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Mean field systems
Fully connected models

(Curie-Weiss, Sherrington-Kirkpatrick, etc....)

Diluted models
(random graphs, Bethe lattices)

Shortest cycle going trough a 
typical node has length log(N).  

Locally

=

Thermodynamics:
Solvable using the 

replica or the cavity 
method (Bethe-Peierls)
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Some examples
Spin glasses: Sherrington-Kirkpatrick, Vianna-Bray 
(Bethe lattice spin glass), 

Optimization problems: Coloring (Potts 
antiferromagnet), K-satisfiability, graph partitioning 
(Ising with fixed magnetization), vertex cover, ....

Glasses, hard spheres, colloids, ...: p-spin model, 
Biroli-Mezard lattice glass, lattice model for colloidal 
glass, mean field models for hard spheres, quantum 
systems on random lattices, Coulomb glasses...
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Examples in this talk

H =
∑

(ij)

δSi,Sj Si ∈ {1, . . . , q}

Potts glass (graph coloring):

H = −
∑

(ij)

Jij

p∏

i=1

Si Si ∈ {−1,+1}

p-spin glass (XOR-satisfiability): 
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Several things we know about them
Glassy Mean field systems

e(T)

T

T
Σ(T )
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Several things we know about them
Glassy Mean field systems

e(T)

T

T
Σ(T )

Td

Dynamical glass transition
- broken ergodicity
- structural entropy appears

TK

Static (ideal) glass transition
- non-analyticity in free energy
- structural entropy vanishes

Thursday, November 19, 2009



Energy landscape

e(T)

T

T
Σ(T )

TdTK

Several things we know about them
Glassy Mean field systems
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Replica & Cavity Methods
Computational method giving properties of the energy 
landscape:

Total energy, entropy, temperature

Properties of states/valleys/TAP - their number, size ...  

Overlaps between                                          
and within states etc.  

Nstates = eNΣ

(Mezard, Parisi’01)(Parisi’80)

Σ(e, s)
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Glassy Mean field systems
 Things we DO NOT know about them

configurational space

en
er

gy
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Glassy Mean field systems
 Things we DO NOT know about them

✴ The information on the landscape is only enumerative...
✴ ...We do not describe the shape of the valleys...
✴ ...We cannot use it to get information on the dynamics...
✴ ...And we do not solve explicitly the dynamics

configurational space

en
er

gy

(except for spherical p-spin models, Cugliandolo-Kurchan’93 ...)
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Need for a better description   
of the landscape
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How to probe the energy landscape ?
(first in a cartoon)
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Choose an energy value.
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Choose an energy value.
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Then take a configuration at random at this 
energy, the configuration is such that the 
system is blocked in one of the “states”.
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Then take a configuration at random at this 
energy, the configuration is such that the 
system is blocked in one of the “states”.
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Compute the properties of the state 
for different energies

Thursday, November 19, 2009



Compute the properties of the state 
for different energies
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Now, we know what is the shape of an equilibrium 
state at the temperature we considered
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We also know where the slow dynamics will 
end - at the bottom of the state!
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We also know where the slow dynamics will 
end - at the bottom of the state!
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Following states in equations

(1) Consider a large tree
(2) Choose a configuration 
uniformly at random from all those 
at energy   per link. Corresponding 
temperature: 

ε
eβ =

1− ε

(q − 1)ε
β ≤ βK

ex.: the Potts anti-ferromagnet on random graphs
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Following states in equations
ex.: the Potts anti-ferromagnet on random graphs

(1) Consider a large tree
(2) Choose a configuration 
uniformly at random from all those 
at energy   per link. Corresponding 
temperature: 

ε
eβ =

1− ε

(q − 1)ε
(a) Choose color of the root at random
(b) Iteratively, choose color of a child 
equal to the color of the parent with 
probability    , and different with 
probability  

ε
1− ε

(3) Resulting boundary conditions define the Gibbs state, compute 
what measure they induce at a different temperature. 

Thursday, November 19, 2009



H = −
∑

(ij)

Jij

p∏

i=1

Si

Following states in equations
ex.: the p-spin (XOR-SAT) on random graphs
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1) Chose an energy and create an equilibrium 
configuration on a tree

H = −
∑

(ij)

Jij

p∏

i=1

Si

ε(Tp) = (1 + e1/Tp)−1

Following states in equations
ex.: the p-spin (XOR-SAT) on random graphs
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1) Chose an energy and create an equilibrium 

configuration on a tree

H = −
∑

(ij)

Jij

p∏

i=1

Si

ε(Tp) = (1 + e1/Tp)−1

Following states in equations
ex.: the p-spin (XOR-SAT) on random graphs

2) Resulting boundary conditions define the 
Gibbs state, compute what measure 
they induce at a different temperature. 
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How to make it 
even simpler ?

