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General perspective

Major trend of 2|st century scientific research, in all
fields (including social sciences and humanities):
massive data acquisition, often noisy.

How to search efficiently in a database?
How to make sense of it! What to search?

Models vs statistical analysis
Extract relevant information from data



A kind of introduction: linear regression

Linear regression: ~ Output variable y

N Input variables £ i=1,...,N



A kind of introduction: linear regression
Linear regression: ~ Output variable y
N Input variables £ i=1,...,N

Seek a linear correlation between y and the inputs £;

N
Yy = Z Tty +n r = parameter vector
1=1



A kind of introduction: linear regression
Linear regression: ~ Output variable y
N Input variables £ i=1,...,N

Seek a linear correlation between y and the inputs £;

N
Yy = Z Tty +n r = parameter vector
1=1

10 20 30 40 50 60



15

10

A kind of introduction: linear regression

Linear regression: ~ Output variable y

N Input variables £ i=1,...,N

Seek a linear correlation between y and the inputs £;

Yy = Z Tty +n r = parameter vector
1=1

M measurements = (input,output pairs)

(y", F!", ... F%) = M

/ Find {z:} such that Z <y — ZF%Z)

; is minimal
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Usual method

M measurements = (input,output pairs)

Find {zi} such that " (y“ _ ZFZ.“%) is minimal
Least squares method ( )

New strategy :include many input variables (large V)

but ask that many of the regression coefficients x; be zero

-LASSO= solve linear regression with ., constraint
D w| < s
1
-Compressed sensing: ask that only R regression
coefficients be non-zero, ...
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Compressed sensing and beyond

- Explain data by decomposing it into unknown factors
- Include many factors in the analysis

- Ask that most factors do not contribute

- Useful if data has some structure (Science!)

A new way of doing science! Discover subtle hidden
« factors », then look for an explanation (or not...)
e.g. personalized medicine.

Not limited to linear problems. e.g.:

- Discrete tomography

- Group testing

- Infer regulatory interactions in gene expression network

- How does the brain work?
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An example: This picture, digitalized on

tomography of 1000 x 1000 grid, can be

binary mixtures reconstructed fom

measurements with

16 angles

X

If the size of domains is > pixel: possible to
reconstruct with < L? measurements



Back to the simplest problem: getting a signal from
some measurement= linear transforms

Consider a system of linear measurements

. — Unknown
Measurements /\l y=1Ls signal
1 / &
( y \ Known
y=1 measurement >
\ ¥" i |
Y matrix
SN

F =M x N matrix

Random F : «random projections» (incoherent with signal)

Pb: Find s when |M < N|and S is sparse




Phase diagram - random Gaussian F

Number o = M/N (a)
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Alternative approach, able to reach the optimal rate a = p

*Probabilistic approach
*Message passing reconstruction of the signal
*Careful design of the measurement matrix

NB: each of these three ingredients is crucial

Assumption: original signal components are
independent and sparse (in an appropriate basis)

si =0 with probability 1 — po



Step |: Probabilistic approach to compressed sensing

Probability P(x) that the signal is x :

) 2 must be compatible with the measurements:

ZFM'LZEZ — Yu

[I) A priori measure on T favours sparsity

« Gauss-Bernoulli » prior:
with probability p : z; =0

with probability 1 — p :drawn from Gaussian

Theorem: with this measure, the original signal x = s is
the most probable (even for wrong prior: not obvious!)



Step 2: Sampling from the constrained measure

N P

P(x) = H[(l — p)o(x;) + po(x;)] H 0 (yu — Z mem) Gaussian ¢

1=1 p=1
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Step 2: Sampling from the constrained measure

Prior

Gaussian ¢

«Native configuration»= stored signal x; = s; is infinitely
more probable than other configuration
Efficient sampling? Not so easy.

constraints
Each constraint involves

all the variables: «long-range»
weak interactions (e.g. Curie
Weiss model for magnets).

> Mean field is exact™®

«Mean field»:

belief propagation
(spin glass mean-field
equations, TAP)




Belief propagation = mean field equations
«Factor graph»

Ti variablesy

constraints
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Belief propagation = mean-field like equations
Local order parameters:

Qisp = (Ti)p

2
" u Vi = () — ((@i) )
where (.). denotes the mean, in absence of constraint 1

(«cavity»-type measure)

Closed self-consistent equations relating these order
parameters («BP», « TAP», « G-AMP»,...)

Four «messages» sent along each edge * — 1
(4N M numbers ) can be simplified to O(V) parameters



Technical parenthesis Gaussian-projected BP

(«relaxed-BP»)
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Large connectivity: simplification by projection of the messages on
their first two moments



Technical parenthesis

(ai—m} /dwi ) mi—m(xi)
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Gaussian-projected BP
(«relaxed-BPy)

Large connectivity: simplification by projection of the messages on
their first two moments



Performance of the probabilistic
approach + message passing +
parameter learning

» Simulations
» Analytic study of the large N limit
(replica method, cavity method)



Analytic study: cavity equations, density
evolution, replicas, state evolution

Replica method allows to compute the «free entropy»

where P(D) is the probability that reconstructed = is
at distance D from original signal s.

