

A statistical physics approach to compressed sensing

Florent Krzakala ESPCI, PCT and Gulliver CNRS

in collaboration with

Marc Mézard & François Sausset (LPTMS)

Yifan Sun (ESPCI) and Lenka Zdeborová (IPhT Saclay)

Who are we? What do we do?

Interface between statistical physics,

optimization, information theory and algorithms

Florent Krzakala (ESPCI, Paris)

Lenka Zdeborová (CNRS, Saclay)

Marc Mézard (CNRS, Orsay)

A statistical physics approach to compressed sensing

Florent Krzakala ESPCI, PCT and Gulliver CNRS

in collaboration with

Marc Mézard & François Sausset (LPTMS)

Yifan Sun (ESPCI) and Lenka Zdeborova (IPhT Saclay)

Sparse signals: what is compressed sensing?

From 10⁶ wavelet coefficients, keep 25.000

Most signal of interest are sparse in an appropriated basis ⇒Exploited for data compression (JPEG2000).

Why do we record a huge amount of data, and then keep only the important bits?

Couldn't we record only the relevant information directly?

M measurements

M linear operations on the vector

M measurements

M linear operations on the vector

vector of size M

M measurements

M linear operations on the vector

$$\vec{y} = \begin{pmatrix} y^1 \\ \cdot \\ \cdot \\ \cdot \\ y^M \end{pmatrix}$$

vector of size M

Problem: you know y and G, how to reconstruct I?

M measurements

M linear operations on the vector

$$\vec{y} = \begin{pmatrix} y^1 \\ \cdot \\ \cdot \\ \cdot \\ y^M \end{pmatrix}$$

vector of size M

Problem: you know y and G, how to reconstruct I?

If M=N \Leftrightarrow easy, just use: $I=G^{-1}y$

M measurements

M linear operations on the vector

$$\vec{y} = \begin{pmatrix} y^1 \\ \cdot \\ \cdot \\ \cdot \\ y^M \end{pmatrix}$$

vector of size M

Problem: you know y and G, how to reconstruct I?

If M<N w under-constrained system of equations

Many solutions are possible

M measurements

M linear operations on the vector

$$ec{y} = \left(egin{array}{c} y^1 \\ \cdot \\ \cdot \\ \cdot \\ y^M \end{array}
ight)$$

vector of size M

Image I

vector of size

 $N=n\times n$

The idea of compressed sensing is to use the a-priori knowledge that the signal is sparse in <u>some</u> appropriate basis

Problem: you know y and G, how to reconstruct I?

If M<N under-constrained system of equations

Many solutions are possible

M measurements

=

M linear operations on the vector

$$ec{y} = \left(egin{array}{c} y^1 \\ \cdot \\ \cdot \\ \cdot \\ y^M \end{array}
ight)$$

vector of size M

on the vector

GI

AxN matrix

Image I

vector of size

 $N=n\times n$

nxn pixels

M measurements

M linear operations on the vector

$$ec{y} = \left(egin{array}{c} y^1 \\ \cdot \\ \cdot \\ \cdot \\ y^M \end{array}
ight)$$

vector of size M

Image I

vector of size

 $N=n\times n$

M measurements

M linear operations on the vector

vector of size M

Image I

nxn pixels

Sparse vector

of size $N=n\times n$

vector of size

 $N=n\times n$

The problem to solve is now

$$\vec{y} = F\vec{x}$$

with $F=G\psi$

F=M×N matrix

$$M \left\{ \begin{bmatrix} y \\ \end{bmatrix} = \begin{bmatrix} F \\ \end{bmatrix} \right\} N \text{ (R non-zeros)}$$

$$M \times N \text{ matrix}$$

The problem to solve is now

$$\vec{y} = F\vec{x}$$

with
$$F=G\psi$$

F=M×N matrix

- Needs for a solver that finds sparse solutions of an under-constrained set of equations
- Ideally works as long as M>R
- Robust to noise

- Incoherent samplings (i.e. a random matrix F)
- Reconstruction by minimizing the L_I norm $||\vec{x}||_{L1} = \sum_i |x_i|$

Candès & Tao (2005)
Donoho and Tanner (2005)

One measurement (scaling product with a random pattern)

$$y_k = \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle$$

Each measurement touches every part of the underlying signal/image

Many measurements (scaling product with many random patterns)

