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Sparse signals: what is compressed sensing?

Measurements

From 106 wavelet coefficients, keep 25.000

Why do we record a huge amount of data, and then keep 
only the important bits?

Couldn’t we record only the relevant information directly?

Most signal of interest are sparse in an appropriated basis
⇒Exploited for data compression (JPEG2000). 
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M measurements

=
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Problem: you know y and G, how to reconstruct I ?
If M<N ☞ under-constrained system of equations

 Many solutions are possible
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M measurements

=
M linear operations on the vector

Problem: you know y and G, how to reconstruct I ?
If M<N ☞ under-constrained system of equations

 Many solutions are possible

The idea of compressed sensing is to 
use the a-priori knowledge that the signal  

is sparse in some appropriate basis 
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How does compressed sensing work?

M }N (R non-zeros)

}

•Needs for a solver that finds sparse solutions 
of an under-constrained set of equations

•Ideally works as long as M>R

•Robust to noise

M⨯N matrix

=y F
x

with

�y = F�x
F = G�

The problem to 
solve is now

F=M×N matrix



State of the art in CS

• Incoherent samplings (i.e. a random matrix F)

• Reconstruction by minimizing the L1 norm

=y F
x

M⨯N matrix

M }N (R non-zeros)

}

||�x||L1 =
�

i

|xi|

Candès & Tao (2005)
Donoho and Tanner (2005)



Example: measuring a picture

One measurement (scaling product with a random pattern) 



Example: measuring a picture
Many measurements (scaling product with many random patterns) 



Example: measuring a picture

signal

Random matrix

Measurements
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Example: measuring a picture
From 106 points, 

but only, 25.000 non 
zero

F

x xF

xGI

G
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State of the art in CS
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A different representation of the same transition
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A probabilistic approach to compressed sensing

In practice, we use a Gaussian distribution for Φ(x), with mean m 
and variance σ2, and “learn” the best value for ρ,σ and m.
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A sketch of the proof
Consider the system constrained to be at 

distances larger than D with respect to the solution

1) Y(0) is infinite if α>ρ0 (equivalently if M>R) 
(just count the delta functions! N-R+M deltas versus N integrals...)

2) Y(D) is finite for any D>0 
(bound by a first moment method, or “annealed” computation)
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distances larger than D with respect to the solution

1) Y(0) is infinite if α>ρ0 (equivalently if M>R) 
(just count the delta functions! N-R+M deltas versus N integrals...)

2) Y(D) is finite for any D>0 
(bound by a first moment method, or “annealed” computation)

If α>ρ0, the measure is always dominated by the solution 



A sketch of the proof
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A probabilistic approach to compressed sensing

Statistical physics and information theory 
tools can be readily used for 
• Sampling 
• Computing phase diagram
• etc etc...

Sampling from P(x|y) is optimal, 
(even if we do not know the correct Φ(x) or the correct ρ)
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Our work

• A probabilistic approach to reconstruction 

•The Belief Propagation algorithm

• Seeded measurements matrices

A statistical physics approach 
to compressed sensing

Statistical Physics approach (FK et al.)
+rigorous (Donoho, Montanari et al.)
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Solution number 2: estimate the marginal probabilities with a 
message passing algorithm

How to sample?
P (�x|�y) =

1
Z

N�

i=1

[(1� �) �(xi) + ��(xi)]
M�

µ=1

�

�
yµ �

N�

i=1

Fµixi

�

In this model, this can be done exactly (for large N,M) 
using an approach known as:

1. Thouless-Anderson-Parlmer, or Cavity method in physics
Bethe-Peierls, Onsager (’35) Parisi and Mezard (’02)

2. Belief propagation in artificial intelligence (Pearl, ’82)

3. Sum-product in coding theory (Gallager, ’60)

3. Approximate Message Passing in compressed sensing           
Rangan, Montanari...

If we do it correctly, then the solution is given by ai =

Z
dxiPi(xi)xi
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Q
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+Convergence problems

(asymptotically) 
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The BP recursion is given by the 
steepest ascent method
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How does BP works?
Simplification thanks to the large connectivity limit: 

Projection on first two moments is enough :

}Belief-Propagation 
equations

hxiit+1 = hxiit +
@f

@hxii

hx2
i it+1 = hx2

i it +
@f

@hx2
i i

f

�
{hxii, hx2

i i}
�

f ({Pi(xi),Pij(xi, xj)})
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M
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µ
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V (t+1)
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�

µ

Fµi
(yµ � �(t)

µ )

�µ + �(t)
µ

+ fa

�
U (t)

i , V (t)
i

� �

M

�

µ
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�µ + �(t)

�(t+1)
µ =
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i

Fµifa(U (t+1)
i , V (t+1)

i )� (yµ � �(t)
µ )
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N

�

i

�fa

�Y
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U (t+1)

i , V (t+1)
i

�

�(t+1) =
1
N

�

i

fc(U
(t+1)
i , V (t+1)

i )

The Belief-Propagation algorithm

fa(X, Y ) =
�

�Y

(1 + X)3/2
eY 2/(2(1+X))

� �
1� � +

�

(1 + X)1/2
eY 2/(2(1+X))

��1

fc(X, Y ) =
�

�

(1 + X)3/2
eY 2/(2(1+X))
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Compute the Bethe free-entropy               using the BP 
messages.
Compute the gradient     

The Belief-Propagation algorithm:
How to learn the parameter in the Prior?

