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CSPs: Worst and average case (2/32)



Constraint satisfaction problem (CSP): given a collection of
variables subject to constraints, find a satisfying assignment

CSPs are basic problems of both theoretical and practical interest
computational complexity theory, information theory
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CSPs are basic problems of both theoretical and practical interest
computational complexity theory, information theory

A large subclass of CSPs is NP-complete or NP-hard —

best known algorithms have exponential runtime in worst case

What about ‘average’ or ‘typical’ case?
— leads naturally to the consideration of random CSPs Levin '86
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Boolean satisfiability: variables x; taking values T or F
Each constraint is a clause (OR of literals): x; v xo v —x3

A collection of clauses defines a CNF formula (AND of ORs)
— called k-CNF if each clause involves k literals
3-CNF: (x1 v x2 v =x3) A (X2 vV —Xa V Xs5)

A SAT solution is a variable assignment x € {T, F}" evaluating to T
— k-SAT is NP-complete for any k > 3 Cook '71, Levin '73
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Each constraint is a clause (OR of literals): x; v xo v —x3

A collection of clauses defines a CNF formula (AND of ORs)
— called k-CNF if each clause involves k literals
3-CNF: (x1 v x2 v =x3) A (X2 vV —Xa V Xs5)

A SAT solution is a variable assignment x € {T, F}" evaluating to T
— k-SAT is NP-complete for any k > 3 Cook '71, Levin '73

Natural choice for a random k-CNF: sample uniformly
from space of n-variable, m-clause formulas

“Constraint parameter” is clause density a = m/n
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Remains major open problem to rigorously establish existence and
location of sharp SAT-UNSAT transition for random k-SAT
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“Hardest” problems seem to occur near SAT-UNSAT transition:
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“Hardest” problems seem to occur near SAT-UNSAT transition:

random 3-SAT [SML '96]
4000 T T T T

20-variable formulas <— |
3500 |- 10-variable formulas +— i
i 50-variable formulas S 7

Ratio of clauses-to-variables

Understanding the SAT-UNSAT transition seems possibly a
precursor to addressing the complexity behavior of random k-SAT
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A major advance in the investigation of (random) CSPs was the

realization that they may be regarded in the spin glass framework
Mézard—Parisi '85 (weighted matching), '86 (traveling salesman),
Fu—Anderson '86 (graph partitioning)

— since these pioneering works, the study of CSPs as models of
disordered systems has developed into a rich theory, yielding deep
insights as well as novel algorithmic ideas

e.g. survey propagation [Mézard—Parisi-Zecchina '02]
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realization that they may be regarded in the spin glass framework
Mézard—Parisi '85 (weighted matching), '86 (traveling salesman),
Fu—Anderson '86 (graph partitioning)

— since these pioneering works, the study of CSPs as models of
disordered systems has developed into a rich theory, yielding deep

insights as well as novel algorithmic ideas
e.g. survey propagation [Mézard—Parisi-Zecchina '02]

A notable consequence of the spin glass connection is an
abundance of exact mathematical predictions for random CSPs

Some predictions for dense graphs have been sucessfully proved;
Parisi formula for SK spin-glasses [Parisi ‘80 / Guerra '03, Talagrand '06]
¢(2) limit of random assignments [Mézard—Parisi '87 / Aldous '00]

rigorous understanding of sparse setting is comparatively lacking
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This talk concerns the class of sparse random CSPs exhibiting
(static) replica symmetry breaking (RSB)

Solution space geometry has been investigated in several works,
leading to this conjectural phase diagram:

Krzakata—Montanari—Ricci- Tersenghi—Semerjian—Zdeborova '07,
Montanari—Ricci-Tersenghi—Semerjian '08
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This talk concerns the class of sparse random CSPs exhibiting
(static) replica symmetry breaking (RSB)

Solution space geometry has been investigated in several works,
leading to this conjectural phase diagram:

