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 One universal source   Ordinary routing  

Motivation – why routing? 

The models – two scenarios 

 

 

 
 

 

 

 

 
Two approaches: cavity, replica and polymer methods 

Results: microscopic solutions, macroscopic phenomena 

Applications: e.g. subway, air traffic networks 

Conclusions 

Outline 
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Are existing algorithms any good?  

- Routing tables computed by shortest-path, or minimal 

weight on path (e.g. Internet) 

- Geographic routing (e.g. wireless networks) 

 

 

 

 

- Insensitive to other path choices  congestion, or 

low occupancy routers/stations for sparse traffic 

- Heuristics- monitoring queue length  sub-optimal 

 

Why routing? 
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Global optimization 

1. A difficult problem with non-local variables 

 

 

 

2. Non-linear interaction between communications: 

 avoid congestion  repulsion  

 consolidate traffic  attraction   

  

 paths interact with each other 
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source destination 

Unlike most combinatorial problems 

such as Graph coloring, Vertex cover, 

K-sat, etc. 

Interaction is absent in similar problems: 

spanning trees and Stenier trees 

M.Bayati et al , PRL 101, 037208 (2008) 



Communication Model 

N nodes (i, j, k…) 

M communications (ν,..) 

 each with a fixed source and destination  

Denote, σj
ν = 1  (communication ν passes through node j) 

           σj
ν = 0  (otherwise)  

Traffic on j  Ij = Σν σj
ν 

 

Find path configuration which globally minimizes  

 H=Σj (Ij)
γ   

or   H=Σ(ij) (Iij)
γ 
 

- γ >1 repulsion (between com.)  avoid congestion 

- γ <1 attraction  aggregate traffic (to  idle nodes) 

- γ =1 no interaction,  H=Σν j σj
ν  shortest path routing 
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Ij 

γ >1 

γ <1 

γ =1 

cost 



Analytical approach  

Map the routing problem onto a 

 model of resource allocation: 
  

 Each node i has initial resource Ʌi  

- Receiver (base station, router) Ʌi = +∞ 

- Senders (e.g. com. nodes)  Ʌi = -1 

- others     Ʌi = 0 

Minimize H=Σ(ij) (Iij)
γ 
 

Constraints:  (i) final resource Ri =Ʌi + Σj∂i Iji = 0, all i   

        (ii) currents are integers 

 

Central router                 com. nodes (integer current) 

 each sender establishes a single path to the receiver 
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Ei(Iil) = optimized energy of the tree  

 terminated at node i without l 

At zero-temperature, we use the following recursion to 

obtain a stable P[Ei(Iil)] 

 

 

 

 

However, constrained minimization 

 over integer domain  difficult 

γ>1, we can show that Ei(Iil) is convex 

 computation greatly simplified  

 

 

 

 

The cavity method 
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Yeung and Saad, PRL 108, 208701 (2012); Yeung, IEEE Proc NETSTAT (2013) 

Algorithm: 



Random regular graph k=3 

??? 

Results - Non-monotonic L  

 

8 

   

 H=Σ(ij) (Iij)
2 
 i.e. γ =2 avoid congestion 

M – number of senders 

 

Initial  in L - as short 

routes are being occupied 

longer routes are chosen 

Final  in L - when 

traffic is dense,  

everywhere is congested 

Small deviations 

between simulation - 

finite size effect, N , 

deviation  Average path length 

per communication  
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??? 
Results - balanced receiver 

Small peaks in L are multiples of k, 
balance traffic around receiver 

Consequence peaks occur in 

convergence time Tc 
Studied - random network, scale-free 

networks, qualitatively similar behavior 
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NM / NM /

Algorithmic convergence time 

Example: 

M=6, k=3 
 

Random regular graphs 

 H=Σ(ij) (Iij)
2 
 



RS/RSB multiple router types 

One receiver “type” 

- H=Σ(ij) (Iij)
γ
 ,γ>1

 

- Ej(Iji) is convex 

- RS for any M/N 
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• Two receiver “types”: A & B 

- Senders with ɅA = -1 or ɅB = -1  

- H=Σ(ij) (|Iij
A|+|Iij

B|)
γ
 ,γ>1

 

- Ej(Iij
A, Iij

B) not always convex 

 

- Experiments exhibit RSB-like 

behavior 

 

Cost 

Solution 

space 

 

Cost 

Solution 
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RS 
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Node disjoint routing  
Random communicating pairs =1…M 

Routes do not cross 
  

 Node i has initial resource Ʌ
i : 

- Receiver  Ʌ  
i = -1 

- Senders  Ʌ  
i = +1 

- others Ʌ  
i = 0 

 Currents: 

- Route  passes through (i,j)  i → j      Iij = +1 

- Route  passes through (i,j)  j → i      Iij = -1 
- otherwise             Iij =  0 

Minimize H=Σ(ij) f(Σ |I
 

ij|) - but no crossing 

Constraints:(i) final resource Ʌ  
i + Σj∂i I

  
ji = 0, all i,  

     (ii) currents are integers and Iij =  -Iji  
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At zero-temperature, we use recursion relation to 

obtain a stable P[Eij({Iij})]   where {Iij}= I1
ij , I

2
ij…, I

M
ij 

f(I ) =I for I=0,1 and ∞ otherwise 

 

 

 

Messages reduced from 3M to 2M+1 

 

 

 

 

 

 

The cavity method 
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Results 
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De Bacco, Franz, Saad, Yeung JSTAT P07009 (2014) 



Node disjoint routing is important for optical networks 

 

Task: accommodate more communications per 

wavelength 
 

Same wavelength communications cannot share an 
edge/vertex 

 

