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Statistical Physics of
Collective Processes in Biology

M Spin Glasses ...

= The Hopfield model revisited
+ ...



Why?

 Historical and scientific importance (good to look
back at the model after 3 decades ...)

» Experimental context has changed (enormously!)

e Theoretical extensions

* Interest well beyond neuroscience



The paper (1982)

Proc. Natl Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective
computational abilities

(associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices)

J. J. HOPFIELD
Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974
Contributed by John ]. Hopfield, January 15, 1982

ABSTRACT Computational properties of use to biological or-

_E:sms or to the construction of computers can emerge as col- e Autoassociative memory
ive properties of systems having a large number of simple

equivalent eomgents (or neurons). The physical meaning of con-
tent-addressable memory is described by an appropriate phase : .
space flow of the state of a system. A model of such a system is .Slmple dynamlcs of components
given, based on aspects of neurobiology but readily adapted to in- (no ClOCk)

tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the o : : : :
time evolution of the state of the system is based on asynchronous General1zat10n, error correction, time
parallel processing. Additional emergent collective properties in- sequence storage, ...

clude some capacity for generalization, familiarity recognition,

categorization, error correction, and time sequence retention.

The collective properties are only weakly sensitive to details of the o : i
modeling or the fatlure of individual devices. Robustness to failure of individual

components



Ingredients of the model (1)

* Neuron = Ising spin s(t) = 0,1 or -1,+1
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Fig. 16. A, solution of eqn. (26) for initial depolarization of 15 mV at a temperature of 6° C. The
broken curve shows the membrane action potential in mV; the continuous curve shows the
total membrane conductance (gy, +9gx +§;) as a function of time. B, records of propagated
action potential (dotted curve) and conductance change reproduced from Cole & Curtis (1939).
The time scales are the same in 4 and B.

Hodgkin & Huxley (1952)



Ingredients of the model (2)

State of neuron determined by
linear summation + threshold rule:

S(t+1)= sign(J s (1) + Jy5,(1) + Jos (D) +...=0)

millivolts
o

J = synaptic interaction

Spatial
Summation

ABC

Qo>

e

A, B, C=EPSP

A, B, C Each of these firings alone
causes a partial depolarization

Sequential updating
(time scale about 10 ms)

potential.

but not enough for an action

But, If A,B,C fire simultaneously
thelr combined effects will
cause an actfion potential

Excitatory Post-Synaptic Potential



Ingredients of the model (3)

Synapse = interaction J;; obeying Hebb’s rule

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased

Connectionnism postulated by
Ramon Y Cajal as soon as
1894: memory comes from
changes in connections rather
than appearance of new neurons




Ingredients of the model (4)

1. Long Term Potentiation & Depression
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2. Spike-timing dependent plasticity (from 10 ms to few minutes)



Ingredients of the model (5)

Long Term Depression/Potentiation
LETTER o
/ /
Engineering a memory with LTD and LTP

Sadegh Nabavi'*, Rocky Fox'*, Christophe D. Proulx’, John Y. Lin? Roger Y. Tsien’** & Roberto Malinow’

It has been proposed that memories are encoded by modification of  the memory of the shock by LTD (Fig. 2a, b, f). N
synaptic strengths through cellular mechanisms such as long-term  memories can be reactivated. To theseanimals we ¢
potentiation (LTP) and long-term depression (LTD)'. However, the LTP protocol (see Methods). One day later, anim
causal link between these synaptic processes and memory has been
difficult to demonstrate®. Here we show that fear conditioning® *, a
type of associative memory, can be inactivated and reactivated by a b
LTD and LTP, respectively. We began by conditioning an animal to Laser
associate a foot shock with optogenetic stimulation ofauditory inputs

targeting theamygdala, a brain region known to be essential for fear
conditioning**. Subsequent optogenetic delivery of LTD condition- g/ g
ing to the auditory input inactivates memory of the shock. Then sub-
sequent optogenetic delivery of LTP conditioning to the auditory input

reactivates memory of the shock. Thus, we have engineered inactiva-

348 | NATURE | VOL 511 | 17 JULY 2014



The model

* sets of uncorrelated patterns to be ‘stored’:

Index of pattern=1, ..., P

g et

T~

Index of neuron=1, ..., N

u

7

* synaptic interactions: S, = /1\/2 5 Mg
r

o updating rule:  5,(Z+1) = sign E Jy.sj(f) -/,
.

Q: Is the final state close to one of the patterns?



