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General perspective

Major trend of 21st century scientific research, in all 
fields (including social sciences and humanities):  
massive data acquisition, often noisy. 	


!

How to search efficiently in a database?	


How to make sense of it? What to search?	


!

Models vs statistical analysis 	


Extract relevant information from data	


!
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A kind of introduction: linear regression

Linear regression: Output variable y

Input variables N i = 1, . . . , NFi
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New strategy : include many input variables (large    )N

but ask that many of the regression coefficients     be zeroxi

-LASSO= solve linear regression with      constraintL1

X

i

|xi| < s

Tibshirani 1996

Least squares method (Legendre 1805, Gauss1795-1809)

-Compressed sensing: ask that only        regression 
coefficients be non-zero, …

R

See YK’s last slide
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Compressed sensing and beyond

- How does the brain work?	
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- Useful if data has some structure (Science!)	
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An example:  
tomography of 
binary mixtures 

If the size of domains is      pixel: possible to 
reconstruct with           measurements

�
⌧ L2

This picture, digitalized on 	


                   grid, can be1000⇥ 1000

reconstructed fom 
measurements with 

angles16

Gouillart et al.,	


Inverse problems 2013



Back to the simplest problem: getting a signal from 
some measurement= linear transforms

Consider a system of linear measurements

y =

0

BB@

y1

.

.
yM

1

CCA

F = M ⇥N matrix

Unknown 
signalMeasurements

Measurements

Random F : «random projections» (incoherent with signal)

s =

0

BBBB@

s1
.
.
.
sN

1

CCCCA

Pb: Find when and is sparses sM < N

y = F s

Known 
measurement 

matrix



Phase diagram - random Gaussian F

y = Fx

Find a    - component vector      such that the       
equations                are satisfied and        is minimal

N x

M
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 2006, Donoho 
Tanner 2005

� = R/N
Fraction of non-
zero variables

Number 
of 
measure-
ments 
per 
variable

� = M/N

Gaussian random matrix

L1

Reconstruction 
impossible

Possible with

??

L1:

Trivial

Optimal rate
↵ = ⇢



Alternative approach, able to reach the optimal rate 

•Probabilistic approach	


•Message passing reconstruction of the signal	


•Careful design of the measurement matrix

Krzakala Sausset Mézard Sun Zdeborova 2011

NB: each of these three ingredients is crucial
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•Message passing reconstruction of the signal	


•Careful design of the measurement matrix

Krzakala Sausset Mézard Sun Zdeborova 2011

NB: each of these three ingredients is crucial

↵ = ⇢

Assumption: original signal components are 
independent and sparse (in an appropriate basis)

si = 0 with probability 1� ⇢0



Step 1: Probabilistic approach to compressed sensing

1)      must be compatible with the measurements: 

Probability         that the signal is    :x

P (x)

x

X

i

Fµixi = yµ

1I)  A priori measure on     favours sparsityx

« Gauss-Bernoulli » prior: 

xi = 0with probability     :⇢

with probability           : drawn from Gaussian distribution1� ⇢

Theorem: with this measure, the original signal         is 
the most probable (even for wrong prior: not obvious!)

x = s



P (x) =
NY

i=1

[(1� ⇥)�(xi) + ⇥⇤(xi)]
PY

µ=1

�

 
yµ �

X

i

Fµixi

!

�
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«Native configuration»= stored signal           is infinitely 
more probable than other configurations. 	
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xi = si
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 «Mean field»: 	


belief propagation 
(spin glass mean-field 
equations, TAP)

Step 2: Sampling from the constrained measure

 constraints
Each constraint involves 	


all the variables: «long-range» 
weak interactions (e.g. Curie 
Weiss model for magnets).	


              Mean field is exact*

Prior

Gaussian    



Belief propagation = mean field equations

xi «variables»

P (x) =
NY

i=1

[(1� ⇥)�(xi) + ⇥⇤(xi)]
PY

µ=1

�

 
yµ �

X

i

Fµixi

!

 constraints

«Factor graph»



Belief propagation = mean-field like equations

ai!µ = hxiiµ
vi!µ = hx2

i iµ � (hxiiµ)2

h.iµwhere denotes the mean, in absence of constraint µ

Local order parameters: 
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Belief propagation = mean-field like equations

ai!µ = hxiiµ
vi!µ = hx2

i iµ � (hxiiµ)2

h.iµwhere denotes the mean, in absence of constraint µ

Local order parameters: 

µ

i

(«cavity»-type measure)

Closed self-consistent equations relating these order 
parameters («BP», «TAP», «G-AMP»,...)

