Ising-like effective theory for the glass transition

Marco Tarzia
LPTMC, Université Paris VI

Spin glasses: an old tool for new problems
Cargèse, August 25 - September 6 2014

with G. Biroli, C. Cammarota, and G. Tarjus
Effective theory of the glass transition in terms the overlap $p(x)$ with an equilibrium configuration

• It allows to focus on the relevant field and on the “physical” order parameter and to obtain a more intuitive description of the glass transition.

• It leads naturally to a scalar field theory in presence of quenched disorder, which is easier to handle than the original replica field theory. It can be studied using standard tools of statistical physics (nonperturbative RG, numerical simulations, ...) cfr Gille’s lecture.

• It allows to go beyond mean-field theory and RFOT, and to study the nature and the critical properties of the critical points. It naturally allows to identify the possible mechanisms that could destroy the glass transition in finite dimensions.
Known results: Self-induced disorder and RFIM

• Analysis of perturbation theory of the Replica Field Theory

Critical overlap fluctuations close to the dynamical transition in the β-regime are in the same universality class of the spinodal point of the RFIM

Franz, Parisi, Ricci-Tersenghi, Rizzo

The terminal critical point in the $T-\epsilon$ phase diagram is in the same universality class of the RFIM

Franz & Parisi; Biroli, Cammarota, Tarjus, MT

The same result holds for the continuous glass transition found at the terminal point of the random pinning phase diagram

Cammarota & Biroli; Nandi & Biroli

• The distribution of the overlap fluctuations has been computed in numerical simulations of glass forming systems and have been interpreted in terms of an effective RFIM

Stevenson & al
Intuitive arguments

cfr Giulio’s lecture and Silvio’s talk

The equilibrium reference configuration acts as a random field

Local fluctuations of the Franz-Parisi potential due to the density fluctuations of the reference configuration

Random field random bond Ising model

overlap p
configurational entropy s_c
high of the barrier
magnetization m
magnetic field h
ferromagnetic coupling J
What do we want/need to compute?

Choose an equilibrium reference configuration C_0 at random (according to $e^{-\beta H(C_0)/Z}$)

Compute the probability that a copy of the system has an overlap profile $p(x)$ with the reference configuration:

\[
e^{-S[p(x)|C_0]} \propto \sum_C e^{-\beta H(C)} \delta[p(x) - Q_x(C, C_0)]
\]

The cumulants of $S[p(x)|C_0]$ can be computed through an expansion in free replica sums: Tarjus & Tissier (cfr Gille’s lecture)

\[
e^{-S_{rep}\{p_a(x)\}} = e^{-\sum_{a=1}^n S[p(x)|C_0]} C_0
\]

\[
S_{rep}\{p_a(x)\} = \sum_{a=1}^n S_1[p_a(x)] - \frac{1}{2} \sum_{a,b=1}^n S_2[p_a(x), p_b(x)] + \cdots
\]

\[
S_1[p(x)] = \overline{S[p(x)|C_0]}; \quad S_2[p_1(x), p_2(x)] = \overline{S[p_1(x)|C_0]} \overline{S[p_2(x)|C_0]}^c
\]
The Kaç version of the Random Energy Model
Franz, Parisi, Ricci-Tersenghi

2^M configurations on each site: $C_i = \{1, \ldots, 2^M\}$

Random energy on each link $\langle ij \rangle$

\[E_{\langle ij \rangle} = E(C_i, C_j) \] iid Gaussian

\[E(C_i, C_j) = 0 \]

\[E(C_i, C_j)E(C_i', C_j') = M \delta_{C_i, C_i'} \delta_{C_j, C_j'} \]

Compute the replicated action \(\alpha = 0, \ldots, n \rightarrow n + 1 \) replicas

\[
e^{-S_{\text{rep}}[\{p_a(i)\}]} \propto \sum_{\{C_i^\alpha\}} \exp \left(-\beta \sum_{\langle ij \rangle, \alpha} E_{\langle ij \rangle}(C_i^\alpha, C_j^\alpha) \prod_a \delta_{p_a(i), q(C_i^0, C_i^\alpha)} \right) \\
= \sum_{\{C_i^\alpha\}} \exp \left(\frac{\beta^2 M}{2} \sum_{\langle ij \rangle} \sum_{\alpha, \beta} \delta_{C_i^\alpha, C_i^\beta} \delta_{C_j^\alpha, C_j^\beta} \right) \prod_a \delta_{p_a(i), q(C_i^0, C_i^\alpha)}
\]
The overlap matrix

\[
\delta_{C^\alpha, C^\beta} = \begin{pmatrix}
1 & p_1 & p_2 & \ldots & p_n \\
p_1 & 1 & q_{12} & \ldots & q_{1n} \\
p_2 & q_{21} & 1 & \ldots & q_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_n & q_{n1} & q_{n2} & \ldots & 1
\end{pmatrix}
\]