Krzakata—Montanari—Ricci- Tersenghi—Semerjian—Zdeborova '07,
Montanari-Ricci- Tersenghi—-Semerjian '08

— latest in significant body of literature including
Monasson—Zecchina '96, Biroli-Monasson—-Weigt '00,
Mézard—Parisi—-Zecchina '02, Mézard—Mora—Zecchina '05,
Mézard—Palassini—Rivoire '05, Achlioptas—Ricci-Tersenghi '06

We are interested in the rigorous computation of sharp satisfiability
thresholds for this class of models
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Prior rigorous work for sparse CSPs without RSB: the exact
satisfiability threshold has been proved for several problems:



Prior rigorous work for sparse CSPs without RSB: the exact
satisfiability threshold has been proved for several problems:

e 2-SAT transition  Goerdt '92, '96, Chvétal-Reed '92, de la Vega '92
scaling window: Bollobds—Borgs—Chayes—Kim—Wilson '01

e 1-in-k-SAT transition Achlioptas—Chtcherba—Istrate-Moore '01

e k-XOR-SAT transition Dubois-Mandler '02, Dietzfelbinger—Goerdt—
—Mitzenmacher—-Montanari—-Pagh—Rink '10, Pittel-Sorkin '12
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e random regular graph independent set  Bollobds '81, McKay '87,
Frieze—tuczak '92, Frieze—Suen '94, Wormald '95

e random graph coloring Bollob4s '88,
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e random k-NAE-SAT Achlioptas—Moore '02,
Coja-Oghlan—Zdeborové '12, Coja-Oghlan—Panagiotou '12

e random k-SAT Kirousis et al. '97, Franz—Leone '03,

Achlioptas—Peres '03, Coja-Oghlan—Panagiotou '13, Coja-Oghlan '14

(gap remains in all models: threshold existence not implied)

Existence of threshold sequence Friedgut 99

Existence of sharp threshold Bayati-Gamarnik—Tetali '10



RSB: 1-RSB subclass (10/32)



Many problems within this class

are believed to be described by the 1-RSB formalism
Mézard—Parisi '01



Many problems within this class

are believed to be described by the 1-RSB formalism
Mézard—Parisi '01

For such problems, the 1-RSB cavity method predicts the exact

location of the SAT-UNSAT transition
Mézard—Parisi-Zecchina '02, Mertens—Mézard—Zecchina '06



Many problems within this class

are believed to be described by the 1-RSB formalism
Mézard—Parisi '01

For such problems, the 1-RSB cavity method predicts the exact

location of the SAT-UNSAT transition
Mézard—Parisi-Zecchina '02, Mertens—Mézard—Zecchina '06



Many problems within this class

are believed to be described by the 1-RSB formalism
Mézard—Parisi '01

For such problems, the 1-RSB cavity method predicts the exact

location of the SAT-UNSAT transition
Mézard—Parisi-Zecchina '02, Mertens—Mézard—Zecchina '06

In our work we give rigorous verifications of the 1-RSB prediction
for the SAT-UNSAT transition, for the following models:



Many problems within this class

are believed to be described by the 1-RSB formalism
Mézard—Parisi '01

For such problems, the 1-RSB cavity method predicts the exact

location of the SAT-UNSAT transition
Mézard—Parisi-Zecchina '02, Mertens—Mézard—Zecchina '06

In our work we give rigorous verifications of the 1-RSB prediction
for the SAT-UNSAT transition, for the following models:
e random regular k-NAE-SAT



Many problems within this class

are believed to be described by the 1-RSB formalism
Mézard—Parisi '01

For such problems, the 1-RSB cavity method predicts the exact

location of the SAT-UNSAT transition
Mézard—Parisi-Zecchina '02, Mertens—Mézard—Zecchina '06

In our work we give rigorous verifications of the 1-RSB prediction
for the SAT-UNSAT transition, for the following models:

e random regular k-NAE-SAT

e random regular graph independent set






boolean satisfiability



Random (Erd3s—Rényi) k-CNF is uniform measure over all
n-variable, m-clause k-CNF's

