Computer Simulations of Glassy Systems with pinned Particles

Walter Kob

Université Montpellier France

In collaboration with: Misaki Ozawa, Sandalo Roldan-Vargas, Ludovic Berthier, Kunimasa Miyazaki, and Atsushi Ikeda

Cargese August 26, 2014

Using Walls to determine Length Scales

Generation of liquid confined by two walls:

- Equilibrate a system of size L_x=L_y=13.7 and L_z=34.2=D using periodic boundary conditions
- •At t=0 we freeze the particles with z < 0 and z > D permanently \Rightarrow wall
- Add a hard core potential at z = 0and z = D
- ⇒ confined liquid of thickness D and dimensions L_x=L_v

N.B. liquid is in equilibrium! Scheidler, W. K., Binder (2004)

L	L	L	W	L	W
L	L	L	W	L	W
L	L	L	W	L	W

periodic boundary in 3d periodic boundary in 2d

- One simulation at temperature T allows to determine the static and dynamic properties of the liquid for all values of z (=distance from the wall)
- Access to multi-point correlation functions (point to set correlations)

System studied:

- binary mixture of additive elastic spheres: $V(r) = \frac{1}{2} (r \sigma_{ii})^2$; $\sigma_{11} = 1.0$, $\sigma_{22} = 1.4$
- N=4320 particles
- up to 830 million time steps
- between 10-30 samples

Overlap

- Divide sample in small cells (0.55σ) and introduce occupation number n_i
- Define Overlap_{self}(z,t) = $m^{-1}\sum_i \langle n_i(t) n_i(0) \rangle$ (sum only over cells that have distance z from the wall)

- Overlap has better statistics than intermediate scattering function, but contains (basically) the same information
- Slowing down of the relaxation dynamics with decreasing z
- For large z the function does not depend anymore on z
 ⇒ bulk behavior

Self and Collective Overlap

- Region in which the wall influences the dynamics increases with decreasing T
- Similarly to the self overlap, one can define a collective overlap

- Due to the structure of the wall the collective overlap does not go to zero for finite z even if t → ∞
 - \Rightarrow measure the value of the overlap at t $\rightarrow \infty$ for different z (static observable!)

Relaxation Times

• The α -process of the Overlap_{self}(z,t) can be fitted well by a KWW function \Rightarrow obtain the relaxation time τ_{self} (via area under α -process)

- System size is sufficiently large that $\tau_{self}(z)$ converges to bulk value
- Same behavior is observed for $\tau_{coll}(z)$

Relaxation times

• Empirically one finds that for intermediate and large z

$$log[\tau_{self}(z,T) / \tau_{self}(bulk,T)] = A(T) exp(-z/\xi_{dyn}(T))$$

- This result allows to obtain a *dynamic* length scale ξ_{dyn}(T)
- ξ_{dyn} is non-monotonic in T!
- Same results are obtained for τ_{coll}(z,T)

A closer look at $\tau_{self}(z,T)$

- At low T, the normalized
 τ_{self}(z,T) becomes
 independent of T for
 small and intermediate
 z, i.e. T-dependence is
 seen only at large z
 - ⇒ evidence that there are two length scales for the relaxation process; with decreasing T the relaxing entity becomes more compact
- Result seems (!) to be compatible with RFOT view of Stevenson, Schmalian and Wolynes (Nat. Phys. 2006)₇

Length Scales

0.15

0.20

- static length scale from g(r)
- static length scale from collective overlap: two choices
 - 1/slope
 - prefactor/slope

0.05

0.10

- Static length scale shows weak T-dependence for g(r) and noticable Tdependence for point-toset correlator
- dynamic length scale shows maximum around T_c
- dynamic scale is larger than static one

Summary (part 1)

- Influence of wall on collective overlap decreases exponentially with distance from the wall for all T (even below T_c)
- Length scale associated with higher order static correlation functions does show a significant T-dependence; the length scale for dynamic correlations has an even stronger one
- \bullet Evidence that relaxation process changes nature around T_c. Relaxing entities have *two* length scales and one of them is non-monotonic in T

Reference:

- L. Berthier and W. Kob, PRE **85**, 011102 (2012)
- W. Kob, S. Roldan-Vargas, and L. Berthier, Nature Phys. 8, 164 (2012)
- G. Hocky, L. Berthier, W. Kob, and D.R. Reichman, PRE 89, 052311 (2014)

Probing a liquid by pinning particles

1) Equilibrate the liquid at the state point of interest (temperature+ density)

It can be shown that the *structural* properties of the fluid are not changed by the pinning *if* one takes the average over many disorder configurations and if the system is large Scheidler, Kob, Binder (2004); Krakoviack (2005, 2010)

Dynamics of pinned system

•Structural properties are not changed but the dynamics is strongly affected by the pinning: Consider the intermediate scattering function (=density-density correlation function) \Rightarrow relaxation time $\tau(T,c)$

⇒ relaxation time τ(T,c)
 depends strongly on
 concentration c of
 pinned particles

Model and Simulations

System studied:

