2$$

where $\langle \cdot \rangle_{\mu}$ denotes the mean, in absence of constraint μ («cavity»-type measure)

Closed self-consistent equations relating these order parameters («BP», «TAP», «G-AMP»,...)

Belief propagation = mean-field like equations

Local order parameters:

$$a_{i \to \mu} = \langle x_i \rangle_{\mu}$$
$$v_{i \to \mu} = \langle x_i^2 \rangle_{\mu} - (\langle x_i \rangle_{\mu})^2$$

where $\langle \cdot \rangle_{\mu}$ denotes the mean, in absence of constraint μ («cavity»-type measure)

Closed self-consistent equations relating these order parameters («BP», «TAP», «G-AMP»,...)

Four «messages» sent along each edge $i-\mu$ (4NM numbers) can be simplified to O(N) parameters

Technical parenthesis

Gaussian-projected BP («relaxed-BP»)

$$a_{i\to\mu} = \int \mathrm{d}x_i \, x_i \, m_{i\to\mu}(x_i)$$

$$v_{i\to\mu} = \int \mathrm{d}x_i \, x_i^2 \, m_{i\to\mu}(x_i) - a_{i\to\mu}^2$$

$$m_{\mu \to i}(x_i) = \frac{1}{\tilde{Z}^{\mu \to i}} e^{-\frac{x_i^2}{2} A_{\mu \to i} + B_{\mu \to i} x_i}$$

$$m_{i \to \mu}(x_i) = \frac{1}{\tilde{Z}^{i \to \mu}} \left[(1 - \rho)\delta(x_i) + \rho\phi(x_i) \right] e^{-\frac{x_i^2}{2} \sum_{\gamma \neq \mu} A_{\gamma \to i} + x_i \sum_{\gamma \neq \mu} B_{\gamma \to i}}$$

Large connectivity: simplification by projection of the messages on their first two moments

Technical parenthesis

Gaussian-projected BP («relaxed-BP»)

$$v_{i \to \mu} = \int \mathrm{d}x_i \, x_i^2 \, m_{i \to \mu}(x_i) - a_{i \to \mu}^2$$

$$m_{\mu \to i}(x_i) = \frac{1}{\tilde{Z}^{\mu \to i}} e^{-\frac{x_i^2}{2} A_{\mu \to i}} B_{\mu \to i} x_i$$

$$m_{i\to\mu}(x_i) = \frac{1}{\tilde{Z}^{i\to\mu}} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] e^{-\frac{x_i^2}{2} \sum_{\gamma\neq\mu} A_{\gamma\to i} + x_i \sum_{\gamma\neq\mu} B_{\gamma\to i}}$$

Large connectivity: simplification by projection of the messages on their first two moments

Performance of the probabilistic approach + message passing + parameter learning

- Simulations
- Analytic study of the large N limit (replica method, cavity method)

Analytic study: cavity equations, density evolution, replicas, state evolution

Replica method allows to compute the «free entropy»

$$\Phi(D) = \lim_{N \to \infty} \frac{1}{N} \log P(D)$$

where P(D) is the probability that reconstructed x is at distance D from original signal s.

$$D = \frac{1}{N} \sum_{i} (x_i - s_i)^2$$

Cavity method shows that the order parameters of the BP iteration flow according to the gradient of the replica free entropy Φ («density evolution» eqns)

analytic control of the BP equations

Free entropy $\sim \log P(D)$

0.25 0.2 0.1 $\alpha = .56$ 0.15 0.2 0.25 0.05 0.1 0.3 0 distance to native state

BP convergence time $\rho_0 = .4$

Dynamic glass transition

When α is too small, BP is trapped in a glass phase

iterations

BP convergence time $\rho_0 = .4$

Dynamic glass transition

NB comparison of theory (replica, cavity, density evolution) and numerical experiment

Performance of BP with parameter learning: phase diagram

Gaussian signal

Binary signal

Step 3: design the measurement matrix in order to get around the glass transition

Getting around the glass trap: design the matrix F so that one nucleates the naive state (crystal nucleation idea,

...borrowed from error correcting codes!)