• Take K = 96000 incoherent measurements $y = \mathbf{GI}$

From 10⁶ points, but only, 25.000 non zero

Solve

min
$$\|\mathbf{x}\|_{\ell_1}$$
 subject to $\mathbf{G}\mathbf{\Psi}\mathbf{x}=\mathbf{y}$

 Ψ = wavelet transform

original (25k wavelets)

perfect recovery

For a signal with $(1-\rho)N$ zeros $R=\rho N$ non zeros

and a random iid matrix with $M = \alpha N$

For a signal with $(1-\rho)N$ zeros $R=\rho N$ non zeros

and a random iid matrix with $M = \alpha N$

Reconstruction limited by the Donoho-Tanner transition for the $L_{\rm I}$ norm minimization

For a signal with $(1-\rho)N$ zeros $R=\rho N$ non zeros

and a random iid matrix with $M = \alpha N$

For a signal with
$$(I-\rho)N$$
 zeros $R=\rho N$ non zeros

and a random iid matrix with $M = \alpha N$

A different representation of the same transition

Our work

A statistical physics approach to compressed sensing

- A probabilistic approach to reconstruction
- The Belief Propagation algorithm
- Seeded measurements matrices

Our work

A statistical physics approach to compressed sensing

- A probabilistic approach to reconstruction
- The Belief Propagation algorithm
- Seeded measurements matrices

We want to sample from this distribution:

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

We want to sample from this distribution:

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Solution of the linear system

We want to sample from this distribution:

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Sparse vector

Solution of the linear system

We want to sample from this distribution:

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Theorem: sampling from P(x|y) gives the correct solution in the large N limit as long as $\alpha > \rho_0$ if: a) $\Phi(x)>0 \ \forall x$ and b) $I>\rho>0$

We want to sample from this distribution:

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Theorem: sampling from P(x|y) gives the correct solution in the large N limit as long as $\alpha > \rho_0$ if: a) $\Phi(x)>0 \ \forall x$ and b) $I>\rho>0$

Sampling from P(x|y) is optimal,

(even if we do not know the correct $\Phi(x)$ or the correct ρ)

We want to sample from this distribution:

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Theorem: sampling from P(x|y) gives the correct solution in the large N limit as long as $\alpha > \rho_0$ if: a) $\Phi(x)>0 \ \forall x$ and b) $1>\rho>0$

Sampling from P(x|y) is optimal,

(even if we do not know the correct $\Phi(x)$ or the correct ρ)

In practice, we use a Gaussian distribution for $\Phi(x)$, with mean m and variance σ^2 , and "learn" the best value for ρ , σ and m.

A sketch of the proof

Consider the system constrained to be at distances larger than D with respect to the solution

$$Y(D, \epsilon) = \int \prod_{i=1}^{N} (dx_i \ [(1 - \rho)\delta(x_i) + \rho\phi(x_i)]) \prod_{\mu=1}^{M} \delta_{\epsilon} \left(\sum_{i} F_{\mu i}(x_i - s_i) \right) \mathbb{I} \left(\sum_{i=1}^{N} (x_i - s_i)^2 > ND \right)$$

- I) Y(0) is infinite if $\alpha > \rho_0$ (equivalently if M>R) (just count the delta functions! N-R+M deltas versus N integrals...)
- 2) Y(D) is finite for any D>0 (bound by a first moment method, or "annealed" computation)

A sketch of the proof

Consider the system constrained to be at distances larger than D with respect to the solution

$$Y(D, \epsilon) = \int \prod_{i=1}^{N} \left(dx_i \ \left[(1 - \rho) \delta(x_i) + \rho \phi(x_i) \right] \right) \prod_{\mu=1}^{M} \delta_{\epsilon} \left(\sum_{i} F_{\mu i} (x_i - s_i) \right) \mathbb{I} \left(\sum_{i=1}^{N} (x_i - s_i)^2 > ND \right)$$

- I) Y(0) is infinite if $\alpha > \rho_0$ (equivalently if M>R) (just count the delta functions! N-R+M deltas versus N integrals...)
- 2) Y(D) is finite for any D>0 (bound by a first moment method, or "annealed" computation)

If $\alpha > \rho_0$, the measure is always dominated by the solution

A sketch of the proof

Consider the system constrained to be at distances larger than D with respect to the solution

$$Y(D, \epsilon) = \int \prod_{i=1}^{N} (dx_i \ [(1 - \rho)\delta(x_i) + \rho\phi(x_i)]) \prod_{\mu=1}^{M} \delta_{\epsilon} \left(\sum_{i=1}^{N} F_{\mu i}(x_i - s_i) \right) \mathbb{I} \left(\sum_{i=1}^{N} (x_i - s_i)^2 > ND \right)$$

A probabilistic approach to compressed sensing

Probabilistic reconstruction using:

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Sampling from P(x|y) is optimal,

(even if we do not know the correct $\Phi(x)$ or the correct ρ)

Statistical physics and information theory tools can be readily used for

- Sampling
- Computing phase diagram
- etc etc...

