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Sparse sighals: what is compressed sensing?

4 Wavelet Coefficients
x 10

From 10° wavelet coefficients, keep 25.000

Most signal of interest are sparse in an appropriated basis
= Exploited for data compression (prec2000).

Why do we record a huge amount of data, and then keep
only the important bits?

Couldn’t we record only the relevant information directly?
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How does compressed sensing work?

vector of size

M measurements Image I N=nxn
= T (1
M linear operations on the vector ,
(v ¥ |
) = v \ A )
j=| nxn pixels
\ v
vector of size M The idea of compressed sensing is to

use the a-priori knowledge that the signal
Is sparse in some appropriate basis

Problem: you know y and G, how to reconstruct I?

If M<N = under-constrained system of equations
Many solutions are possible
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How does compressed sensing work?

M measurements

M linear operations on the vector

vector of size
N=nXn

A

2 A :
7 = nxn pixels
: A
\ yM ) NxN matrix
. Direct and inverse —1 w
vector of size M Wavelet transforms w
The problem to “parse vector
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y = Fx 1l
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How does compressed sensing work?

N (R non-zeros)

MxN matrix

The problem to

solve is now *Needs for a solver that finds sparse solutions
N - of an under-constrained set of equations
y — Faj

with F' = G

F=MXN matrix

e|deally works as long as M>R

eRobust to noise



State of the artin CS

. N (R non-zeros)
M { gyl = F

MxN matrix

® |ncoherent samplings (i.e.a random matrix F)

® Reconstruction by minimizing the Li norm ||Z|[1 = ) ||

Candes & Tao (2005)
Donoho and Tanner (2005)



Example: measuring a picture

One measurement (scaling product with a random pattern)

e Each measurement touches every part of the underlying signal/image



Example: measuring a picture

Many measurements (scaling product with many random patterns)
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Example: measuring a picture

Measurements

signhal



Example: measuring a picture

. From 10° points,
e Take K = 96000 incoherent measurements y = (I but only, 25.000 non

Zero

e Solve
min ||X||¢, subjectto G¥x=1y

¥ = wavelet transform

original (25k wavelets) perfect recovery



State of the art in CS

For a signal with
(I-p)N zeros
R=pN non zeros

and a random
iid matrix with

M= N

Reconstruction
impossible
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State of the art in CS

For a signal with
(I-p)N zeros
R=pN non zeros

and a random
iid matrix with

M= N

Reconstruction
impossible

0 0.2 0.4 R 0.6 0.8 1

Reconstruction limited by the Donoho-Tanner transition
for the L| norm minimization
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State of the art in CS

o For a signal with
: ] (I-p)N zeros
08l R=pN non zeros
= Hard
= 06 and a random
| | : iid matrix with
0.4 _
] L1 : M=x N
QL !
0.2 E
! asy Ppr =1
0l - ,
0 0.2 0.4 0.6 0.8 1
M
o= —
N

A different representation of the same transition



Our work

A statistical physics approach
to compressed sensing
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® The Belief Propagation algorithm
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A probabilistic approach to compressed sensing

We want to sample from this distribution:

N

P(Z|y) = % [11=p)d(z) + po(za)] || 6 (yu - ZFM)

1=1
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Solution of
the linear system




A probabilistic approach to compressed sensing

We want to sample from this distribution:

P(Z|y) = % H (1= p) (i) + po(xi)] || 6 (?/u - ZFM)

Solution of

Sparse vector .
the linear system
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solution in the large N limit as long as xX>po
if: a) ®(x)>0 vx and b) 1>p>0
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A probabilistic approach to compressed sensing

We want to sample from this distribution:

N

P(Zly) = % [11=p)d(z) + po(za)] || 6 (yu - ZFM‘)

1=1

Theorem: sampling from P(x|y) gives the correct
solution in the large N limit as long as xX>po
if: a) ®(x)>0 vx and b) 1>p>0

A 4

Sampling from P(x|y) is optimal,

(even if we do not know the correct ®(x) or the correct p)

In practice, we use a Gaussian distribution for ®(x), with mean m
and variance 0% and “learn” the best value for p,0and m.



A sketch of the proof

Consider the system constrained to be at
distances larger than D with respect to the solution

N
(D, €) /H (dxi [(1 — p)d(z;i) + po(x H (ZF“, i — Si ) (Z(.I'i—si)z = .\'D>

pu=1

1) Y(0) is infinite if ®>po (equivalently if M>R)

(just count the delta functions! N-R+M deltas versus N integrals...)