Random regular k-CNF is uniform measure over all
n-variable, m-clause k-CNF's with fixed variable degree d = mk/n

“Constraint parameter” is clause density « = m/n

Benchmark problem: SAT-UNSAT transition in random k-SAT
(UBD) Franco—Paull '83, Kirousis—Kranakis—Krizanc-Stamatiou '97;
(LBD) Chao—Franco '90, Achlioptas—Moore '02, Achlioptas—Peres '03,
Coja-Oghlan—Panagiotou '13, Coja-Oghlan '14 (gap remains in bounds)



Random k-SAT threshold is close to 2¥ log 2, but the best known
algorithmic lower bound is only = 2k log k/k Coja-Oghlan '10

First = 2 LBD for random k-SAT achieved by non-algorithmic
analysis of random k-NAE-SAT: Achlioptas—Moore '02
harder to satisfy, but easier to study, than SAT

A NAE-SAT solution is a SAT solution x such that —x is also SAT
— eliminates TRUE/FALSE asymmetry of SAT; but believed to
exhibit many of the same qualitative phenomena

Bounds on SAT-UNSAT in random (Erdés—Rényi) k-NAE-SAT:
AM '02, Coja-Oghlan—Zdeborova '12, Coja-Oghlan—Panagiotou '12
(gap remains in bounds)



THEOREM. Ding, Sly, S. [arXiv:1310.4784, STOC '14]
The random regular k-NAE-SAT problem has SAT-UNSAT
transition at explicit threshold o (k) for all k = ko.

In simultaneous work, A. Coja-Oghlan [arXiv:1310.2728v1] considered
a different symmetrization of random regular k-SAT, establishing a
1-RSB-type formula for a “quasi-satisfiability” threshold
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In an undirected graph, an independent set




In an undirected graph, an independent set

is a subset of vertices containing no neighbors



IS: Random graphs (15/32)
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“Constraint parameter” of independent set is the set density —
SAT-UNSAT corresponds to max-density (independence ratio)

The independence ratio is NP-hard to compute exactly; Karp '72

in fact it is hard to approximate even on bounded-degree graphs
Papadimitriou—Yannakakis '91 and PCP theorem

Randomize the problem by taking a random graph — let
A, = MAX-IND-SET size in random graph G, on n vertices:

for natural ensembles G,, what are the asymptotics of A,?
dense ER graph G, ,, sparse ER graph G, 4/,
(uniform) random regular graph ¥, 4

Sharpness of the SAT-UNSAT transition
corresponds to concentration of the random variable A,,
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Previous work on random graph independent sets:

Sparse Erdés—Rényi G, 4/,; random d-regular ¢, 4
(UBD) Bollobés '81, McKay '87;
(LBD) Frieze—tuczak '92, Frieze-Suen '94, Wormald '95
(threshold around 2(log d)/d, but gap remains)

Classical argument with martingale bound ('80s) implies the
transition sharpens: A, has O(n%/?) fluctuations about EA,

Existence of limiting threshold location A,/n — «, proved, but
with no information on the actual value Bayati-Gamarnik—Tetali '10



(main result for MAX-IND-SET)

IS: Threshold for random regular MAX-IND-SET (17/32)



THEOREM. Ding, Sly, S. [arXiv:1310.4787]
The maximum independent set size A, in the (uniformly) random
d-regular graph %, 4



THEOREM. Ding, Sly, S. [arXiv:1310.4787]
The maximum independent set size A, in the (uniformly) random
d-regular graph 9, 4 has O(1) fluctuations around

na, — ¢ logn
for explicit ov.(d) and c,.(d), provided d = dp.
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Explicit formula for independent set threshold: first define
¢(q) = —log[1 — q(1 — 1/X)]
—(d/2—1)log[l — ¢?(1 — 1/\)] — alog A
1-(1-q)"
(1-q)?

