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Using Walls to determine Length Scales 

•One simulation at temperature T allows to determine the static and 

dynamic properties of the liquid for all values of z (=distance from the wall) 

•Access to multi-point correlation functions (point to set correlations) 

Generation of liquid confined by two walls: 

• Equilibrate a system of size Lx=Ly=13.7 and Lz=34.2=D using periodic 

boundary conditions 

•At t=0 we freeze the particles with z < 0 and z > D permanently  wall 

•Add a hard core potential at z = 0  

  and z = D 

 confined liquid of thickness D  

    and dimensions Lx=Ly 
 

N.B. liquid is in equilibrium! 

Scheidler, W. K., Binder (2004) 
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System studied: 

- binary mixture of additive elastic spheres: V(r) = ½ (r-ij)
2  ; 11=1.0, 22=1.4   

- N=4320 particles 

- up to 830 million time steps 

- between 10-30 samples 



Overlap 
• Divide sample in small cells (0.55) and introduce occupation number ni  

• Define Overlapself(z,t) = m-1i ni(t) ni(0)   (sum only over cells that have 

distance z from the wall) 
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• Overlap has better statistics 

than intermediate scattering 

function, but contains 

(basically) the same 

information 
 

• Slowing down of the relaxation 

dynamics with decreasing z 
 

• For large z the function does 

not depend anymore on z     

 bulk behavior 



Self and Collective Overlap  

• Region in which the wall influences the dynamics increases with decreasing T 
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• Due to the structure of the wall the collective overlap does not go to zero for 

finite z even if t   

   measure the value of the overlap at t  for different z (static observable!) 

• Similarly to the self overlap, one can define a collective overlap 



Relaxation Times 
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• The -process of the Overlapself(z,t) can be 

fitted well by a KWW function  obtain the 

relaxation time self (via area under -process) 

• System size is sufficiently 

large that self(z) converges 

to bulk value 

 

• Same behavior is observed 

for coll(z) 

  



Relaxation times 
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• Empirically one finds that for intermediate and large z  
  

   log[self(z,T) /self(bulk,T)] = A(T) exp(-z/dyn(T))  
 

• This result allows to 

obtain a dynamic length 

scale dyn(T) 

• dyn is non-monotonic 

in T!   
 

• Same results are 

obtained for coll(z,T)  



A closer look at self(z,T) 

7 

• At low T, the normalized 

self(z,T) becomes 

independent of  T for 

small and intermediate 

z, i.e. T-dependence is 

seen only at large z  

 

    evidence that there 

are two length scales for 

the relaxation process; 

with decreasing T the 

relaxing entity becomes 

more compact 

• Result seems (!) to be 

compatible with RFOT 

view of Stevenson, 

Schmalian and Wolynes 

(Nat. Phys. 2006) 



Length Scales 
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• static length scale from g(r)  
• static length scale from collective overlap: two 

choices 

• 1/slope 

• prefactor/slope  

• Static  length scale shows 

weak T-dependence for 

g(r) and noticable T-

dependence for point-to-

set correlator 

• dynamic length scale from self(z,T) or coll(z,T)  

• dynamic length scale 

shows maximum     

around Tc  

• dynamic scale is larger 

than static one 



Summary (part 1) 

• Influence of wall on collective overlap decreases exponentially with 

distance from the wall for all T (even below Tc) 

• Length scale associated with higher order static correlation functions does 

show a significant T-dependence; the length scale for dynamic 

correlations has an even stronger one 

• Evidence that relaxation process changes nature around Tc . Relaxing 

entities have two length scales and one of them is non-monotonic in T 

 

 

Reference: 

L. Berthier and W. Kob, PRE 85, 011102 (2012) 

W. Kob, S. Roldan-Vargas, and L. Berthier, Nature Phys. 8, 164 (2012) 

G. Hocky, L. Berthier, W. Kob, and D.R. Reichman, PRE 89, 052311 (2014) 
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Probing a liquid by pinning particles 

1) Equilibrate the liquid at the state point of 

interest (temperature+ density) 
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2) Pin some of the particles (=fix their position 

permanently)   “pinned particles” (concentration 

c) and “fluid particles” 

 

It can be shown that the structural properties of 

the fluid are not changed by the pinning if one 

takes the average over many disorder 

configurations and if the system is large 

Scheidler, Kob, Binder (2004); Krakoviack (2005, 

2010) 



Dynamics of pinned system 

•Structural properties are not changed but the dynamics is strongly 

affected by the pinning: Consider the intermediate scattering function 

(=density-density correlation function)  relaxation time (T,c) 
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 relaxation time (T,c) 

depends strongly on 

concentration c of 

pinned particles 



Model and Simulations 
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System studied: 

•binary mixture of Lennard-Jones particles: 