2) Y(D) is finite for any D>0

(bound by a first moment method, or “annealed” computation)



A sketch of the proof

Consider the system constrained to be at
distances larger than D with respect to the solution

N
(D, €) /H (dxi [(1— p)d(x;i) + po(a H D¢ <Z Hui(zy — 83 ) (2(1, — .qi_)'-) > .\'D)

pu=1

1) Y(0) is infinite if ®>po (equivalently if M>R)

(just count the delta functions! N-R+M deltas versus N integrals...)

2) Y(D) is finite for any D>0

(bound by a first moment method, or “annealed” computation)

If &X>po, the measure is always dominated by the solution




A sketch of the proof

Consider the system constrained to be at
distances larger than D with respect to the solution

log Y 4
N |




A probabilistic approach to compressed sensing

Probabilistic reconstruction using:
N

P(f‘g):%H[(l_p) CIZ‘@ —|—,0¢ wz H (y,uZF,uzxz)

1=1 u=1

Sampling from P(x|y) is optimal,

(even if we do not know the correct ®(x) or the correct P)

Statistical physics and information theory
tools can be readily used for

e Sampling

* Computing phase diagram

* etc etc...



The link with statistical physics
and spin glasses

N M N
P(zly) = %HP(SI%) I (?Ju — ZFMZSEZ) with P(z;) = (1 — p)o(z;) + pd(z;)
1=1 p=1 i=1
1 N 1 M N 2
P(f‘y_') — 26_ 2 i—1 108 P(#i) = 5x 2 =1 (Yn—22i=1 Fui®i)

In physics, this is called a spin glass problem
This is studied since the early 80’s



The link with statistical physics
and spin glasses

N M N
Sl 1 .
P(zly) = - [P ]]o (yu — Zmevi) with P(x;) = (1 — p)d(x;) + po(x;)
i=1 p=1 i=1
Hamiltclnian
P(f‘g) — i ~\ >icq log P(2:)— 34 Zﬁil(yu—ZL \
Z R S e . -

In physics, this is called a spin glass problem
This is studied since the early 80’s



The link with statistical physics
and spin glasses

Pt - LT[ Pl T <y 5 F) with P(z;) = (1 p)3(z) + po(a:)

Hamiltonian
Partition sum l
\ 1 < 1M N o Sa
P(z]y) = E 2 24 Zuzl( Zz 1 Fl wz)

==

In physics, this is called a spin glass problem
This is studied since the early 80’s



The link with statistical physics
and spin glasses

pa1p = TP TT 0 (= 3 B ) wih Plo) = (0= 93+ o)
Disordered
Interaction

(3

1 N . L M N £ & )2
P(f‘g) - —e > iz log P(zi)—35x Zuzl(y,u_zizl‘w)

P i,
« _ e

.
o, Wi,

In physics, this is called a spin glass problem
This is studied since the early 80’s



The link with statistical physics
and spin glasses

Mean field
long-range interactions

In physics, this is called a spin glass problem
This is studied since the early 80’s



Our work

A statistical physics approach
to compressed sensing

® A probabilistic approach to reconstruction
® The Belief Propagation algorithm

® Seeded measurements matrices



Our work

A statistical physics approach
to compressed sensing

® A probabilistic approach to reconstruction
® The Belief Propagation algorithm

® Seeded measurements matrices

Statistical Physics approach (FK et al.)
+rigorous (Donoho, Montanari et al.)
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N

P = - [0~ ) d(o) + pota Ha(yu ZF )

1=1
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How to sample?

N

P(zly) = - [0 =p)d(z) + po(za)] || 6 (?/u - Z Fu:v)

1=1

Solution number |:using Markov-Chain Monte-Carlo

Very long!

Used in the litterature for ultrasound imaging
(cf : Quinsac et al, 201 1...)



How to sample?

N

P(zZ|y) = % [ =p)o(zi) + pp(zi)] || 6 (?/u - ZFM)

1=1

Solution number |:using Markov-Chain Monte-Carlo

Used in the litterature for ultrasound imaging
(cf : Quinsac et al, 201 1...)



How to sample?

