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Communities exist on all scales

* Consider Europe, North America -- 300M people, divides into:
— Those who might vote liberal, or conservative
— Who might buy a model of car
— Who might be vulnerable to a common disease... all x N

e But suppose you are looking for
— People who lease private jets? 15-30,000 people in this market
— People vulnerable to a rare but genetically linked disease?
— These groups may be « VN but probably still unique.

* Finally, consider things on the scale of log, N
— 30 people.

— Generally we search from bottom up, and must focus attention on one
cluster which is not unique.

— E.g. Terrorist sleeper cells -- you find one bad guy and look for his really
close friends.

— Can message-passing accelerate this search?



Replicas and Cavity Approach?

* These separate small differences in large complex systems.

Separate VN signal from v/N noise. Do they also single out
small things?

OOk Spin Glass Theory and Beyond (World Scientific Lecture Notes in Physics) by Marc Mezard, Giorgio Parisi
SN GLANS TH Y and Miguel Angel Virasoro (Nov 1987)
AND
- $1,996.01 used (3 offers) Other Formats: Paperback

| wish | had never loaned this to one of my students long ago. (but
there is a downloadable version scanned and on the web)



The model of interest — maximal cliques

In an E-R graph ensemble, G(N,1/2) how large is the largest clique?

One of the earliest “sharp” phenomena in combinatorics.
— Matula 1970-76 showed that it tends sharply to the integers closest to
* R(N)=1+2logN=2loglogN +2log(e/2).
— But this is just probabilities; how do you find it?
Following old joke about mathematician and lamppost, much effort has
shown that there are good ways to find planted cliques of order

— ¢/NlogN Kucera (1995)

— orcvN where C> 10 Alon, Krivelovich, Sudakov and many others
(note that any smaller fixed c can be managed, but things tend to get exponentially polynomial)

— Can we adapt the tools used to search for even smaller naturally occurring cliqgues?

— Deshpande and Montanari (2013) replace spectral approach with power method,
acceleration tricks...



size of max or frozen clique
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Naturally occurring cliques are hard to find

Lower bounds are weak

Ramsey R(k,k) is proportional to log N, not 2 log N
- Rikk) < (37

Greedy random search gives also log N, not 2 log N

Simulated annealing has been “proven” to fail
— Mark Jerrum, 1992
— Naturally, this got my attention... but itis a more limited claim.



Large Cliques Elude the Metropolis
Process

Mark Jerrum
Department of Computer Science, University of Edinburgh, The King’s Buildings,
Edinburgh EH9 3JZ, United Kingdom

ABSTRACT

In a random graph on n vertices, the maximum clique 1s likely to be of size very close to
21g n. However, the clique produced by applying the naive “‘greedy” heuristic to a random
graph is unlikely to have size much excgeding lg n. The factor of two separating these
estimates motivates the search for more effective heuristics. This article analyzes a heuristic
search strategy, the Metropolis process, which is just one step above the greedy one n 1ts
level of sophistication. It is shown that the Metropolis process takes super-polynomial time
to locate a clique that is only slightly bigger than that produced by the greedy heuristic.
© 1992 John Wiley & Sons, Inc.



k -- size of largest clique

The limits

FPredicted and greedy, Ramsey LBs for MaxCligue in an ER graph, p = 1/2
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Are cliques rare? Hardly!
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Material from the comments

* |'ll put equations on the board for #cliques
and for # cligues that cannot be extended
further. Note many solutions are to be
expected. And they seem to be distinct
because k #{maximum cliques) = # (cliques of
size k-1 that can be extended to size k). This
implies the largest possible k-cliques are
disjoint, making them possible to hit, since
there are many...




Improved search methods

Smarter greedy — at each step select the site with max degree.

Incorporate power method, at each stage in the restricted
domain.

De-anchor the search at intermediate or final stages and use
power method on existing “friends” and their “family” (work
in progress).
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For natural max-clique, there are improvements,

but problem is still not solved
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number of neighbors foundin clique

Where were mistakes made?

smart and random greedy searches for connected subgraphs in W = 100, 1000, 10000,
100000 . . .
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A few lessons...

 Communities of interest can be local; modularity and
dendrograms obscure this. Privacy and security
studies also require high density or clique subgraphs.

 Power method and message-passing implement
spectral imperatives in global scale networks — e.g.
Page Rank. They offer soft tools for scaling search
down.

* Iteration, or stochastic search always helps.



