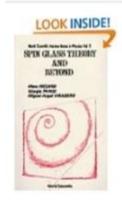
Can spin glass technology help deep learners find small communities?


Scott Kirkpatrick
Hebrew University of Jerusalem
Cargese, Sept. 2014

Communities exist on all scales

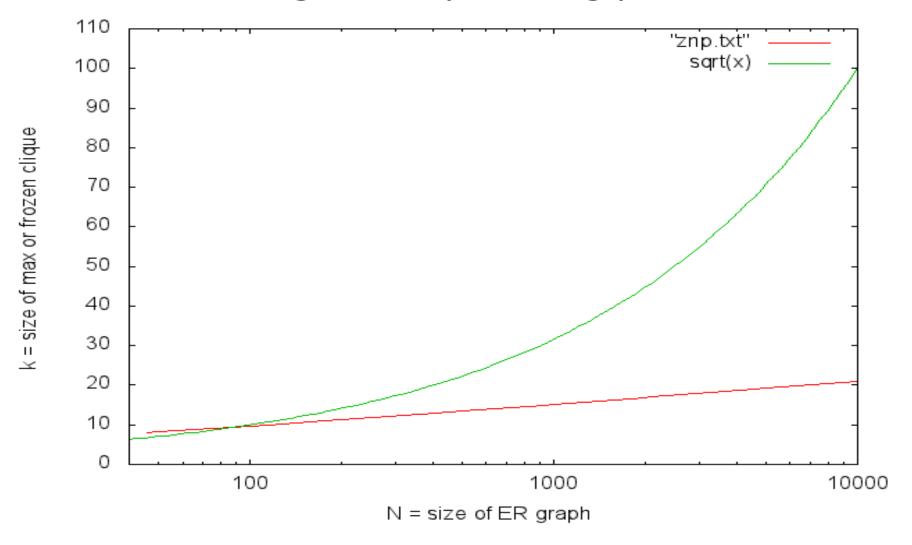
- Consider Europe, North America -- 300M people, divides into:
 - Those who might vote liberal, or conservative
 - Who might buy a model of car
 - Who might be vulnerable to a common disease... all $\propto N$
- But suppose you are looking for
 - People who lease private jets? 15-30,000 people in this market
 - People vulnerable to a rare but genetically linked disease?
 - These groups may be $\propto \sqrt{N}$ but probably still unique.
- Finally, consider things on the scale of log_2N
 - 30 people.
 - Generally we search from bottom up, and must focus attention on one cluster which is not unique.
 - E.g. Terrorist sleeper cells -- you find one bad guy and look for his really close friends.
 - Can message-passing accelerate this search?

Replicas and Cavity Approach?

• These separate small differences in large complex systems. Separate \sqrt{N} signal from \sqrt{N} noise. Do they also single out small things?

Spin Glass Theory and Beyond (World Scientific Lecture Notes in Physics) by Marc Mezard, Giorgio Parisi and Miguel Angel Virasoro (Nov 1987)

\$1,996.01 used (3 offers)


Other Formats: Paperback

I wish I had never loaned this to one of my students long ago. (but there is a downloadable version scanned and on the web)

The model of interest – maximal cliques

- In an E-R graph ensemble, G(N,1/2) how large is the largest clique?
- One of the earliest "sharp" phenomena in combinatorics.
 - Matula 1970-76 showed that it tends sharply to the integers closest to
 - $R(N) = 1 + 2 \log N = 2 \log \log N + 2 \log (e/2)$.
 - But this is just probabilities; how do you find it?
- Following old joke about mathematician and lamppost, much effort has shown that there are good ways to find planted cliques of order
 - − $c\sqrt{NlogN}$ Kucera (1995)
 - or $c\sqrt{N}$ where C > 10 Alon, Krivelovich, Sudakov and many others
 - (note that any smaller fixed c can be managed, but things tend to get exponentially polynomial)
 - Can we adapt the tools used to search for even smaller naturally occurring cliques?
 - Deshpande and Montanari (2013) replace spectral approach with power method, acceleration tricks...

Phase diagram separating problems

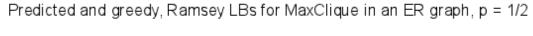
Naturally occurring cliques are hard to find

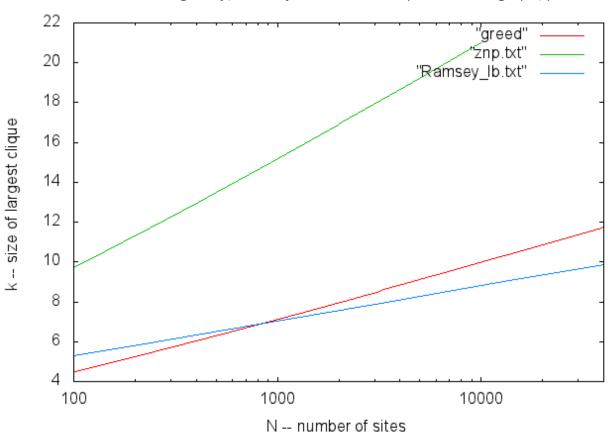
- Lower bounds are weak
- Ramsey R(k,k) is proportional to log N, not 2 log N