1 N

M N
P@7) = [ 10— p) () + pola)] ] (y -y F:c)
1=1 p=1 1=1
Solution number 2: estimate the marginal probabilities with a
message passing algorithm

If we do it correctly, then the solution is given by a; = /dePZ(afz)a:z



How to sample?

N

M N
L 1
P@7) = [ 10— p) () + pola)] ] (y -y Fa:)
i=1 p=1 i=1
Solution number 2: estimate the marginal probabilities with a
message passing algorithm

If we do it correctly, then the solution is given by a; = /dszz(xz)ajz

In this model, this can be done exactly (for large N,M)
using an approach known as:

|. Thouless-Anderson-Parlmer, or Cavity method in physics
Bethe-Peierls, Onsager (’35) Parisi and Mezard ('02)

2. Belief propagation in artificial intelligence (pearl,’s2)
3. Sum-product in coding theory (Gallager, '60)
3. Approximate Message Passing in compressed sensing

Rangan, Montanari...
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How does BP works?

Gibbs free energy approach: logZ = max, faives {P(T)})

With  famss ({P(@)}) = —(log P(T17)) p(z) — / 4P (i) log P(%)

: . . Not correct
Mean-Field = P(@) = H Pi(@:) +Convergence problems

Belief-Propagation= P(%) = H‘-P = v
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Gibbs free energy approach: logZ = max, faives {P(T)})

With S ({P@)}) =~ {log P@7)pis) ~ [ dP(@)log P(@)
Not corr
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o TIP3 ) (asymptotically)
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v with random matrices




How does BP works?

f (APi(x;), Pij(wi, xj)})

Belief-Propagation D
equations




The Belief-Propagation algorithm

Iterate these variables

1
gt — a
Z M Z/; A, +~®
e - 3t s (0) 55 5
¢ - p / a\Yi 5V ;
Iz Au+7/g) M " Ay 4+
olttl) — ZF f (U,(tﬂ) V_(t+1)) (Y — O‘L)) Z 0fa (U(t+1) V(t+1)>
vk . ned a 17 » Va A —I— ’Y(t) N aY
7(t+1) B N Z fc(Ui(t+1)a Vi(t+1))

Using these functions:

1
PY  v2/2014x)) p ¥2/(2(14+X))
(X,Y) = 1—
J ( ) [(1+X)3/26 Pt (1+X)1/26
2 —1
LX) = P v¥earx) (1o Y L— s P Yeu+X)| (X, Y)?
et (1+ X)3/ 1+ X P x)e al

And finally at the end:
<sz> — fa (Uu ‘/7,)



The Belief-Propagation algorithm

|terate these variables

1
Ui(t—i—l) _ o
M zu: A, +~®
(t)

— 1
Vi(tﬂ) _ I Z_(yu ;) tf, (Ui(t),‘/;(t)) @
Zu,: A+ M;Auﬂ(“

()
(t+1) _ E : , (t+1) y (t+1)y (Y —ap’) 1 Jfa ( (t41) (t—l—l))
R Pt ol U V) = 8 N2 gy (U

7

1
(t+1) __ _2 : U(t+1) V(t+1)
’7 .7\7 : fC( 1 RS )

Using these functions:

~1
fal 10 = [(1 er)i)f”/2 6Y2/(2(1+X))] [1 N (1+ §()1/2 €Y2/(2(1+X))]
~1
f (X Y) — P 6y2/(2(1+X)) 1+ Y? 1y P e1/2/(2(1+X)) _f (X Y)2
o (1+ X)3/2 1+ X (1+ X)1/2 a4,

And finally at the end:

(i) = fa (Ui, Vi)



The Belief-Propagation algorithm

Iterate these variables

(t+1) _ o 1
Uy 7 = Vi ZM: A, +~® .
s al®) Simple
D F. Yp — Qp : (t), (t) .
@ 2wy o () 3 2%, o algebraic
() .
o) = 3 FufUD V) - (Z“ f;*ét)) = Z ?,f; (U ) operations!
e = & 3 A )
Using these functions: \
,OY 2 P 2 -1

2 —1
B P Y2/(2(1+X Y P Y2/(2(14+X 2
fC(X7Y) — [(1_|_X)3/26 s ) (1—|— 1—|—X)] [1 _p—I_ (1_|_X)1/26 [ ))] _fa(va)

And finally at the end:

(z:) = fo (Ui, Vi) Complexity is O(N%Xconvergence time)



The Belief-Propagation algorithm:
How to learn the parameter in the Prior?