Cavity method shows that the order parameters of
the BP iteration flow according to the gradient of
the replica free entropy ¢ («density evolution» egns)

= analytic control of the BP equations




Free entropy ~ log P(D) BP convergence time o = -4

P app gy

(87

10000 |

1000 =

100 =

e

distance to native state
Dynamic glass transition

Whena is too small, BP is trapped in a glass phase



Error BP convergence time ro = 4
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NB comparison of theory (replica, cavity,
density evolution) and numerical experiment



Performance of BP with parameter
learning: phase diagram

Gaussian signal

BP L4
l — ——————N\
0.8
0.6 L
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0.2 1 % S-BEP
: x=p
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Binary signal



Step 3:design the measurement matrix in
order to get around the glass transition

Getting around the glass trap: design the matrix F
so that one nucleates the naive state (crystal
nucleation idea,

...borrowed from error correcting codes!)

«Seeded BP» ; «Spatial coupling »



Nucleation and seeding

How to help the system find the « crystal » , getting
around the glass trap!?



Mixed “mean-field” and
one-dimensional system:

|) Create many “mean-field” sub-systems



Mixed “mean-field” and
one-dimensional system:

2) Add a first neighbor coupling



Mixed “mean-field” and
one-dimensional system:

3) Choose parameters such that the first
system is in the region of the phase
diagram where there is no metastability

(e et e e
L

value of  values of

X X On average, X is still low !



Mixed “mean-field” and
one-dimensional system:

4) The solution will appear in the first

sub-system (with large ), and then
propagate in the system

e
7" L
r/{ N
\
f
\
|
|
|




O
— X
0
M : unit coupling

: coupling /
Structured : coupling /;
measurement matrix. : no coupling (null elements)
Variances of the
matrix elements

F.i = independent random Gaussian variables,

zero mean and variance J, ;) /N



Block 1 has a large value of "y . ynit coupling
M such that the solution arise

: ||
in this block... coupting /

: coupling />
: no coupling (null elements)

... and then propagatesin the
whole system!

L=38 Q1 > app

NZ:N/L Oéj:Ck/<Cva q > 2
1

Mz' :CVZN/L o = —(()41—|—(L—1)Oé/)

L
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Numerical
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Performance of the probabilistic
approach + message passing +
parameter learning+ seeding matrix

N N N
Z:/HdCBJH CE@ ‘|‘,0¢ CE@ H (?JMZFMZCEZ)
1=1

J:]_ 1—=1 :

( \ » Simulations
» Analytic approaches
(replicas and cavity)

— Oc = PO

Recent proof: Donoho Javanmard Montanari



iterations
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Gaussian signal Binary signal

BP L
Ly
BP seeded — BP
N - / 1
0.8 — ] 0.8 _
0.6L ] 0.6
S : S
04l ] 04|
[ oy | ' o4 (p)
I X oo(p) | - s X gp(P)
0.2 | S.BEP | - 0.2 - S-BEP
[ a=p | | - q=0
ol ' olf o o '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
P P

Theory: seeded-BP thresholdat o =p when L — ¢

L1 phase transition line moves up when using seeding F



Noise
CS with Gauss-Bernoulli (p,=0.2) noisy (c,=10") signals

0.2 @ T |

= = u 2 one oo
0.2 025 03 035 04 045 05 055 0.6

(0

N = 5000



Noise

CS with Gauss-Bernoulli (py=0.2) noisy (c,=10"%) signals

0.001 ¢ L=4, theory ;
0.0001 | ~ BP,L=4,N=5000 - =
LLI : L=1, theory - ;
2 1e-05 | ~ BP, L=1, N=5000 -~
j Ly min, N=5000 - @ -
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Optimal performance on artificial
signals (sparse but with
independent components).

More realistic signals?
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e 0.5 0.4

L1 D‘D

Shepp-Logan phantom, in the Haar-wavelet
representation
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Discrete tomography

50
100
150
200
250
300
350

0 50 100150200 250300350

30 angles |4 angles | 7 angles

Images = large size, but structured data.
Use hint that it is an image! ==
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Prior on {s;; : neighbouring
pixels more likely to be equal



Probabilistic approach

M

P({S}) o [T 6w — 3 55) T & Secw S50

1ENU pu=1

et Ny )

Solution of Prior on the images
the linear system

Belief propagation applied to this problem :allows
to handle large-size problems



Robust to noise!

Adding a noise to the projections

From 6 angles...

Continuous
+Total Variation

(i.e. LASSO-type problem)

Original BP



Summary

Progress based on the union of three ingredients:

*Probabilistic approach

*Message passing reconstruction I

of the signal Bp seeded — BP
*Careful design of the 0\ /
measurement matrix to avoid | !

0.8 F
glass transition |
0.6 -
o

0.4 |

*Robust to noise (signal, matrix) | A
*Generalizable to approximately | o | 1
sparse signals o ez o4 o os

* Applications...
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