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} P(x_i) \prod_{\mu=1}^{M} \delta \left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i \right) \text{ with } P(x_i) = (1-\rho) \delta(x_i) + \rho \phi(x_i)$$

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} e^{-\sum_{i=1}^{N} \log P(x_i) - \frac{1}{2\Delta} \sum_{\mu=1}^{M} (y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i)^2}$$

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} P(x_i) \prod_{\mu=1}^{M} \delta \left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i \right) \text{ with } P(x_i) = (1 - \rho) \delta(x_i) + \rho \phi(x_i)$$

Hamiltonian

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \left(-\sum_{i=1}^{N} \log P(x_i) - \frac{1}{2\Delta} \sum_{\mu=1}^{M} (y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i)^2 \right)$$

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} P(x_i) \prod_{\mu=1}^{M} \delta \left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i \right) \text{ with } P(x_i) = (1-\rho) \delta(x_i) + \rho \phi(x_i)$$

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} P(x_i) \prod_{\mu=1}^{M} \delta \left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i \right) \text{ with } P(x_i) = (1-\rho) \delta(x_i) + \rho \phi(x_i)$$

Disordered interaction

$$P(\vec{x}|\vec{y}) = \frac{1}{Z}e^{-\sum_{i=1}^{N}\log P(x_i) - \frac{1}{2\Delta}\sum_{\mu=1}^{M}(y_{\mu} - \sum_{i=1}^{N}F_{\mu i}x_i)^2}$$

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} P(x_i) \prod_{\mu=1}^{M} \delta \left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i \right) \text{ with } P(x_i) = (1 - \rho) \delta(x_i) + \rho \phi(x_i)$$

Mean-field

long-range interactions

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} e^{-\sum_{i=1}^{N} \log P(x_i) - \frac{1}{2\Delta} \sum_{\mu=1}^{M} \sum_{i=1}^{M} F_{\mu i} x_i)^2}$$

Our work

A statistical physics approach to compressed sensing

- A probabilistic approach to reconstruction
- The Belief Propagation algorithm
- Seeded measurements matrices

Our work

A statistical physics approach to compressed sensing

- A probabilistic approach to reconstruction
- The Belief Propagation algorithm
- Seeded measurements matrices

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Solution number I:using Markov-Chain Monte-Carlo

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Solution number I:using Markov-Chain Monte-Carlo

Used in the litterature for ultrasound imaging (cf : Quinsac et al, 2011...)

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Solution number I:using Markov-Chain Monte-Carlo

Very long!

Used in the litterature for ultrasound imaging (cf : Quinsac et al, 2011...)

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Solution number I:using Markov-Chain Monte-Carlo

Used in the litterature for ultrasound imaging (cf : Quinsac et al, 2011...)

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Solution number 2: estimate the marginal probabilities with a message passing algorithm

If we do it correctly, then the solution is given by $a_i = \int dx_i P_i(x_i) x_i$

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Solution number 2: estimate the marginal probabilities with a message passing algorithm

If we do it correctly, then the solution is given by $a_i = \int dx_i P_i(x_i) x_i$

In this model, this can be done exactly (for large N,M) using an approach known as:

- I. Thouless-Anderson-Parlmer, or Cavity method in physics Bethe-Peierls, Onsager ('35) Parisi and Mezard ('02)
- 2. Belief propagation in artificial intelligence (Pearl, '82)
- 3. Sum-product in coding theory (Gallager, '60)
- 3. Approximate Message Passing in compressed sensing Rangan, Montanari...