(1) = ——_—(@=7)*/(20")

V2102
Compute the Bethe free-entropy r =10gz using the BP

messages.
Compute the gradient <

Three parameters /7,0

OF OF OF
Op’ OT’ Oo

and update parameters to maximize F at each step of
the BP iteration

Learning makes the algorithm faster
(equivalent to Expectation-Maximization)



Analysis of the algorithm

The performance of the algorithm for a given distribution
of signals can be analyzed using a method knows as density
evolution (coding theory) or replica method (physics)

2(y) = | [ doiPlaly F(7) = ~log 2(7)
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Averaging over a signal distributiion (ex: Gauss Bernoulli)

F . iid Gaussian, variance 1/N
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1=1



Analysis of the algorithm

The performance of the algorithm for a given distribution
of signals can be analyzed using a method knows as density
evolution (coding theory) or replica method (physics)

2(y) = | [ doiPlaly F(7) = ~log 2(7)

Averaging over a signal distributiion (ex: Gauss Bernoulli)

F . iid Gaussian, variance 1/N

Yy = ZFM@x? where z? are iid distributed from (1 — pg)d(z}) + podo(x;)
1=1

Z" —1
log Z = lim
n—0 n

Replica method




Analysis of the algorithm

Averaging over a signal distributiion (ex: Gauss Bernoulli)

T iid Gaussian, variance 1/N

Z 7 where z¥ are iid distributed from (1 — po)d(z?) + podo(z;)

qg—2m+p+A, 1 QO .4
Q, — — log (A, +Q — — — =
D Qqum Z A, +Q—gq QN;Og( pT q) + mim +

+/Dz / dzo [(1 — po)d(zo) + pogo(zo)]log {/dm 6_%x2+mmo+zﬁx (1 —p)d(z) + P¢(CE‘)]}

Order parameters:

Q=x 16l a=g @’ m=g > el

1 1

Mean square error:  E = i3 S ((23) —a9)" = q — 2m + ((29)?)o



Analysis of the algorithm

Averaging over a signal distributiion (ex: Gauss Bernoulli)

T . iid Gaussian, variance 1/N
= 3" FLua? where 20 are iid distributed from (1 — po)3(z%) + podo ()
i=1
qg—2m+p+ A 1 QQ ) 40
(Qq,qu, = Z AM_I_Q_Q“_ﬁ;bg(Apﬂ-Q—q)—FT—mm—k?

+/DZ/dafo (1 = po)d(zo) + poPo(xo)|log {/d$ o= F et bnaro 2/ (1 —=p)o(x) + ,0¢($)]}

Order parameters:

1 5 1 5
Q:NZ<ZC@> C]:NZ<332> Z-T i)

| Mean square error:  E=—_> ({a) — w?) =q—2m+ <( $)%)o



Computing the free entropy

Example with po=0.4, and ®¢a Gaussian distribution with zero mean and unit variance

0.25 [ B B B S B B L R B S B B B I B R B B R
'-‘ ceee X=0.62
—— ®=0.6
oY |
S
N
20
S
] ' 1 2
/\0'15 E:_E (<$z>_x?/0)
Q N 4
N——" 7
-
0.1 B
0 0.05 0.1 0.15 0.2 0.25 0.3

mean square error



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance

O°25|""l"''|""|""|""|""
'-‘ - ®=0.62
' —— ®=0.6
N\ |
N0
N
20
o
| |
| ' 1 2
AO.15 E:_E :(<$z>—$?)
Sa N ~
N——" 7
-
0.1+ B
0 0.05 0.1 0.15 0.2 0.25 0.3

mean square error

* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance

0‘25 [ ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! !
- &=0.62
e X =0.6
N\ |
N
20
Q
r—
| ' 1
N 2
50 B= 3 (o) - 9)
- N
N—" 7
-
0.1} i
0 0.05 0.1 0.15 0.2 0.25 0.3

mean square error

* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal
* For 6<0.58, a secondary maximum appears (meta-stable state): spinodal point



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance

2.2 o rn—"—r+—+—+-—-+—1r—+—"v—+—r——r—rr+——1——
x=0.62
x=0.6
(S ! x=0.58
EEL 0.2 F «=0.56
N
20
< ' _
| [ ' 1
0.15 | ] o 0 2
= L E=5 ) () —al)
= | | ¢
0.1 |

0 0.05 0.1 0.15 0.2 0.25 0.3
mean square error

* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal
* For 6<0.58, a secondary maximum appears (meta-stable state): spinodal point

* A steepest ascent dynamics starting from large E would reach the signal for x>0.58, but
would stay block in the meta-stable state for ®<0.58, even if the true equilibrium is at E=0.