Approaches used: greedy algorithms, integer-linear 

programming… 
 

Greedy algorithms (such as breadth first-search) 

usually calculate shortest path and remove nodes 

from the network 

 
 

 

 

 

 

Do you see the light? 
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General routing - analytical approach 

More complicated, cannot map 

   to resource allocation 
  

 

Use model of interacting polymers 

- communication  polymer with fixed 

ends 

- σj
ν = 1 (if polymer ν passes through j) 

σj
ν = 0 (otherwise) 

- Ij = Σν σj
ν (no. of polymers passing 

through j)  

- minimize H=Σj (Ij)
γ
, of any γ 

 

 

We use polymer method+ replica 
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 

polymers 



Analytical approach 
 

Replica approach – averaging topology, start/end 

log 𝑍 = lim
𝑛→0

𝑍𝑛 − 1

𝑛

 

 

Polymer method– p-component spin such that 𝑆𝑎
2 =1 

and  𝑆𝑎𝑎
2=p, when p0,  

The expansion of  

(Πi  𝑑𝜇(𝑺𝑖)) Π(kl) (1+A kl  Sk∙Sl) 

 

 results in Ska SlaSla SjaSja SraSra…..describing a self-avoiding 

loop/path between 2 ends 
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M. Daoud et al (and P. G. de Gennes) Macromolecules 8, 804 (1976) 



Related works 

Polymer method+ replica approach 

 was used to study travelling salesman  

   problem (Difference: one path, no polymer interaction) 
 

Cavity approach was used to study interacting polymers 

(Diff: only neighboring interactions considered, here we 

consider overlapping interaction) 
 

Here: polymer + replica approach to solve a system of 

polymers with overlapping interaction 

recursion + message passing algorithms (for any γ) 
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M. Mezard, G. Parisi, J. Physique 47, 1284 (1986) 

A. Montanari, M. Muller, M. Mezard, PRL 92, 185509 (2004) 

E. Marinari, R. Monasson, JSTAT P09004 (2004); EM, RM, G. Semerjian. EPL 73, 8 (2006)  



The algorithm 
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Extensions  
 

Edge cost 

Weighted edge costs  

Combination of edge/node costs 

Directed edges 
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Results – Microscopic solution 

convex vs. concave cost 

- γ >1 repulsion (between com.)  avoid congestion 

- γ <1 attraction  aggregate traffic (to  idle nodes)  to save energy 
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Ij 

γ >1 

γ <1 

γ =1 

cost 

γ=2 γ=0.5 

     - source/destination of a communication           - shared by more than 1 com. 

Size of node  traffic       N=50, M=10 



London subway network 

275 stations 

Each polymer/communication – Oyster card recorded real passengers 

source/destination pair  
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Oyster card 

London tube map 



Results – London subway with real source 

destination pairs recorded by Oyster card  
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γ=2 

M=220 Ij 

γ >1 

γ <1 

γ =1 

cost 



Results – London subway with real source 

destination pairs recorded by Oyster card  
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γ=0.5 

M=220 Ij 

γ >1 

γ <1 

γ =1 

cost 



Results – Airport network 
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γ=2, M=300 



Results – Airport network 
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γ=0.5, M=300 



Results – comparison of traffic 

γ=2 vs γ=0.5 
- Overloaded station/airport has lower traffic 

- Underloaded station /airport has higher traffic  
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γ=2 

γ=0.5 

Ij 

γ >1 

γ <1 
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Comparison of energy E and 

path length L obtained by 

polymers-inspired (P) and 

Dijkstra (D) algorithms 
 

 

 

Comparison with Dijkstra algorithm  
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γ=2  γ=0.5 

EP−ED
ED 

 
LP−LD
LD 

 
EP−ED
ED 

 
LP−LD
LD 

 

 

London 

subway 

−20.5 ± 0.5%  +5.8 ± 0.1%  −4.0± 0.1%  +5.8 ± 0.3% 

 

Global airport −56.0 ± 2.0%  +6.2 ± 0.2% −9.5 ± 0.2%  +8.6 ± 1.2% 

 



Comparison of energy E and 
path length L obtained by 
polymers-inspired (P) and Multi-
Commodity flow (MC) algorithms 
(Awerbuch, Khandekar (2007) 
with optimal α) 

 
 

 

and with a Multi-Commodity flow algorithm  
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γ=2  γ=0.5 

EP−E MC(α)

E MC(α)
 

LP−LMC(α)

LMC(α)
 

No algorithm 
identified for 
comparison  

London 

subway 

−0.7 ± 0.04%  +0.72 ± 0.10%  

Global 

airport 

−3.9 ± 0.59%  +0.90 ± 0.64% 

𝑑𝑖 =
𝑒𝛼𝐼𝑖

 𝑒𝛼𝐼𝑗𝑗

 

Based on node-weighted 

shortest paths di using total 

current Ii; rerouting longest 

paths below edge capacity 



γ=2 γ=0.5 

Results - Change of Optimal Traffic & 

Adaptation to Topology Change 

After the removal of station “Bank” (     ) … 

- Size of node, thickness of edges  traffic 

  , - traffic    , - traffic          - no change 

γ=2 has smaller, yet more extensive, changes on  

 individual nodes and edges 
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Macroscopic behavior 
Data collapse of L vs M for different N 

- log N  typical distance  

- M logN/N  average traffic per node 
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Conclusion 

We employed statistical physics of disordered system to 

study routing problems 

- Microscopically, we derive a traffic-sensitive 

optimization algorithms 

- Macroscopically, we observe interesting phenomena: 

non-monotonic path length, balanced receiver, different 

routing patterns, phase transitions  

- Extensions: Best-response, Nash equilibrium, time 

- Applications: routing in communication networks, 

transportation networks (traffic), optical networks 
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