Four «messages» sent along each edge i� µ

4NM(          numbers ) can be simplified to        parametersO(N)



ai!µ =

Z
dxi xi mi!µ(xi)

vi!µ =

Z
dxi x

2
i mi!µ(xi)� a

2
i!µ

Large connectivity: simplification by projection of the messages on 
their first two moments

m
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for SK model)...,	
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Performance of the probabilistic 
approach + message passing + 

parameter learning

‣Simulations	


‣Analytic study of the large     limit 
(replica method, cavity method)

N



Cavity method shows that the order parameters of 
the BP iteration flow according to the gradient of 
the replica free entropy    («density evolution» eqns)�

Analytic study: cavity equations, density 
evolution, replicas, state evolution

Replica method allows to compute the «free entropy»

�(D) = lim
N!1

1

N
logP (D)

D =
1

N

X

i

(xi � si)
2

P (D)where         is the probability that reconstructed     is	


at distance      from original signal   .    

x

D s

analytic control of the BP equations
NB rigorous: Bayati Montanari, Lelarge Montanari
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Getting around the glass trap: design the matrix F 
so that one nucleates the naive state (crystal 
nucleation idea, 	


...borrowed from error correcting codes!)

Step 3: design the measurement matrix in 
order to get around the glass transition

Felström-Zigangirov, 	


Kudekar Richardson Urbanke,	


Hassani Macris Urbanke,	


...	


!

«Seeded BP» ; «Spatial coupling »



Nucleation and seeding

How to help the system find the « crystal » , getting 
around the glass trap?



Mixed “mean-field” and 
one-dimensional system:

sub-
system

1

1) Create many “mean-field” sub-systems

sub-
system

2

sub-
system

3

sub-
system

4

sub-
system

5

A construction inspired by the 
“spatially coupled matrices”
developed in coding theory

cf: Urbanke et al.



Mixed “mean-field” and 
one-dimensional system:

2) Add a first neighbor coupling

sub-
system
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sub-
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system
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Mixed “mean-field” and 
one-dimensional system:

3) Choose parameters such that the first 
system is in the region of the phase 

diagram where there is no metastability 

sub-
system

1

sub-
system

2

sub-
system

3

sub-
system

4

sub-
system

5

large 
value of 
α

low 
values of 
α On average, α is still low !



Mixed “mean-field” and 
one-dimensional system:

4) The solution will appear in the first 
sub-system (with large α), and then 

propagate in the system

sub-
system

1

sub-
system

2

sub-
system

3

sub-
system

4

sub-
system

5
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Structured 
measurement matrix. 
Variances of the 
matrix elements

Fµi = independent random Gaussian variables, 
zero mean and variance Jb(µ)b(i)/N
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Ni = N/L

Mi = �iN/L

�1 > �BP

�j = �0 < �BP j � 2

� =
1

L
(�1 + (L� 1)�0)

Block 1 has a large value of 
M such that the solution arise 
in this block...

... and then propagate in the 
whole system!

s
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Performance of the probabilistic 
approach + message passing + 

parameter learning+ seeding matrix

Z =

Z NY

j=1

dxj

NY

i=1

[(1� ⇥)�(xi) + ⇥⇤(xi)]
MY

µ=1

�

 
yµ �

NX

i=1

Fµixi

!

‣Simulations	


‣Analytic approaches 
(replicas and cavity)
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Optimal performance on artificial 
signals (sparse but with 

independent components).  
!

More realistic signals?
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BP at works...

14 angles30 angles 17 angles

Fast, and need for only few projections

Discrete tomography



BP at works...

14 angles30 angles 17 angles

Fast, and need for only few projections

Discrete tomography

Images = large size, but structured data. 
Use hint that it is an image!



{si}

yµ =
X

i2�µ

si

Prior on       : neighbouring 
pixels more likely to be equal

measurement µ



Probabilistic approach

Belief propagation applied to this problem : allows 
to handle large-size problems



Robust to noise!

Original BP
Continuous

+Total Variation

Adding a noise to the projections

From 6 angles...

(i.e. LASSO-type problem)
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Progress based on the union of three ingredients:

Summary

•Probabilistic approach	


•Message passing reconstruction 
of the signal	


•Careful design of the 
measurement matrix to avoid 
glass transition

•Robust to noise (signal, matrix)	


•Generalizable to approximately 	


  sparse signals	


•Applications...
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