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance

2.2 o rn—"—r+—+—+-—-+—1r—+—"v—+—r——r—rr+——1——
x=0.62
x=0.6
O ! x=0.58
EEL 0.2 F «=0.56
N
20
< ' _
| [ ' 1
0.15 | ] o 0 2
= L E=5 ) () —al)
s | | ¢
0.1 |

0 0.05 0.1 0.15 0.2 0.25 0.3
mean square error

* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal
* For 6<0.58, a secondary maximum appears (meta-stable state): spinodal point
* A steepest ascent dynamics starting from large E would reach the signal for x>0.58, but

would stay block in the meta-stable state for ®<0.58, even if the true equilibrium is at E=0.
e Similarity with supercooled liquids



Computing the Phase Diagram
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Computing the Phase Diagram
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A steepest ascent of the free entropy allows

a perfect reconstruction until the spinodal line.

This is more efficient than L1-minimization



Thermodynamic potential BP convergence time
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Spinodal transition
(supercooled limit)



0.2

Trying different type of signals

The limit depends on the type of signal
(while the Donoho-Tanner is universal)
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Trying different type of signals

The limit depends on the type of signal
(while the Donoho-Tanner is universal)
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BP is Robust to noise
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A more complex signal

Shepp-Logan phantom, in the Haar-wavelet representation

x=0.5 x=0.4 x=0.3 x=0.2 x=0.1



BP + probabilistic approach

® Efficient and fast
® Robust to noise

® Very flexible (more information can be put in the prior)

| N M N
P(Z|y) = 7 H (1 —p)d(x;) + po(x;) H ( Z Fm%‘)
i=1

1=1 pu=1



Our work

A statistical physics approach
to compressed sensing

® A probabilistic approach to reconstruction
® The Belief Propagation algorithm

® Seeded measurements matrices
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This is good, but not good enough
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This is good, but not good enough
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The dynamics is stuck in a metastable state, just as
a liquid cooled too fast remains in a supercooled
liquid state instead of crystalizing



This is good, but not good enough

How to pass the

spinodal point? 025
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The dynamics is stuck in a metastable state, just as
a liquid cooled too fast remains in a supercooled
liquid state instead of crystalizing



This is good, but not good enough

How to pass the

spinodal point? 025

By nucleation!
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The dynamics is stuck in a metastable state, just as
a liquid cooled too fast remains in a supercooled
liquid state instead of crystalizing
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M : unit coupling

: coupling /

: coupling />

: no coupling (null elements)
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Block | has a large value of “gg. it coupling
M such that the solution

e . : coupling /
arise in this block...

: coupling />
: no coupling (null elements)
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Block | has a large value of g. it coupling

M such that the solution
arise in this block...

. and then propagate in
the whole system!
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Example with po=0.4, and @
a Gaussian distribution with 0 mean and unit variance
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A signal with &=0.5 and p=0.4
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Blue is the true signal reconstructed by s-BP

Red is the signal found by L
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Phase Diagrams

\ seeded BP
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A more interesting example

Shepp-Logan phantom, in the Haar-wavelet representation



A EVEN more interesting example

x=p=~0.24

BEP

s-BP

x=0.6 x=0.5 x=0.4

The Lena picture in the Haar-wavelet representation



Analytical results for seeding matrices

*One can repeat the replica analysis for the seeded
matrices, and the performance of the algorithm can be

studied analytically, leading to &X>p in the large N limit:

*These results have been recently confirmed by a

rigorous analysis by Donoho, Montanari and Javanmard
(arXiv:1112.0708)

*There is a lot of liberty in the design of the seeded
matrices.



Analytical results for seeding matrices

*One can repeat the replica analysis for the seeded
matrices, and the performance of the algorithm can be

studied analytically, leading to &X>p in the large N limit:

*These results have been recently confirmed by a

rigorous analysis by Donoho, Montanari and Javanmard
(arXiv:1112.0708)

*There is a lot of liberty in the design of the seeded

matrices.

