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Statistical Physics of
Collective Processes in Biology

∩   Spin Glasses …

 =  The Hopfield model revisited
+ …



• Historical and scientific importance (good to look
  back at the model after 3 decades …)

• Experimental context has changed (enormously!)

• Theoretical extensions

• Interest well beyond neuroscience

Why?



The paper (1982)

•Autoassociative memory

•Simple dynamics of components
     (no clock)

•Generalization, error correction, time
sequence storage, …

•Robustness to failure of individual
components



Ingredients of the model (1)

• Neuron  =  Ising spin si(t)  =  0,1  or  -1,+1

Hodgkin & Huxley (1952)



Ingredients of the model (2)

State of neuron determined by 
linear summation + threshold rule:
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S(t+1) = sign JAsA (t) + JBsB(t) + JC sC (t)+ ...!"( )

J = synaptic interaction

Sequential updating 
(time scale about 10 ms)



Ingredients of the model (3)

• Synapse  =  interaction  Jij  obeying Hebb’s rule

D. Hebb, The organization of behavior (1949)

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased

Connectionnism postulated by
Ramon Y Cajal as soon as
1894: memory comes from
changes in connections rather
than appearance of new neurons



Ingredients of the model (4)

Bliss & Lomo (1973)

1. Long Term Potentiation & Depression

2. Spike-timing dependent plasticity (from 10 ms to few minutes) 

+ other
scheme
for LTD



Ingredients of the model (5)

Long Term Depression/Potentiation



The model
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• sets of uncorrelated patterns to be ‘stored’:
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Q: Is the final state close to one of the patterns?



A: Yes, if number P of patterns small enough …  
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Fixed point condition (zero threshold):
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Analytical solution and phase diagram

Amit,
Gutfreund,
Sompolinsky
(1984)
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Criticisms against the Hopfield model

• Symmetric J

• Oversimplified dynamics (Spikes? No adaptation?)

• Spurious states

• Attractors = specific activity configurations

• Experimental evidence?



Why is it interesting/important?

• One of the (very few) paradigms in theoretical neuroscience
     (Hebb’s rule & attractors)

• Model enjoys many interesting properties

• Conceptually important (beyond neuroscience):
    unique J (coupling matrix) allows for vastly different activity states s

• Analytical solution two years later by AGS with spin glass techniques

• Opened the way to applications of spin glasses beyond physics
     (optimization problems, error-correcting codes, …)

• Deep ‘sociological’ impact in the physics community towards
     theoretical biology



The Hopfield model today

• Attractors in neuroscience:  recent experimental « evidence »
  + theoretical developments

• Statistical mechanics development & Inverse problems in biology:
 - Ising-based models and the inverse Hopfield problem 
 - Applications to proteomics, gene networks, neuroscience, …
   (mostly this afternoon!)

     with special attention to the representation of space in the brain



Ring & continuous attractors (1)

External input

• balance of local excitation + global inhibition
  = localization of activity (bump or cell assembly)

• if inhibition not global, more than one bumps, see later …

N = 6 neurons

excitatory coupling

inhibitory coupling



A continuous-attractor model in statistical physics (1)

Translation-invariant + long-range interactions: 
exactly solvable lattice-gas model for the 
liquid/gas transition 

Lebowitz and Penrose (1966) 

Order parameter =
Coarse-grained activity:

(imposes global activity)

Single spin 
self-consistent
equations:

(Similar to rate model for neurons …)

! 

Jij = Jw ( i " j )



T=0 Paramagnetic/Gaseous phase

Ferromagnetic/Liquid phase

True also in
D=2:

Tspinodal

A continuous-attractor model in statistical physics (2)

temperature



Ring & continuous attractors (2)

• active bump = collective coordinate for the
                          neural activity (robust encoding)

• successive firing of neurons along the ring in 1D
  or higher D = continuous attractor

• bump driven by external input
  (stimulus or other neural activity) or diffusion

• presence of heterogeneities in the interaction?

• evidence for continuous attractors in experimental recordings



The representation of space in the brain

• necessary to form and
retain new memories

• deeply intra-connected and
connected to neighboring
cortical regions, e.g. EC

• Hippocampus and EC
fundamentally involved in
the representation of space

O’Keefe, Dostrovsky (1971)



Place cells
in the

hippocampus
(1)

Nakazawa, McHugh, Wilson & Tonegawa
Nature Reviews Neuroscience 5, 361-372 (2004)



Place cells in the
hippocampus (2)

1. Place cell activity is largely maintained
      in the absence of visual cue

⇒ Internally generated 
     (input independent)
      network activity

Quirk, Muller, Kubie,
J. Neuroscience (1990)

Diba, Buzsaki, Nat. 
Neuroscience (2007)

2. Place cell activity can take place
on compressed time scales



Attractor model for one environment

Physical space Neural network 

dij Jij
0

Identical to Lebowitz-Penrose lattice-gas model (if perfect learning)!