_ 1—g+dqg/[2X(q)]
and a(q) = M- 1/A(q))

with A(q) =gq

Solve for the largest zero g, < 2(logd)/d of ¢(q):
then A, — na, — ¢, log n is a tight random variable with

o, = a(qy) and ¢, = (2log A(qs))



0.05

—0.05

the function ¢(q) for d = 100

(log d)/d ”



(some remarks)
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Our thresholds match the 1-RSB predictions made by physicists
(NAE-SAT) Castellani-Napolano—Ricci- Tersenghi—Zecchina '03,
Dall’Asta—Ramezanpour—Zecchina '08;
(independent set) Rivoire '05, Hartmann—Weigt '05,
Barbier—Krzakata—Zdeborovéd—Zhang '13

These predictions were derived with the survey propagation (SP)
method introduced by Mézard—Parisi—-Zecchina '02, '05

see also Braunstein—Mézard—Zecchina '05,
Maneva—Mossel-Wainwright '07

Our method of proof gives some rigorous validation to the
1-RSB & SP heuristics for these models
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Moments: First and second moment method (21/32)
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The SAT-UNSAT transition is the threshold for positivity of the
random variable Z, = # solutions at constraint level «

Upper bound is given by the I** moment threshold c;; where
EZ, crosses from exponentially large to exponentially small

Lower bound: algorithmic analysis meets with barriers; and the

(non-constructive) 2* moment approach often does much better:
e.g. Achlioptas—Moore '02

2" moment LBD: P(Z > 0) >
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P(Z>0) =

[E[Z?] has contribution EZ from exactly-identical pairs o = T;
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P(Z>0)> E[Z7] ~ 3,3, P(c valid AND 1 valid)

[E[Z?] has contribution EZ from exactly-identical pairs o = T;
so contribution from near-identical pairs is clearly at least EZ

In a sparse CSPs, a typical solution has = n unforced variables,
indicating exponential-size clusters of near-identical solutions:
near-identical contribution to E[Z?] is ~ (EZ) x (avg. cluster size)

If (avg. cluster size) > EZ then 2™ moment method fails —
occurs if avg. cluster size does not decrease fast enough as «
increases towards the 1% moment threshold
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An independent set at density « € (0,1) must have a positive
fraction 7 of unoccupied vertices with a single occupied neighbor

Such vertices are unforced, indicating a cluster of size = 2™

Issue is that 7 stays positive even above 1* moment threshold —
2" moment begins to fail strictly below the 12 moment threshold

In regime (az,a1), EZ > 1 but E[Z?] > (EZ)? — that is to say,
Z is highly non-concentrated, and the 1%/2 moment method
yields no information about its typical behavior
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aq Q¢ Qg

EZ, =), (cluster size) x E[# clusters of that size at level a];

N _

exp{ns} exp{nX.(s)}; compute by 1-RSB methods
1¢ moment dominated by s, () = argmax,[s + X (s)]

Condensation: >, (s.(«)) is negative, meaning the 1 moment is
dominated by extremely atypical clusters, but max 2, is positive,
meaning did not yet reach satisfiability threshold
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Independent set expected to be 1-RSB on graphs of high degree,

vs. full-RSB on graphs of low degree
Barbier—Krzakata—Zdeborové—Zhang '13

1-RSB says clusters are RS though individual solutions are not
— moment method should succeed on number of clusters

Previous attempts to implement this suggestion failed to locate

exact threshold due to reliance on inexact proxies for clusters
Coja-Oghlan—Panagiotou '12 (random NAE-SAT)

Main novelty in our approach is a simple combinatorial model for
clusters of large independent sets (clusters of NAE-SAT solutions)

We show the moment method locates the sharp transition for this
model, proving the result and validating the 1-RSB hypothesis
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Modeling clusters of large independent sets:
In independent set, let 0 = unoccupied; 1 = occupied

Typical independent set has linear number of 0's with a
single neighboring 1: results in exponential-sized clusters of
independent sets joined by neighboring (0 — 1) swaps