F = logZ

⇤(x) =
1p
2�⇥2

e�(x�x)2/(2�2)�, x,⇥Three parameters

✓
⇤F

⇤�
,
⇤F

⇤x
,
⇤F

⇤⇥

◆

and update parameters to maximize    at each step of 
the BP iteration

F

Learning makes the algorithm faster
(equivalent to Expectation-Maximization)



The performance of the algorithm for a given distribution 
of signals can be analyzed using a method knows as density 

evolution (coding theory) or replica method (physics)

Z(y) =
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Analysis of the algorithm
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
• A steepest ascent dynamics starting from large E would reach the signal for α>0.58, but 
would stay block in the meta-stable state for α<0.58, even if the true equilibrium is at E=0.
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
• A steepest ascent dynamics starting from large E would reach the signal for α>0.58, but 
would stay block in the meta-stable state for α<0.58, even if the true equilibrium is at E=0.
• Similarity with supercooled liquids
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A steepest ascent of the free entropy allows  
a perfect reconstruction until the spinodal line. 

This is more efficient than L1-minimization 

Computing the Phase Diagram
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The limit depends on the type of signal 
(while the Donoho-Tanner is universal)

αL1αBPα=ρ

0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

α

M
ea

n
 s

q
u
ar

e 
er

ro
r

L1

BEP

1 10-5 0.0001 0.001 0.01 0.1

-1

-0.5

0

0.5

1

Mean square error

ta
n

h
[4

!
(E

)]

α = 0.8

α = 0.6

α = 0.5

α = 0.3

αL1αBPα=ρ

0.4 0.5 0.6 0.7 0.8 0.9

30

100

300

1000

3000

10000

α

N
u

m
b

er
 o

f 
it

er
at

io
n

s

BP

s-BP - L=10

s-BP - L=40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

α

αL1(ρ)

αEM-BP(ρ)

s-BP, N=104

s-BP, N=103

α = ρ

★

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

α

αL1(ρ)

αEM-BP(ρ)

s-BP, N=104

s-BP, N=103

α = ρ

Gauss-Bernoulli signal Binary signals

Dono
ho

-Ta
nn

er

BP

Dono
ho

-Ta
nn

er
BP

Trying different type of signals



The limit depends on the type of signal 
(while the Donoho-Tanner is universal)

Gauss-Bernoulli signal Binary signals

Trying different type of signals
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BP is Robust to noise
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Shepp-Logan phantom, in the Haar-wavelet representation

A more complex signal

BP



BP + probabilistic approach

• Efficient and fast

• Robust to noise

• Very flexible (more information can be put in the prior)

P (�x|�y) =
1
Z

N�

i=1

[(1� �) �(xi) + ��(xi)]
M�

µ=1

�

�
yµ �

N�

i=1

Fµixi

�



Our work

• A probabilistic approach to reconstruction 

• The Belief Propagation algorithm

• Seeded measurements matrices

A statistical physics approach 
to compressed sensing



This is good, but not good enough
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The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough
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The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough

0 0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.15

0.2

0.25

D
Φ(
D
)

α = 0.62
α = 0.6
α = 0.58
α = 0.56

How to pass the 
spinodal point?



The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough

0 0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.15

0.2

0.25

D
Φ(
D
)

α = 0.62
α = 0.6
α = 0.58
α = 0.56

How to pass the 
spinodal point?

By nucleation!

Special design of 
“seeded” matrices
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A signal with α=0.5 and ρ=0.4
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Analytical results for seeding matrices
•One can repeat the replica analysis for the seeded 
matrices, and the performance of the algorithm can be 
studied analytically, leading to α>ρ in the large N limit:            

•These results have been recently confirmed by a 
rigorous analysis by Donoho, Montanari and Javanmard         
(arXiv:1112.0708)

•There is a lot of liberty in the design of the seeded 
matrices.
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studied analytically, leading to α>ρ in the large N limit:            

•These results have been recently confirmed by a 
rigorous analysis by Donoho, Montanari and Javanmard         
(arXiv:1112.0708)

Asymptotically optimal measurements

•There is a lot of liberty in the design of the seeded 
matrices.



Conclusions...
• A probabilistic approach to reconstruction 

• The Belief Propagation algorithm

• Seeded measurements matrices

... and perspectives:
• More information in the prior?

• Other matrix with asymptotic measurements?

• Calibration noise, additive noise, quasi-sparsity, etc... ?

• Applications ?
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Thank you for your attention!
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