A: Yes, 1f number P of patterns small enough ...

E[SI,SZ, =—*EJSS +E/zs

N
s\u‘m
energy

" . 7 minimum

attractor energy

AN

states

basin of attraction

Fixed point condition (zero threshold):

52 |- gg;[;vgg;@n - noise = o7,

v(=u)

§' = sign = sion




Analytical solution and phase diagram

Order parameters:

Error at T=0:
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Criticisms against the Hopfield model

Symmetric J

Oversimplified dynamics (Spikes? No adaptation?)
Spurious states

Attractors = specific activity configurations

Experimental evidence?



Why is it interesting/important?

One of the (very few) paradigms 1n theoretical neuroscience
(Hebb’s rule & attractors)

Model enjoys many interesting properties

Conceptually important (beyond neuroscience):
unique J (coupling matrix) allows for vastly different activity states s

Analytical solution two years later by AGS with spin glass techniques

Opened the way to applications of spin glasses beyond physics
(optimization problems, error-correcting codes, ...)

Deep ‘sociological’ impact in the physics community towards
theoretical biology



The Hopfield model today

* Attractors in neuroscience: recent experimental « evidence »
+ theoretical developments

with special attention to the representation of space in the brain

 Statistical mechanics development & Inverse problems in biology:
- Ising-based models and the inverse Hopfield problem
- Applications to proteomics, gene networks, neuroscience, ...
(mostly this afternoon!)



Ring & continuous attractors (1)

External input

N = 6 neurons
P "

—— excitatory coupling S

——1 inhibitory coupling ( 4

» balance of local excitation + global inhibition
= localization of activity (bump or cell assembly)

« if inhibition not global, more than one bumps, see later ...



A continuous-attractor model in statistical physics (1)

Translation-invariant + long-range interactions:
EJ[O'] — —ZJij 0; 0,

exactly solvable lattice-gas model for the

liquid/gas transition

Lebowitz and Penrose (1966)

Order parameter =
Coarse-grained activity:

Single spin
self-consistent
equations:

1<J

Jy =7, (i = JjD

L 1
ple)=lim lim o5 > (ows
(z—§)N<i<(z+£)N

() = ——
PAE) = L e—n@)/T °

u(z) = / dy Ju(z —y)p(y) + A

!

(imposes global activity)

(Similar to rate model for neurons ...)



A continuous-attractor model in statistical physics (2)
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Ring & continuous attractors (2)

* active bump = collective coordinate for the

neural activity (robust encoding) N
I3
* successive firing of neurons along the ring in 1D
or higher D = continuous attractor A B
I
I

* bump driven by external input
(stimulus or other neural activity) or diffusion

« evidence for continuous attractors in experimental recordings

» presence of heterogeneities in the interaction?



The representation of space in the brain

* necessary to form and
retain new memories

* deeply intra-connected and
connected to neighboring
cortical regions, e.g. EC

* Hippocampus and EC
fundamentally involved in
the representation of space

O’Keefe, Dostrovsky (1971)




Place cells
in the
hippocampus

(1)
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Place cells in the A, o e e
hippocampus (2) |
B ____1“ 2 ) 3
1. Place cell activity is largely maintained A ey &
in the absence of visual cue ' : '
Quirk, Muller, Kubie, C. 2 3

J. Neuroscience (1990)
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Neuroscience (2007)
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Attractor model for one environment

Neuron = binary state, silent or active: O, = 0,1

Physical space Neural network

-~

Identical to Lebowitz-Penrose lattice-gas model (if perfect learning)!



Place cells in the hippocampus (3)

1. Fundamental property: remapping

* global remapping observed in new environment; statistically compatible with random
reallocation of place fields

* only a fraction of cells active in one environment (orthogonalization of space representations)

* rate remapping follows slight changes (e.g. of cues)

2. Context dependence: there is more to place cells than « place » ...

(overdispersion, dependence on other e.g. olfactory stimuli, on task, ...)



Teleportation (1)

Rat in two different environments

Place fields are specific to each environment

Population vectors (average activity) specific
to each environment

Sudden change of environment?

switch

—
e

Jezek, Henriksen, Treves, Moser & Moser,
Nature 478, 246 (2011)



Correlation Correlation Correlation

Teleportation (2)

m" =overlap(r(t),r") withu=1,2
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How are different environments ‘stored’ in the hippocampus?

What is the dynamics of the neural activity within one environment?
In between two environments?