Neuron = binary state, silent or active : !
i
= 0,1



Place cells in the hippocampus (3)

1. Fundamental property: remapping

2. Context dependence: there is more to place cells than « place » …
(overdispersion, dependence on other e.g. olfactory stimuli, on task, …)

• global remapping observed in new environment; statistically compatible with random
reallocation of place fields

• only a fraction of cells active in one environment (orthogonalization of space representations)

• rate remapping follows slight changes (e.g. of cues)



Teleportation (1)
• Rat in two different environments

• Place fields are specific to each environment

• Population vectors (average activity) specific 
    to each environment

• Sudden change of environment?

Jezek, Henriksen, Treves, Moser & Moser, 
Nature 478, 246 (2011)

→→

switch



Teleportation (2)

How are different environments ‘stored’ in the hippocampus?
What is the dynamics of the neural activity within one environment? 

In between two environments?
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Model: random remappings

Example in 
dimension D=1:

Hypothesis: place fields are randomly remapped onto neurons

New environment = random permutation π
(no dilution here, easy to incorporate in model …)

Battaglia, Treves (1998)
Tsodyks (1999)
Hopfield (2010)
R.M., Rosay (2014)



Model: statistical mechanics formulation

Interaction matrix for
L+1 environments:

Probability of activity
configuration:

‘Energy’ :
(-log likelihood)

Partition
function:

(inhibition)



Multi-environment case:
order parameters

Local density of activity
averaged over 
environments:

Edwards-Anderson overlap
(measures spatial heterogeneities 
in the activity):

Hypothesis: Look for activity localized in one environment, delocalized in the others 



Phase diagram(s)

… very robust to neural noise (temperature) !

Amit, Gutfreund, Sompolinsky (1984)
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Storage of an extensive number of spatial charts in an attractor
neural network…

H = ! J
0

" l (i )," l ( j )
# i# j

l

$
i< j

$ H = ! "
i

µ"
j

µ

µ

#
$

%
&&

'

(
))* i

*
j

i< j

#

!(x) " f , q > f 2

!(x) = f , q = f 2

!(x) = f , q > f 2

= L/N



Dynamics within one environment (LP model)

Trajectory of clump center in D=2
(N=45x45 spins, α=0.001, T=0.004)

Microscopic neural dynamics: emergence of a quasi-particle

relaxation towards equilibrium density for all modes, with thermalization
at ‘temperature’ of the order of 1/N except for zero mode (translation of
bump), which diffuses with D=O(1/N)

Einstein relation = ok!



Dynamics within one environment (α>0)

Fluctuations

‘Free’ diffusion

‘Activated’ diffusion

We can go further …

Compute
Technically: two sets of n/2 replicas, n0
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Dynamics: transitions between environments

•   simulations with two environments (close to top boundary of localized phase)

•  ‘neurons’ ordered according to their place fields in env. 1

neuron index i



Dynamics: transitions between environments

Theory:

• activity partially localized in
both environments in TS

• ‘spurious state’ is important!



Schematic picture of the dynamics

Competition between (activated) diffusion and transitions between charts…
Depends on N (or effective N)
How to enhance motbility in disordered landscape? 

(modulation of activity, orthogonalization of maps, adaptation, …) 

N=333,
T=0.006,
2 env. in D=1

Q: Where do transitions
take place?

And in experiments?

‘wormhole’



Evidence for continuous attractors in the brain (1)
Hafting, Fyhn, Molden, Moser & Moser, Nature 436, 801-806 (2005)

Grid cell properties:

• fire on triangular lattice
• neighbouring cells differ by
   translation of their grids
• ‘far away’ cells also differ
   by grid rotation
• mesh sizes vary with 
   recording depth in MEC
• geometric organization of
  grids (5 sizes, ratio 1.4)
• establish very fast in a new
  environment and stabilize 
  over days
• found in rodents, monkeys,
   bats
• 2D continuous attractor
  models (with local inhibition) 

Trajectory of a rat through a square environment
is shown in black. Red dots indicate locations at
which a particular entorhinal grid cell fired.



Evidence for continuous attractors in the brain (2)
spikes

variance of
firing rate

fitted
lattices

• neighbouring cells define identical 2D lattices, up to a 2D translation
• relative values of translation parameters are more stable over long periods of time
                                                                                          than parameters themselves

• stability against moderate pertubations e.g. environment reshaping …

Yoon et al., Nature Neuroscience (2013)

Variations
of phases

Variations
of relative
phases



Cell assemblies in the auditory cortex (1)
Bathellier, Ushakova, Rumpel, Neuron 2012

Superficial
auditory cortex
of a mouse

2-photon imaging
≈ 200 µm

• response depends on stimulus

• neural activity is highly stochastic at the individual level

• less fluctuations at the population level

• what happens for mixed stimuli?



Cell assemblies
in the

auditory cortex (2)

• compatible with discrete
(Hopfield-like) attractor model

• existence of a limited number
of « attractors » (74 in 14 mice?)

• combinatorial coding based on
those neural sub-populations



Conclusion

Situation has drastically evolved since 1982:

• Various experimental techniques (recording, imaging, reversible & specific
stimulation, …) provide detailed knowledge of the neural activity at the cell level

• Evidence for the existence of discrete and continuous attractors

• Attractors (memories) can be modified

• Dynamics …

• Theoretical challenges: out-of-equilibrium effects,
nature of representations (what is “place”?),
biological constraints, …

      inverse approaches to interpret/analyze data
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Please, ask for more references …