Gibbs free energy approach: $\log Z = \max_{\{\mathcal{P}(\vec{x})\}} f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right)$

With
$$f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right) = -\langle \log P(\vec{x}|\vec{y})\rangle_{\mathcal{P}(\vec{x})} - \int d\vec{x}\mathcal{P}(\vec{x})\log \mathcal{P}(\vec{x})$$

Gibbs free energy approach: $\log Z = \max_{\{\mathcal{P}(\vec{x})\}} f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right)$

With
$$f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right) = -\langle \log P(\vec{x}|\vec{y})\rangle_{\mathcal{P}(\vec{x})} - \int d\vec{x}\mathcal{P}(\vec{x})\log \mathcal{P}(\vec{x})$$

Mean-Field
$$\Rightarrow$$
 $\mathcal{P}(\vec{x}) = \prod_{i} \mathcal{P}_{i}(\vec{x}_{i})$

Gibbs free energy approach: $\log Z = \max_{\{\mathcal{P}(\vec{x})\}} f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right)$

With
$$f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right) = -\langle \log P(\vec{x}|\vec{y})\rangle_{\mathcal{P}(\vec{x})} - \int d\vec{x}\mathcal{P}(\vec{x})\log \mathcal{P}(\vec{x})$$

Mean-Field
$$\Rightarrow$$
 $\mathcal{P}(\vec{x}) = \prod_{i} \mathcal{P}_{i}(\vec{x}_{i})$

Not correct +Convergence problems

Gibbs free energy approach: $\log Z = \max_{\{\mathcal{P}(\vec{x})\}} f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right)$

With
$$f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right) = -\langle \log P(\vec{x}|\vec{y})\rangle_{\mathcal{P}(\vec{x})} - \int d\vec{x}\mathcal{P}(\vec{x})\log \mathcal{P}(\vec{x})$$

Mean-Field
$$\Rightarrow$$
 $\mathcal{P}(\vec{x}) = \prod_{i} \mathcal{P}_{i}(\vec{x}_{i})$

Not correct +Convergence problems

Belief-Propagation
$$\Rightarrow \mathcal{P}(\vec{x}) = \frac{\prod_{ij} \mathcal{P}_{ij}(\vec{x}_i, \vec{x}_j)}{\prod_i \mathcal{P}_i(\vec{x}_i)^{M-1}}$$

Gibbs free energy approach: $\log Z = \max_{\{\mathcal{P}(\vec{x})\}} f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right)$

With
$$f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right) = -\langle \log P(\vec{x}|\vec{y})\rangle_{\mathcal{P}(\vec{x})} - \int d\vec{x}\mathcal{P}(\vec{x})\log \mathcal{P}(\vec{x})$$

Mean-Field
$$\Rightarrow$$
 $\mathcal{P}(\vec{x}) = \prod_{i} \mathcal{P}_{i}(\vec{x}_{i})$

Not correct +Convergence problems

Belief-Propagation
$$\Rightarrow \mathcal{P}(\vec{x}) = \frac{\prod_{ij} \mathcal{P}_{ij}(\vec{x}_i, \vec{x}_j)}{\prod_i \mathcal{P}_i(\vec{x}_i)^{M-1}}$$

(asymptotically)
exact in CS
with random matrices

Gibbs free energy approach: $\log Z = \max_{\{\mathcal{P}(\vec{x})\}} f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right)$

With
$$f_{Gibbs}\left(\{\mathcal{P}(\vec{x})\}\right) = -\langle \log P(\vec{x}|\vec{y})\rangle_{\mathcal{P}(\vec{x})} - \int d\vec{x}\mathcal{P}(\vec{x})\log \mathcal{P}(\vec{x})$$

Mean-Field
$$\Rightarrow$$
 $\mathcal{P}(\vec{x}) = \prod_{i} \mathcal{P}_{i}(\vec{x}_{i})$

Not correct +Convergence problems

Belief-Propagation
$$\Rightarrow \mathcal{P}(\vec{x}) = \frac{\prod_{ij} \mathcal{P}_{ij}(\vec{x}_i, \vec{x}_j)}{\prod_i \mathcal{P}_i(\vec{x}_i)^{M-1}}$$

(asymptotically)
exact in CS
with random matrices

Simplification thanks to the large connectivity limit: Projection on first two moments is enough:

$$f(\{\mathcal{P}_i(x_i), \mathcal{P}_{ij}(x_i, x_j)\})$$
 $f(\{\langle x_i \rangle, \langle x_i^2 \rangle\})$

Belief-Propagation equations

$$\begin{cases} \langle x_i \rangle^{t+1} = \langle x_i \rangle^t + \frac{\partial f}{\partial \langle x_i \rangle} \\ \langle x_i^2 \rangle^{t+1} = \langle x_i^2 \rangle^t + \frac{\partial f}{\partial \langle x_i^2 \rangle} \end{cases}$$