Felström-Zigangirov, Kudekar Richardson Urbanke, Hassani Macris Urbanke,

• • •

«Seeded BP»; «Spatial coupling»

Nucleation and seeding

How to help the system find the « crystal », getting around the glass trap?

I) Create many "mean-field" sub-systems

2) Add a first neighbor coupling

3) Choose parameters such that the first system is in the region of the phase diagram where there is no metastability

On average, α is still low!

4) The solution will appear in the first sub-system (with large α), and then propagate in the system

Structured measurement matrix. Variances of the matrix elements

 $F_{\mu i}=$ independent random Gaussian variables, zero mean and variance $J_{b(\mu)b(i)}/N$

: no coupling (null elements)

... and then propagates in the whole system!

$$L = 8$$

$$N_i = N/L$$

$$M_i = \alpha_i N/L$$

$$\alpha_1 > \alpha_{BP}$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

$$\alpha = \frac{1}{L} (\alpha_1 + (L - 1)\alpha')$$

Numerical

study

$$L=20$$
 $N=50000$ $\rho=.4$ $J_1=20$ $\alpha_1=1$ $J_2=.2$ $\alpha=.5$

$$L=20$$
 $N=50000$ $\rho=.4$ $J_1=20$ $\alpha_1=1$ $J_2=.2$ $\alpha=.5$

$$L=20$$
 $N=50000$ $\rho=.4$ $J_1=20$ $\alpha_1=1$ $J_2=.2$ $\alpha=.5$

Performance of the probabilistic approach + message passing + parameter learning+ seeding matrix

$$Z = \int \prod_{j=1}^{N} dx_j \prod_{i=1}^{N} \left[(1 - \rho)\delta(x_i) + \rho\phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

- **▶** Simulations
- Analytic approaches (replicas and cavity)

$$\rightarrow \alpha_c = \rho_0$$

Recent proof: Donoho Javanmard Montanari

Theory: seeded-BP threshold at $\ \alpha=\rho$ when $L\to\infty$ L_1 phase transition line moves up when using seeding F

Noise

CS with Gauss-Bernoulli (ρ_0 =0.2) noisy (σ_n =10⁻⁴) signals

N = 5000

Noise

CS with Gauss-Bernoulli (ρ_0 =0.2) noisy (σ_n =10⁻⁴) signals

Optimal performance on artificial signals (sparse but with independent components).

More realistic signals?

Shepp-Logan phantom, in the Haar-wavelet representation

Shepp-Logan phantom, in the Haar-wavelet representation

Shepp-Logan phantom, in the Haar-wavelet representation

 $\alpha = \rho \approx 0.24$

Discrete tomography

30 angles I4 angles I7 angles

Discrete tomography

30 angles I4 angles I7 angles

Images = large size, but structured data.

Use hint that it is an image!

Prior on $\{s_i\}$: neighbouring pixels more likely to be equal

Probabilistic approach

Belief propagation applied to this problem: allows to handle large-size problems

Robust to noise!

Adding a noise to the projections From 6 angles...

Original

BP

Continuous + Total Variation

(i.e. LASSO-type problem)

Summary

Progress based on the union of three ingredients:

Probabilistic approach

 Message passing reconstruction of the signal

 Careful design of the measurement matrix to avoid glass transition

Robust to noise (signal, matrix)

•Generalizable to approximately sparse signals

Applications...

Based on joint work with

Jean Barbier (ESPCI), Emmanuelle Gouillart (Saint-Gobain-CNRS), Florent Krzakala(ENS), François Sausset (LPTMS), Yifan Sun (ESPCI), Lenka Zdeborova(IPhT)

- Phys. Rev. X 2, 021005, (2012) (open access)
- J. Stat. Mech. (2013) P01008
- Inverse Problems 29, 3 (2013) 035003
- arXiv: 1301.5898
- arXiv: 1301.0901
- arXiv: 1207.2079