Overlap \(p_a \) with the reference configuration
Overlap \(q_{ab} \) among the free replicas

\[
C_i^a = C_i^0 \quad \text{and} \quad C_i^b = C_i^0 \rightarrow C_i^a = C_i^b
\]

\[
C_i^a = C_i^0 \quad \text{and} \quad C_i^b \neq C_i^0 \rightarrow C_i^a \neq C_i^b
\]

\[
C_i^a \neq C_i^0 \quad \text{and} \quad C_i^b \neq C_i^0 \rightarrow \text{??????}
\]

In the simplest approximation consists in assuming that \(C_i^a \neq C_i^b \) in this case (justified in the Kaç limit for large \(M \))

\[
q_{ab}(i) = p_a(i)p_b(i)
\]

Example \((n = 5)\):

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & \? & 0 & \? \\
0 & 0 & \? & 1 & 0 & \? \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & \? & \? & 0 & 1
\end{pmatrix}
\]
The annealed approximation

\[S_{rep}^{MF} = \sum_a \left(-\frac{M \beta^2}{2} \sum_{\langle ij \rangle} p_a(i)p_a(j) + M \log 2 \sum_i p_a(i) \right) \]

\[- M \beta^2 \sum_{ab} \sum_{\langle ij \rangle} p_a(i)p_b(i)p_a(j)p_b(j) \]

Going back to a spin model \[p(i) = (1 + \sigma_i)/2 \]

Random field random bond Ising model (with correlated disorder)

\[\mathcal{H}^{MF} = - \sum_{\langle ij \rangle} (J + J_{ij}) \sigma_i \sigma_j + \sum_i (H_{ext} - h_i) \sigma_i \]

\[H_{ext} = M d (\beta_K^2 - \beta^2)/4 \propto M s_c \]

\[J = M \beta^2/8 \]

\[\Delta_J^2 = M \beta^2 \quad \Delta_h^2 = M \beta^2 d/8 \]

\[\overline{h_i h_j} = \overline{h_i J_{ij}} = M \beta^2/16 \]

\[\beta_K = \sqrt{2 \ln 2/d} \]

Mean-field (\(M \to \infty \))

Critical temperature
Beyond the annealed computation

Consider $p_a(i) = p(i) \ \forall a$ (first cumulant of the effective action)

\[p = 1 \quad p = 0 \quad p = 1 \]

Regions with $p = 1$ closer than the point-to-set length

Locally decrease s_c

Induce a spontaneous RSB among the n replicas forced to have $p = 0$

A variational Ground-State approximation

\[p(i) = 0 \rightarrow q_{ab}(i) = \begin{pmatrix}
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & & & 1 & 0 \\
0 & & & 0 & 1
\end{pmatrix} \]

combining factor

\[\binom{2^M - 1}{n/m} \]
The periodic pinning

Set $p(x) = 1$ on the vertices of a d-dimensional hyper-cube of size ℓ and $p(x) = 0$ elsewhere.

Use the variational ansatz and optimize over m.

\[
S_1[p(i)] = S_1^{MF}[p(i)] + \Delta S_1[p(i)]
\]

\[
\xi_{\text{pin}}^{MF} = \left(\frac{\beta_K^2 - \beta^2}{\beta_K^2}\right)^{\frac{1}{d}}
\]

Additional effective interaction among the $p(i)$.
Effective long-range antiferromagnetic interaction

Approximate ansatz for the effective interaction → possibly long-range pair interaction $K(r)$ + external field ΔH

\[\mathcal{H} = -\sum_{\langle ij \rangle} (J + J_{ij}) \sigma_i \sigma_j + \sum_{i,j} K(|i - j|) \sigma_i \sigma_j + \sum_{i} (H_{ext} + \Delta H + h_i) \sigma_i \]

\[K(r) \approx \frac{M c}{r^{2d}} \theta(\xi_{pin}^{MF} - r) \]

ΔH lowers the transition temperature with respect to mean-field (by renormalizing the configurational entropy)

\[\beta_K \rightarrow H_{ext}(\beta_K^*) + \Delta H(\beta_K^*) = 0 \quad \beta_K^* > \beta_K \]

Study the properties of the critical point using the effective Hamiltonian

\[T_K^* \quad T_K \quad T \]
Estimation of the disorder at the critical point

Numerical simulations in $d = 3 \Rightarrow \frac{\sqrt{\Delta_h^2}}{Jd} \approx 0.4$

• Neglect the random bonds (ok for large M)
• Neglect correlations between n.n. random fields and random bonds
• Use the result of $d = 3$ in higher dimensions

$(Jd)_{\text{eff}} = Jd - \frac{1}{2} \int r^{d-1} K(r) \, dr$
Conclusions & Perspectives

• First steps towards the derivation of an Ising-like effective theory for the glass transition close to T_K
• Random field random bond Ising model (with correlated disorder) + long-range antiferromagnetic interaction
• Go beyond RFOT. Use the effective Hamiltonian to study the properties of the original model (length scales, critical points, ...)
• Identify mechanisms which may destroy the Ideal glass transition

• Check the robustness of the results with respect to other geometry of the overlap profile
• Extend the computation to the second cumulant of the effective action (possibly long-range correlated disorder?)
• Extend the calculation to other models (similar results are found for a generic effective Ginzburg-Landau replicated action)
• Improve the variational ground state approximation (low temperature expansion?)