The Belief-Propagation algorithm

Iterate these variables

$$\begin{split} U_{i}^{(t+1)} &= \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu} + \gamma^{(t)}} \\ V_{i}^{(t+1)} &= \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \alpha_{\mu}^{(t)})}{\Delta_{\mu} + \gamma_{\mu}^{(t)}} + f_{a} \left(U_{i}^{(t)}, V_{i}^{(t)} \right) \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu} + \gamma^{(t)}} \\ \alpha_{\mu}^{(t+1)} &= \sum_{i} F_{\mu i} f_{a} (U_{i}^{(t+1)}, V_{i}^{(t+1)}) - \frac{(y_{\mu} - \alpha_{\mu}^{(t)})}{\Delta_{\mu} + \gamma^{(t)}} \frac{1}{N} \sum_{i} \frac{\partial f_{a}}{\partial Y} \left(U_{i}^{(t+1)}, V_{i}^{(t+1)} \right) \\ \gamma^{(t+1)} &= \frac{1}{N} \sum_{i} f_{c} (U_{i}^{(t+1)}, V_{i}^{(t+1)}) \end{split}$$

Using these functions:

$$f_a(X,Y) = \left[\frac{\rho Y}{(1+X)^{3/2}} e^{Y^2/(2(1+X))}\right] \left[1 - \rho + \frac{\rho}{(1+X)^{1/2}} e^{Y^2/(2(1+X))}\right]^{-1}$$

$$f_c(X,Y) = \left[\frac{\rho}{(1+X)^{3/2}} e^{Y^2/(2(1+X))} \left(1 + \frac{Y^2}{1+X}\right)\right] \left[1 - \rho + \frac{\rho}{(1+X)^{1/2}} e^{Y^2/(2(1+X))}\right]^{-1} - f_a(X,Y)^2$$

And finally at the end:

$$\langle x_i \rangle = f_a \left(U_i, V_i \right)$$

The Belief-Propagation algorithm

Iterate these variables

$$U_{i}^{(t+1)} = \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu} + \gamma^{(t)}}$$

$$V_{i}^{(t+1)} = \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \alpha_{\mu}^{(t)})}{\Delta_{\mu} + \gamma_{\mu}^{(t)}} + f_{a} \left(U_{i}^{(t)}, V_{i}^{(t)}\right) \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu} + \gamma^{(t)}}$$

$$\alpha_{\mu}^{(t+1)} = \sum_{i} F_{\mu i} f_{a} (U_{i}^{(t+1)}, V_{i}^{(t+1)}) - \frac{(y_{\mu} - \alpha_{\mu}^{(t)})}{\Delta_{\mu} + \gamma^{(t)}} \frac{1}{N} \sum_{i} \frac{\partial f_{a}}{\partial Y} \left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)$$

$$\gamma^{(t+1)} = \frac{1}{N} \sum_{i} f_{c} (U_{i}^{(t+1)}, V_{i}^{(t+1)})$$

Simple algebraic operations!

Using these functions:

$$f_a(X,Y) = \left[\frac{\rho Y}{(1+X)^{3/2}} e^{Y^2/(2(1+X))}\right] \left[1 - \rho + \frac{\rho}{(1+X)^{1/2}} e^{Y^2/(2(1+X))}\right]^{-1}$$

$$f_c(X,Y) = \left[\frac{\rho}{(1+X)^{3/2}} e^{Y^2/(2(1+X))} \left(1 + \frac{Y^2}{1+X}\right)\right] \left[1 - \rho + \frac{\rho}{(1+X)^{1/2}} e^{Y^2/(2(1+X))}\right]^{-1} - f_a(X,Y)^2$$

And finally at the end:

$$\langle x_i \rangle = f_a \left(U_i, V_i \right)$$

The Belief-Propagation algorithm

Iterate these variables

$$U_{i}^{(t+1)} = \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu} + \gamma^{(t)}}$$

$$V_{i}^{(t+1)} = \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \alpha_{\mu}^{(t)})}{\Delta_{\mu} + \gamma_{\mu}^{(t)}} + f_{a} \left(U_{i}^{(t)}, V_{i}^{(t)}\right) \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu} + \gamma^{(t)}}$$

$$\alpha_{\mu}^{(t+1)} = \sum_{i} F_{\mu i} f_{a} (U_{i}^{(t+1)}, V_{i}^{(t+1)}) - \frac{(y_{\mu} - \alpha_{\mu}^{(t)})}{\Delta_{\mu} + \gamma^{(t)}} \frac{1}{N} \sum_{i} \frac{\partial f_{a}}{\partial Y} \left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)$$

$$\gamma^{(t+1)} = \frac{1}{N} \sum_{i} f_{c} (U_{i}^{(t+1)}, V_{i}^{(t+1)})$$

Simple algebraic operations!