- binary mixture of Lennard-Jones particles:
- N = 300 particles
- Use parallel tempering algorithm to probe the thermodynamic properties of the system as a function of c (use 24 replicas)
- •up to 2.10¹⁰ time steps
- between 5-20 samples
- T_{MCT} (c=0) ≈ 0.435
- T_K (c=0) ≈ 0.30

Cammarota, Biroli PNAS (2012)

Overlap q

- Kauzmann temperature: For T>T_K the system has access to exponentially many configurations/states (neglect vibrations)
- ⇒ configurational entropy is positive

for $T < T_K$ there are only "few" states left \Rightarrow configurational entropy is zero

- ⇒ need a quantity to measure the number of states
- Idea from spin glasses: Look at overlap q
- q measures whether two arbitrary equilibrium configurations (α, β) at temperature T are the same or not
- Reasonable definition of overlap: $q = q_{\alpha, \beta}(T) = N^{-1} \Sigma_{i,j} w(r_i^{(\alpha)} r_j^{(\beta)})$
- q large/small: configurations α , β are similar/different

Distribution of overlap: P(q)

• Value of $q = q_{\alpha, \beta}(T) = N^{-1}\Sigma_{i,j} w(r_i^{(\alpha)} - r_j^{(\beta)})$ depends on α, β \Rightarrow q is distributed \Rightarrow distribution function P(q)

- ⇒continuous localization transition similar to a Lorentz gas
- ⇒relevant length scale is just the distance between pinned particles

Distribution of overlap: Low T

- double peak structure at intermediate values of c
 - ⇒ at low T transition between delocalized states and localized states seems to be *discontinuous*
 - ⇒ coexistence between two types of states: "similar" or "different"
 - ⇒ Kauzmann point

Mean overlap (q)

$$" = \int P(q) q dq"$$

- The average of P(q) increases monotonically with c
- •At low temperatures (q) becomes very steep and seems to develop a singularity (=jump), i.e. compatible with the behavior expected for a system that undergoes a 1st order transition

The Kauzmann line

• Estimate of $T_K(c)$: skewness $\gamma(T,c)$ (=third moment of P(q) = 0)

- Obtain a Kauzmann line in the T-c plane.
- extrapolation to c=0 gives a T_K(c=0) >0
- extrapolation is compatible with previous estimates for T_K in the bulk (from thermodynamic integration (Sciortino, Kob, Tartaglia, (2000))

The Kauzmann Temperature (Bulk)

Kauzmann temperature T_K (W. Kauzmann 1948):

Entropy of glassy liquid can be decomposed into vibrational part + rest

$$S_{liq} = S_{vib} + S_c$$

Configurational entropy S_c:

 S_c is related to the number of different liquid like configurations (without vibrations); S_c seems to go to zero \Rightarrow "ideal glass"

Entropy via thermodynamic integration

0.8 **→** T=0.8 0.7 0.6 T=0.550.5 - T=0.44 _တ္ 0.4 0.3 0.2 0.1 0.0 0.05 0.20 0.25 0.00 0.10 0.15 С

- Obtain S_{liq} from thermodynamic integration (starting from very high T)
- Calculate S_{vib} from the density of states of the inherent structures
- Define

$$S_{c} = S_{liq} - S_{vib}$$

- At low intermediate and low T S_c does indeed go to zero
- ⇒ We have reached the Kauzmann point

Kauzmann line: 2

 Compare the c-dependence of the Kauzmann points as obtained from the two approaches

 Estimate of T_K (c) from distribution function
 P(q) and from thermodynamic integration gives compatible results

Critical temperature of MCT

- T_{MCT} is often obtained from fitting to T-dependence of relaxation times: $\tau(T) \propto (T-T_{MCT})^{-\gamma}$
- Problem: 3 fit parameters
- Alternative: Use properties of potential energy landscape (Broderix et al 2000, Angelani et al 2000); measure the number of negative eigenvalues of the saddles

Critical temperature of MCT: 2

- At T_{MCT} the system sees mainly local minima
 - \Rightarrow Its inherent structure energy is equal to $e_{threshold}$

• T_{MCT} can be obtained with good precision and "without" fitting

Phase diagram

- Phase diagram looks qualitatively very similar to the one predicted by Cammarota and Biroli
- NB: For large c the T_K line from the simulation is an artifact! No double peak structure in P(q), no convincing S_c=0

Dynamics slows down very quickly upon approach of the T_K line

Summary (part 2)

- Simulations of a simple glass former with "randomly" pinned particles
- Relevant temperatures of the glassy liquid depend on concentration of pinned particles
- Parallel tempering allows to cross the Kauzmann line T_K(c)
- At T_K(c) the order parameter (overlap) seems to make a jump like in a first order transition; jump height increases with decreasing T
- For decreasing T_K c seems to go to zero \Rightarrow diverging length scale \Rightarrow evidence that there is indeed *only one glass state* even in the bulk
- Phase diagram in qualitative agreement with RFOT predictions

Reference:

- W. Kob and L. Berthier PRL **110**, 245702 (2013)
- M. Ozawa, W. Kob, A. Ikeda, K. Miyazaki (in preparation)