$$- R(k,k) \le {2k-2 \choose k-1}$$

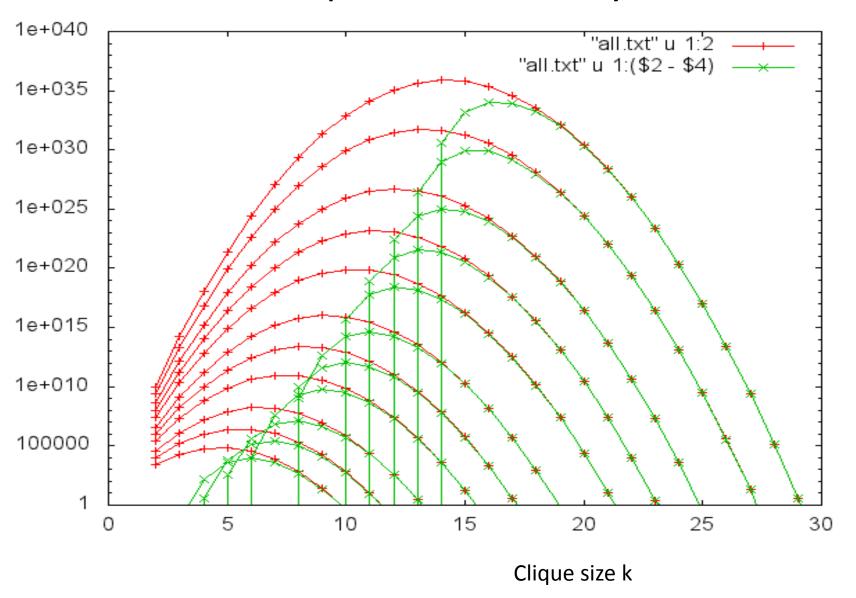
- Greedy random search gives also log N, not 2 log N
- Simulated annealing has been "proven" to fail
 - Mark Jerrum, 1992
 - Naturally, this got my attention... but it is a more limited claim.

Large Cliques Elude the Metropolis Process


Mark Jerrum

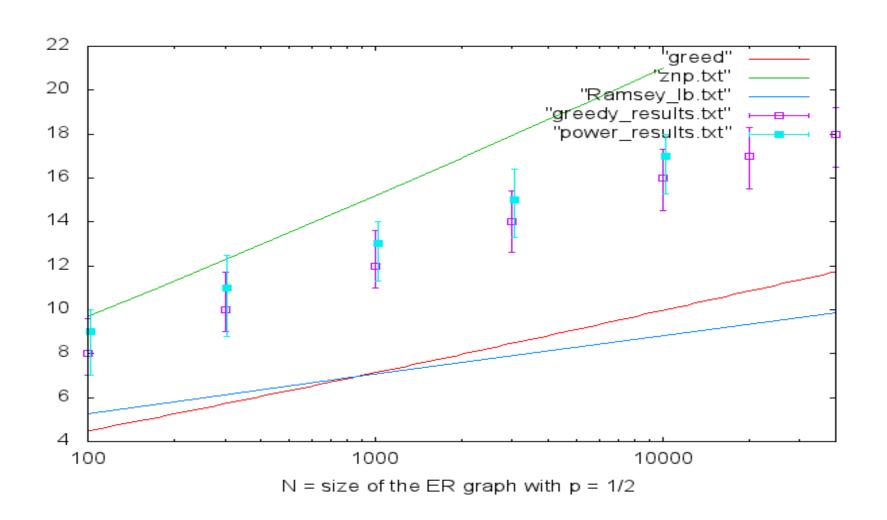

Department of Computer Science, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JZ, United Kingdom

ABSTRACT


In a random graph on n vertices, the maximum clique is likely to be of size very close to $2 \lg n$. However, the clique produced by applying the naive "greedy" heuristic to a random graph is unlikely to have size much exceeding $\lg n$. The factor of two separating these estimates motivates the search for more effective heuristics. This article analyzes a heuristic search strategy, the *Metropolis process*, which is just one step above the greedy one in its level of sophistication. It is shown that the Metropolis process takes super-polynomial time to locate a clique that is only slightly bigger than that produced by the greedy heuristic. \bigcirc 1992 John Wiley & Sons, Inc.

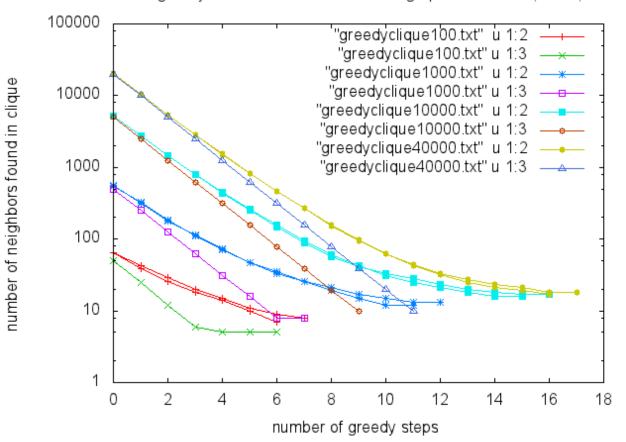
The limits

Are cliques rare? Hardly!


Material from the comments

 I'll put equations on the board for #cliques and for # cliques that cannot be extended further. Note many solutions are to be expected. And they seem to be distinct because k #(maximum cliques) = # (cliques of size k-1 that can be extended to size k). This implies the largest possible k-cliques are disjoint, making them possible to hit, since there are many...

Improved search methods


- Smarter greedy at each step select the site with max degree.
- Incorporate power method, at each stage in the restricted domain.
- De-anchor the search at intermediate or final stages and use power method on existing "friends" and their "family" (work in progress).

For natural max-clique, there are improvements, but problem is still not solved

Where were mistakes made?

smart and random greedy searches for connected subgraphs in N = 100, 1000, 10000,

A few lessons...

- Communities of interest can be local; modularity and dendrograms obscure this. Privacy and security studies also require high density or clique subgraphs.
- Power method and message-passing implement spectral imperatives in global scale networks — e.g. Page Rank. They offer soft tools for scaling search down.
- Iteration, or stochastic search always helps.