Model: random remappings

Hypothesis: place fields are randomly remapped onto neurons

Example in
dimension D=1:

New environment = random permutation Battaglia, Treves (1998)

(no dilution here, easy to incorporate in model ...) Tsodyks (1999)
Hopfield (2010)

R.M., Rosay (2014)



Model: statistical mechanics formulation

Interaction matrix for L ¢ 0 - 0

L+1 environments: Jij = 22_% Jij = Jij + EZ_; St iyt (5)
Probability of activity 1
configuration: Pj(o) = Z(T) exXp ( — E;[o]/T)
‘Energy’ :

(-log likelihood) Ejlo]=—-) Jijoio,

1<J

Partition 71T = ex — Eq+lol/T
function: 1) Z N p( 71o)/T)

. . o;=fN
o with constraint ; N (inhibition)



Multi-environment case:
order parameters

Hypothesis: Look for activity localized in one environment, delocalized in the others

Local density of activity 1

averaged over p(z) = hII(l) th N E (i)
: . €E—r —0OC
environments: (z—$)N<i<(z+5)N

N
Edwards-Anderson overlap i
(measures spatial heterogeneities N z
in the activity): 1=1

g.to



Phase diagram(s)
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Amit, Gutfreund, Sompolinsky (1984)

Storage of an extensive number of spatial charts in an attractor

neural network...

... very robust to neural noise (temperature) !



Dynamics within one environment (LP model)

Microscopic neural dynamics: emergence of a quasi-particle

relaxation towards equilibrium density for all modes, with thermalization
at ‘temperature’ of the order of 1/N except for zero mode (translation of
bump), which diffuses with D=0O(1/N)

Einstein relation = ok!

Trajectory of clump center in D=2 gt , 3
(N=45x45 spins, a=0.001, T=0.004) oI R [9



Dynamics within one environment (a>0)
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n
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Technically: two sets of n/2 replicas, n>0



Dynamics: transitions between environments

0 200 400 600 800 1000
neuron index 1

» simulations with two environments (close to top boundary of localized phase)

* ‘neurons’ ordered according to their place fields in env. 1



Dynamics: transitions between environments
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Schematic picture of the dynamics
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Competition between (activated) diffusion and transitions between charts...

Depends on N (or effective N)

How to enhance motbility in disordered landscape?
(modulation of activity, orthogonalization of maps, adaptation, ...)

Q: Where do transitions
take place?

And in experiments?
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Evidence for continuous attractors in the brain (1)

Hafting, Fyhn, Molden, Moser & Moser, Nature 436, 801-806 (2005)

Grid cell properties:

» fire on triangular lattice

* neighbouring cells differ by
translation of their grids

* ‘far away’ cells also differ
by grid rotation

» mesh sizes vary with
recording depth in MEC

» geometric organization of
grids (5 sizes, ratio 1.4)

» establish very fast in a new
environment and stabilize

over days
» found 1n rodents, monkeys,
bats
Trajectory of a rat through a square environment  * 2D continuous attractor
is shown in black. Red dots indicate locations at models (With local inhibition)

which a particular entorhinal grid cell fired.



Evidence for continuous attractors in the brain (2)

opikes  Ariance of  fitted Yoon et al., Nature Neuroscience (2013)
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* neighbouring cells define identical 2D lattices, up to a 2D translation
» relative values of translation parameters are more stable over long periods of time
than parameters themselves
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* stability against moderate pertubations e.g. environment reshaping ...



Cell assemblies in the auditory cortex (1)

Bathellier, Ushakova, Rumpel, Neuron 2012

Superficial
auditory cortex
of a mouse

0

16kHz

~ 200 um _ . 0NN MMO0.75 ARR (%)

2-photon imaging

-4
N

* response depends on stimulus

Single trial
population vectors
Cell number

-y

* neural activity is highly stochastic at the individual level
* less fluctuations at the population level

» what happens for mixed stimuli?

Single trial
correlations

Sound A Sound B Sound C

Correlaton



Correlation
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Conclusion

Situation has drastically evolved since 1982:

« Various experimental techniques (recording, imaging, reversible & specific
stimulation, ...) provide detailed knowledge of the neural activity at the cell level

 Evidence for the existence of discrete and continuous attractors
« Attractors (memories) can be modified
* Dynamics ...
» Theoretical challenges:  out-of-equilibrium effects,
nature of representations (what is “place”?),

biological constraints, ...
inverse approaches to interpret/analyze data
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