Using these functions:

$$f_a(X,Y) = \left[\frac{\rho Y}{(1+X)^{3/2}} e^{Y^2/(2(1+X))}\right] \left[1 - \rho + \frac{\rho}{(1+X)^{1/2}} e^{Y^2/(2(1+X))}\right]^{-1}$$

$$f_c(X,Y) = \left[\frac{\rho}{(1+X)^{3/2}} e^{Y^2/(2(1+X))} \left(1 + \frac{Y^2}{1+X}\right)\right] \left[1 - \rho + \frac{\rho}{(1+X)^{1/2}} e^{Y^2/(2(1+X))}\right]^{-1} - f_a(X,Y)^2$$

And finally at the end:

 $\langle x_i \rangle = f_a (U_i, V_i)$ Complexity is $O(N^2 \times \text{convergence time})$

The Belief-Propagation algorithm: How to learn the parameter in the Prior?

Three parameters $\rho, \overline{x}, \sigma$

$$\phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\overline{x})^2/(2\sigma^2)}$$

Compute the Bethe free-entropy $F = \log Z$ using the BP messages.

Compute the gradient $\left(\frac{\partial F}{\partial \rho}, \frac{\partial F}{\partial \overline{r}}, \frac{\partial F}{\partial \sigma}\right)$

$$\left(\frac{\partial F}{\partial \rho}, \frac{\partial F}{\partial \overline{x}}, \frac{\partial F}{\partial \sigma}\right)$$

and update parameters to maximize F at each step of the BP iteration

> Learning makes the algorithm faster (equivalent to Expectation-Maximization)

The performance of the algorithm for a given distribution of signals can be analyzed using a method knows as density evolution (coding theory) or replica method (physics)

$$Z(y) = \int \prod_{i=1}^{N} dx_i P(x|y) \qquad F(\vec{y}) = -\log Z(\vec{y})$$

The performance of the algorithm for a given distribution of signals can be analyzed using a method knows as density evolution (coding theory) or replica method (physics)

$$Z(y) = \int \prod_{i=1}^{N} dx_i P(x|y) \qquad F(\vec{y}) = -\log Z(\vec{y})$$

Averaging over a signal distributiion (ex: Gauss Bernoulli)

$$F_{\mu i}$$
 iid Gaussian, variance $1/N$
$$y_{\mu} = \sum_{i=1}^{N} F_{\mu i} x_i^0 \text{ where } x_i^0 \text{ are iid distributed from } (1-\rho_0)\delta(x_i^0) + \rho_0\phi_0(x_i)$$

The performance of the algorithm for a given distribution of signals can be analyzed using a method knows as density evolution (coding theory) or replica method (physics)

$$Z(y) = \int \prod_{i=1}^{N} dx_i P(x|y) \qquad F(\vec{y}) = -\log Z(\vec{y})$$

Averaging over a signal distributiion (ex: Gauss Bernoulli)

$$F_{\mu i}$$
 iid Gaussian, variance $1/N$
$$y_{\mu} = \sum_{i=1}^{N} F_{\mu i} x_i^0 \text{ where } x_i^0 \text{ are iid distributed from } (1-\rho_0)\delta(x_i^0) + \rho_0\phi_0(x_i)$$

Replica method

$$\overline{\log Z} = \lim_{n \to 0} \frac{\overline{Z^n} - 1}{n}$$

Averaging over a signal distributiion (ex: Gauss Bernoulli)

$$F_{\mu i}$$
 iid Gaussian, variance $1/N$

$$y_{\mu} = \sum_{i=1}^{\infty} F_{\mu i} x_i^0$$
 where x_i^0 are iid distributed from $(1 - \rho_0)\delta(x_i^0) + \rho_0\phi_0(x_i)$

$$\Phi(Q, q, m, \hat{Q}, \hat{q}, \hat{m}) = -\frac{1}{2N} \sum_{\mu} \frac{q - 2m + \rho + \Delta_{\mu}}{\Delta_{\mu} + Q - q} - \frac{1}{2N} \sum_{\mu} \log(\Delta_{\mu} + Q - q) + \frac{Q\hat{Q}}{2} - m\hat{m} + \frac{q\hat{q}}{2}$$

$$+ \int \mathcal{D}z \int dx_0 \left[(1 - \rho_0) \delta(x_0) + \rho_0 \phi_0(x_0) \right] \log \left\{ \int dx \, e^{-\frac{\hat{Q} + \hat{q}}{2} x^2 + \hat{m}x x_0 + z\sqrt{\hat{q}}x} \left[(1 - \rho) \delta(x) + \rho \phi(x) \right] \right\}$$