•N = 300 particles  

•Use parallel tempering algorithm to probe the thermodynamic properties of 

the system as a function of c (use 24 replicas) 

•up to 21010 time steps 

•between 5-20 samples 

•TMCT (c=0)  0.435 

•TK (c=0)  0.30 

Cammarota, Biroli 

PNAS (2012) 



13 

•  Kauzmann temperature: For T>TK the system has access to 

exponentially many configurations/states (neglect vibrations)                     

 configurational entropy is positive   

for T < TK there are only “few” states left  configurational entropy is zero 

 need a quantity to measure the number of states 
 

• Idea from spin glasses: Look at overlap q 

• q measures whether  two arbitrary equilibrium configurations (, ) at 

temperature T are the same or not 

 

• Reasonable definition of overlap:  q = q, (T) = N-1i,j w(ri
 () - rj

()) 
 
• q large/small: configurations ,  are similar/different 

Overlap q 
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Distribution of overlap: P(q) 

• Value of q = q, (T) = N-1i,j w(ri
 () - rj

()) depends on ,   

       q is distributed   distribution function P(q) 

 

continuous localization 

transition similar to a Lorentz 

gas 

relevant length scale is just 

the distance between pinned 

particles 
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•double peak structure at intermediate values of c  

   at low T transition between delocalized states and localized 

states seems to be discontinuous  

   coexistence between two types of states: “similar” or “different” 

 Kauzmann point 

Distribution of overlap: Low T 



Mean overlap q 

•The average of P(q) 

increases monotonically 

with c 

 

•At low temperatures q 

becomes very steep 

and seems to develop a 

singularity (=jump), i.e. 

compatible with the 

behavior expected for a 

system that undergoes 

a 1st order transition 
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<q> =  P(q) q dq 



The Kauzmann line 
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• Estimate of TK(c): skewness (T,c)  (=third moment of P(q) =0) 

• Obtain a Kauzmann 

line in the T-c plane.  

 

• extrapolation to c=0 

gives a TK(c=0) >0 

 

• extrapolation is 

compatible with 

previous estimates 

for TK in the bulk 

(from thermodynamic 

integration (Sciortino, 

Kob, Tartaglia, 

(2000)) 
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Kauzmann temperature TK 

(W. Kauzmann 1948): 

 

 

 

 

 

 
 

 

The Kauzmann Temperature (Bulk) 

Entropy of glassy liquid can be 

decomposed into vibrational part + rest 

 

       Sliq = Svib + Sc  

 

Configurational entropy Sc :                  

Sc is related to the number of      

different     liquid like configurations 

(without  vibrations); Sc seems to go     

to zero    “ideal glass” 



Entropy via thermodynamic integration 
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• Obtain Sliq from thermodynamic 

integration (starting from very high T) 

• Calculate Svib from the density of 

states of the inherent structures 

• Define  

          Sc  = Sliq - Svib  

• At low intermediate and low T Sc does 

indeed go to zero  

 We have reached the Kauzmann 

point 



Kauzmann line: 2 

20 

• Compare the c-dependence of the Kauzmann points as 

obtained from the two approaches 

• Estimate of TK (c) from 

distribution function 

P(q) and from 

thermodynamic 

integration gives 

compatible results 



Critical temperature of MCT 
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• TMCT is often obtained from fitting to T-dependence of relaxation 

times:   (T) (T-TMCT)-  

 

• Problem: 3 fit parameters 

• Alternative: Use properties of potential energy landscape 

(Broderix et al 2000, Angelani et al 2000); measure the number of 

negative eigenvalues of the saddles 



Critical temperature of MCT: 2 

22 

• At TMCT the system sees mainly local minima                

 Its inherent structure energy is equal to ethreshold 

• TMCT can be obtained with good precision and “without” fitting 



Phase diagram 
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• Phase diagram looks 

qualitatively very similar to the 

one predicted by Cammarota 

and Biroli 

• NB: For large c the TK line from 

the simulation is an artifact! No 

double peak structure in P(q), no 

convincing Sc=0 

• Dynamics slows down very quickly  upon approach of the TK line 



Summary (part 2) 
• Simulations of a simple glass former with “randomly”pinned particles  

• Relevant temperatures of the glassy liquid depend on concentration of 

pinned particles  

• Parallel tempering allows to cross the Kauzmann line TK(c) 

• At TK(c)  the order parameter (overlap) seems to make a jump like in a 

first order transition; jump height increases with decreasing T 

• For decreasing TK  c seems to go to zero  diverging length scale           

 evidence that there is indeed only one glass state even in the bulk 

• Phase diagram in qualitative agreement with RFOT predictions 
 

Reference: 

• W. Kob and L. Berthier PRL 110, 245702 (2013) 

• M. Ozawa, W. Kob, A. Ikeda, K. Miyazaki (in preparation)  
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