Asymptotically optimal measurements



Conclusions...

® A probabilistic approach to reconstruction
® The Belief Propagation algorithm

® Seeded measurements matrices

...and perspectives:

® More information in the prior?
® Other matrix with asymptotic measurements?
® (Calibration noise, additive noise, quasi-sparsity, etc... ?

® Applications !
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Noise sensitivity

CS with Gauss-Bernoulli (py=0.2) noisy (o —10'4) signals
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Noise sensitivity

CS with Gauss-Bernoulli (py=0.4) noisy signals
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Flow in the space

0.07

Gaussian Signal, Gaussian inference, rho=0.2 no spinodal
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Gaussian Signal, Gaussian inference, rho=0.33 with spinodal
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Binary Signal, Gaussian inference, rho

Binary Signal, Gaussian inference, rho=0.15 no spinodal

0.25 with spinodal
A7 777 7 -

\\\\\\\\\\

s

S A AL
S A AL
S AAS LSS
VA e eed
LSS LSS
A S S
S S
Ve eaard
A
AL A
VYoo aad
LA
S AL
AL S A
S LA
S AL
VYl sl
VAl

>

A A

e
s
/S
/S
v
s

s

S ST
S
AN NN NN NN N
AN N NN NN NS
AN N N N NN NN

/
/
NSO NN NS

7

/

/

v
AN A A NS
AN NN N NS
AN NN NN .
ANANANAN NN Y N

o
/A
/A
/A
/Y
/S
/A
/A
/A
/A
/S
/S
/A
/A
/S
/S
e
v
/s

\ AN N N NG NG

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
A
\
\
\
\
\
\

AV N N N N N T N,

\ AN N NG N N gt

VAV AL L L L L L L A e

‘/‘If“‘\l“\\\\\\\\\\\\\\\“\*\
‘/‘I""TA\"‘I‘\‘\\\\\\\‘\\\‘\\A\'
‘/f‘lf‘l‘l‘\l‘\‘\\\\\\\‘\\‘\l‘l
e et e
e et e e e —

Tt e i e e

N e N N N N N N N N o
////f/////////////////////////ff‘\\\\\\\
ffffffff S N G L NN W

ffffffffffffff /f////////////////\\\kkk
fffffffffffffffff f///////////// \UN///
ffffffffffffffffffff SN N N N N ﬂ\lw//
rrrrrrrrrrrrrrrrrrrrrrrrrrr L N N NN / \ - /'N;)

~J

TN T T TR T R T TN TN T T TR N T T T T e
e e T T T T TR TR TR IR R R R R R R R R R R RN R R N N N Y

PR N N N N N N N N N
TR R R R R RN RN R R R R R R R R R R N

T 7]
S S A
LSS
S

S S
Ve aa

S S LA
S A A

77 A7 77
S A A A
S A A
S A A S
Y ad

S LS

v

\
\
\
\
\
\
\
\
\
N
N\
N\
N
N

NN NN NN\
NSO N NN NN
OSSO NN NN

A
Vo
\ O\
N\
N\
A\
A
AR
N\
A
N\
NN
NN
N\
NN
N

NN NN U RN RN N NN NN
NONNNRRR YN RN N N Y

|
\
\
\
\
\
\
\
\
\
\
\
\
N
\
AN
N
N

S S S SO N NN NN\

NN NN NN NN NN NN NN

P e e ke
AN
N

!
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
N\
N\
AN
N

s e SOSONSNONON NON NN
NN N NN N N
///// T TSSOSO NN\

Vol
Vo
Vo
Vo
VA
Voo
Vo
\ o\
\
\ o\
\ o\
v
v\
\ O\
N
\ O\
N\
N\
N\
N\
NN\
NN
N

NANNNNNN
NANNANNNN
AN SN

\
\

—_— -

AN U U U
NN N N N N U U B
O NN N U U U B A A

AN N R O R N R N N
B A N R R NS

>\
N
N\
N\
\
TR R R R R R RN R R R R R R R RO R RO R R R Y
S NN
NN NN
0.05

/
/
/
:;//,_h\\\\‘\
o
P
J ST
ST
S

/

/

/
[/l

- -~ ~—

/////o—k’\

fffffffffffffffffffffffffffffffff l/d//|v

0.15

0.1

0.05

0.2

0.15

0.1