Order parameters:

$$Q = \frac{1}{N} \sum_{i} \langle x_i^2 \rangle \qquad q = \frac{1}{N} \sum_{i} \langle x_i \rangle^2 \qquad m = \frac{1}{N} \sum_{i} x_i^0 \langle x_i \rangle$$

Mean square error:
$$E = \frac{1}{N} \sum_{i} (\langle x_i \rangle - x_i^0)^2 = q - 2m + \langle (x_i^0)^2 \rangle_0$$

Averaging over a signal distributiion (ex: Gauss Bernoulli)

$$F_{\mu i}$$
 iid Gaussian, variance $1/N$
$$y_{\mu} = \sum_{i=1}^{N} F_{\mu i} x_i^0 \text{ where } x_i^0 \text{ are iid distributed from } (1-\rho_0)\delta(x_i^0) + \rho_0\phi_0(x_i)$$

$$\Phi(Q, q, m, \hat{Q}, \hat{q}, \hat{m}) = -\frac{1}{2N} \sum_{\mu} \frac{q - 2m + \rho + \Delta_{\mu}}{\Delta_{\mu} + Q - q} - \frac{1}{2N} \sum_{\mu} \log(\Delta_{\mu} + Q - q) + \frac{Q\hat{Q}}{2} - m\hat{m} + \frac{q\hat{q}}{2}$$

$$+ \int \mathcal{D}z \int dx_0 \left[(1 - \rho_0) \delta(x_0) + \rho_0 \phi_0(x_0) \right] \log \left\{ \int dx \, e^{-\frac{\hat{Q} + \hat{q}}{2} x^2 + \hat{m}x x_0 + z\sqrt{\hat{q}}x} \left[(1 - \rho) \delta(x) + \rho \phi(x) \right] \right\}$$

Order parameters:

$$Q = \frac{1}{N} \sum_{i} \langle x_i^2 \rangle \qquad q = \frac{1}{N} \sum_{i} \langle x_i \rangle^2 \qquad m = \frac{1}{N} \sum_{i} x_i^0 \langle x_i \rangle$$

Mean square error:
$$E = \frac{1}{N} \sum_{i} (\langle x_i \rangle - x_i^0)^2 = q - 2m + \langle (x_i^0)^2 \rangle_0$$

$$E = \frac{1}{N} \sum_{i} \left(\langle x_i \rangle - x_i^0 \right)^2$$

Example with ρ_0 =0.4, and Φ_0 a Gaussian distribution with zero mean and unit variance

• Maximum is at E=0 (as long as $\alpha > \rho 0$): Equilibrium behavior dominated by the original signal

- Maximum is at E=0 (as long as $\alpha > \rho$ 0): Equilibrium behavior dominated by the original signal
- For α <0.58, a secondary maximum appears (meta-stable state): spinodal point

- Maximum is at E=0 (as long as $\alpha > \rho 0$): Equilibrium behavior dominated by the original signal
- For α <0.58, a secondary maximum appears (meta-stable state): spinodal point
- A steepest ascent dynamics starting from large E would reach the signal for α >0.58, but would stay block in the meta-stable state for α <0.58, even if the true equilibrium is at E=0.

$$E = \frac{1}{N} \sum_{i} \left(\langle x_i \rangle - x_i^0 \right)^2$$

- Maximum is at E=0 (as long as $\alpha > \rho 0$): Equilibrium behavior dominated by the original signal
- For α <0.58, a secondary maximum appears (meta-stable state): spinodal point
- A steepest ascent dynamics starting from large E would reach the signal for $\alpha>0.58$, but would stay block in the meta-stable state for $\alpha<0.58$, even if the true equilibrium is at E=0.
- Similarity with supercooled liquids

Computing the Phase Diagram

Computing the Phase Diagram

A steepest ascent of the free entropy allows a perfect reconstruction until the spinodal line. This is more efficient than L_1 -minimization

Thermodynamic potential

BP convergence time

Spinodal transition (supercooled limit)