Chains of swaps can and will occur; but near threshold
they propagate like a subcritical branching process

Cluster model defined by coarsening (projection) from original:
e Relabel all neighboring (0 — 1) swaps with (f == f)
e Operation may result in formation of new (0 — 1) swaps;
iterate until none remain
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Analogues of coarsening procedure appeared in previous analyses of
solution space geometry for other CSPs —

also termed whitening or warning propagation
Parisi '02, Achlioptas—Ricci-Tersenghi '06,
Maneva—Mossel-Wainwright '07, Maneva—Sinclair '08

Key observation is that coarsened configurations themselves
essentially form a graphical model, forgetting the coarsening

Clusters of large independent sets are encoded by configurations of
0's, 1's, and (f == f) pairs satisfying some simple local rules:
1 must neighbor all 0's, while each 0 must neighbor at /east two 1's

Let Z, = # valid 0/1/f configurations on ¥, 4 with
(number of 1's) + 1 (number of £'s) = na

— Z,, counts clusters in the space of density-« independent sets
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We started from a model (independent sets) exhibiting RSB
The coarsening procedure led us to a graphical model of clusters

If indeed the model is 1-RSB, the clusters should be RS,
meaning moment method should locate the sharp threshold

RS (belief propagation) prediction for cluster model corresponds

exactly to 1-RSB (survey propagation) prediction for original model
observed in SAT context by various authors
incl. Maneva—Mossel-Wainwright '07

Much of the technical work goes into actually proving that the
moment method succeeds for the cluster model ...
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Z,, counts clusters restricted to a-hyperplane: handle by
introducing fugacity A to act as Lagrange multiplier:

Z() = YAZ,; EZ(\) = exp{np(\)}

Given «, set A, so that EZ()) is dominated by a-hyperplane
contribution — log EZ(\) decays quadratically around «, so

EZ(A)/A™ _ exp{ny(a)}
EZ, = ; = .
/2 /2

with ¥ () = p(Aa) — alog Ay and ¥/ (a) = —log \s

We prove EZ, = 1 determines the true threshold: na, — ¢, logn
where 1(a,) = 0, and ¢, = 1/(2log A\, ) corrects for n'/? factor

Establishing constant-order fluctuations about na, — ¢, log n
requires further work (variance decomposition by Fourier analysis)
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Possible further directions:

Extension to g-coloring? To k-SAT, or to Erd6s—Rényi graphs?
Requires improved methods for replica symmetric models

Other aspects of the RSB phase diagram?

see Bapst—Coja-Oghlan—Hetterich—Rassmann—Vilenchik '14
for condensation phase transition in random graph coloring

Models with higher levels of RSB, e.g. MAX-CUT

Thank you!



	CSPs: Worst and average case
	CSPs: Boolean satisfiability
	CSPs: Empirical SAT–UNSAT transition
	CSPs: Average-case complexity
	RSB: Statistical physics of (random) CSPs
	RSB: Sparse random CSPs with RSB
	RSB: Prior work for CSPs without RSB
	RSB: Prior work for CSPs with RSB
	RSB: 1-RSB subclass
	SAT: Random SAT
	SAT: Random NAE-SAT
	SAT: Threshold for random regular NAE-SAT
	IS: Definition
	IS: Random graphs
	IS: Previous work
	IS: Threshold for random regular MAX-IND-SET
	IS: Explicit formula
	IS: Explicit rate function
	Remarks
	Moments: First and second moment method
	Moments: Second moment lower bound
	Moments: Clustering in independent sets
	Condensation: RSB from physics perspective
	Clusters: Levels of RSB
	Clusters: moment method on clusters
	Clusters: IS cluster model
	Clusters: Coarsening example
	Clusters: Coarsening example with free chains
	Clusters: Graphical model
	RS: Back to replica symmetry
	RS: Log-correction and constant fluctuations
	Further directions