Trying different type of signals

The limit depends on the type of signal (while the Donoho-Tanner is universal)

Trying different type of signals

The limit depends on the type of signal (while the Donoho-Tanner is universal)

Gauss-Bernoulli signal

Binary signals

BP is Robust to noise

Noise with
$$\sigma = 10^{-5}$$

Noise
$$\sigma = 10^{-2}$$

A more complex signal

Shepp-Logan phantom, in the Haar-wavelet representation

$$\alpha = 0.5$$

$$\alpha = 0.4$$

$$\alpha = 0.3$$

$$\alpha = 0.2$$

$$\alpha = 0.1$$

BP + probabilistic approach

- Efficient and fast
- Robust to noise
- Very flexible (more information can be put in the prior)

$$P(\vec{x}|\vec{y}) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1 - \rho) \, \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i\right)$$

Our work

A statistical physics approach to compressed sensing

- A probabilistic approach to reconstruction
- The Belief Propagation algorithm
- Seeded measurements matrices

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

How to pass the spinodal point?

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

How to pass the spinodal point?

By nucleation!

Special design of "seeded" matrices

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

$$L = 8$$

$$\alpha_1 > \alpha_{BP}$$

$$N_i = N/L$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

$$M_i = \alpha_i N/L$$

$$\alpha = \frac{1}{L} (\alpha_1 + (L-1)\alpha')$$

$$L = 8$$

$$N_i = N/L$$

$$M_i = \alpha_i N/L$$

$$\alpha_1 > \alpha_{BP}$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

$$\alpha = \frac{1}{L} (\alpha_1 + (L-1)\alpha')$$

$$L = 8$$

$$\alpha_1 > \alpha_{BP}$$

$$N_i = N/L$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

$$M_i = \alpha_i N/L$$

$$\alpha = \frac{1}{L} (\alpha_1 + (L-1)\alpha')$$

$$L = 8$$

$$\alpha_1 > \alpha_{BP}$$

$$N_i = N/L$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

$$M_i = \alpha_i N/L$$

$$\alpha = \frac{1}{L} (\alpha_1 + (L-1)\alpha')$$

$$L = 8$$

$$\alpha_1 > \alpha_{BP}$$

$$N_i = N/L$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

$$M_i = \alpha_i N/L$$

$$\alpha = \frac{1}{L} (\alpha_1 + (L-1)\alpha')$$

M such that the solution arise in this block...

... and then propagate in the whole system!

$$L=8$$

$$\alpha_1 > \alpha_{BP}$$

$$N_i = N/L$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

$$M_i = \alpha_i N/L$$

$$\alpha = \frac{1}{L} (\alpha_1 + (L-1)\alpha')$$

Example with ρ_0 =0.4, and Φ_0 a Gaussian distribution with 0 mean and unit variance

A signal with $\alpha = 0.5$ and $\rho = 0.4$

Blue is the true signal reconstructed by s-BP Red is the signal found by L₁

Phase Diagrams

A more interesting example

Shepp-Logan phantom, in the Haar-wavelet representation

A EVEN more interesting example

The Lena picture in the Haar-wavelet representation

Analytical results for seeding matrices

- •One can repeat the replica analysis for the seeded matrices, and the performance of the algorithm can be studied analytically, leading to $\alpha > \rho$ in the large N limit:
- •These results have been recently confirmed by a rigorous analysis by Donoho, Montanari and Javanmard (arXiv:1112.0708)
- •There is a lot of liberty in the design of the seeded matrices.

Analytical results for seeding matrices

- •One can repeat the replica analysis for the seeded matrices, and the performance of the algorithm can be studied analytically, leading to $\alpha > \rho$ in the large N limit:
- •These results have been recently confirmed by a rigorous analysis by Donoho, Montanari and Javanmard (arXiv:1112.0708)
- •There is a lot of liberty in the design of the seeded matrices.

Asymptotically optimal measurements

Conclusions...

- A probabilistic approach to reconstruction
- The Belief Propagation algorithm
- Seeded measurements matrices

... and perspectives:

- More information in the prior?
- Other matrix with asymptotic measurements?
- Calibration noise, additive noise, quasi-sparsity, etc...?
- Applications ?

Thank you for your attention!

BONUS

Noise sensitivity

MSE

CS with Gauss-Bernoulli (ρ_0 =0.2) noisy (σ_n =10⁻⁴) signals

Noise sensitivity

Flow in the space Q-q , $E=q-2m+\langle (x_i^0)^2\rangle_0$