This construction defines a set
 of recursive “Bethe-like” equation

P a→i(ψa→i) =
1

Za→i

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP b→j(ψb→j)
[
Za→i({ψb→j},β)

]m
δ[ψa→i − F({ψb→j},β)]

P̃ a→i(ψ̃a→i) =
1

Z̃a→i

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP̃ b→j(ψ̃b→j)
[
Za→i({ψb→j},β)

]m
δ[ψ̃a→i − F({ψ̃b→j}, β̃)]
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 of recursive “Bethe-like” equation

P a→i(ψa→i) =
1

Za→i

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP b→j(ψb→j)
[
Za→i({ψb→j},β)

]m
δ[ψa→i − F({ψb→j},β)]

P̃ a→i(ψ̃a→i) =
1

Z̃a→i

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP̃ b→j(ψ̃b→j)
[
Za→i({ψb→j},β)

]m
δ[ψ̃a→i − F({ψ̃b→j}, β̃)]

A powerful mapping via 
a Gauge transformation
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A useful and powerful mapping 
P-spin model (XORSAT)
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Now one has a trivial “ferromagnetic” border
and the distribution of disorder has been 

transformed to

Pp(J) = ε(Tp)δ(J − 1) + [1− ε(Tp)]δ(J + 1)
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A useful and powerful mapping 
P-spin model (XORSAT)

In order to study how an equilibrium spin glass“state” 
at temperature Tp behave at temperature T
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A useful and powerful mapping 
P-spin model (XORSAT)

In order to study how an equilibrium spin glass“state” 
at temperature Tp behave at temperature T

ε(Tp) = (1 + e1/Tp)−1

You just need to study a ferromagnetic 
model with a fraction

         of negative interactions
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A useful and powerful mapping 
P-spin model (XORSAT)

In order to study how an equilibrium spin glass“state” 
at temperature Tp behave at temperature T

ε(Tp) = (1 + e1/Tp)−1

You just need to study a ferromagnetic 
model with a fraction

         of negative interactions

The phase diagram and the long time dynamics are 
trivially given by a simple equilibrium computation 
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Outline
I. Glassy landscapes

II. A new method to describe the landscape

III.Result I: Following states and the long time 
dynamics 

IV.Result II: Analyzing simulated annealing: 
Canyons versus Valleys. 

V. Result III: Presence of temperature chaos in 
the glass phase.
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Ex.: Fully connected p-spin
(Derrida’81; Gross, Mezard’84; Kirkpatrick, Thirumalai’87)

H = −
∑

a

Ja

∏

i∈∂a

si ,
〈Ja〉 = 0

〈J2
a〉 = J2p!/(2Np−1)

m =
∫ ∞

−∞
Dy tanh

(
β̃Jy

√
pqp−1/2 + β̃βJ2pmp−1/2

)

q =
∫ ∞

−∞
Dy tanh2

(
β̃Jy

√
pqp−1/2 + β̃βJ2pmp−1/2

)

β̃ = β ⇒ m = q due to the Nishimori condition

Properties of state equilibrium at   , 
at temperature  ̃β

β
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Results for the fully 
connected p-spin

E
n

er
g

y

T-0.82

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

 0  0.2  0.4  0.6  0.8  1
e(T) in 3-PSPIN

TK TdTG
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T-0.82
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-0.78

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

 0  0.2  0.4  0.6  0.8  1
e(T) in 3-PSPIN

TK TdTG

Limiting energy of 
very slow annealing
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 0

 0.01

 0.02

 0.03

 0  0.1  0.2  0.3  0.4
e(T) in XORSAT (c=3,K=3)

Td

en
er

gy

T

Results for the diluted 
connected p-spin
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Comparison with Monte Carlo dynamics
 (equilibrated at T=0.2 using the Planting Method)

N=200 000 spins

H({S}) =
∑

ijk

1 + JijkSiSjSk

2

MC annealings starting
from equilibrium at T=0.2

en
er

gy

T

coordination z=3
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Long time dynamics

The long time dynamics starting from 
equilibrium is given by a “static” computation.

This can be checked directly by Monte-Carlo 
simulation

Our method allow to recover easyly the 
exact results on the dynamics of spherical 
models (Cugliandolo-Kurchan 93, Franz-Parisi 
97...)
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Outline
I. Glassy landscapes

II. A new method to describe the landscape

III.Result I: Following states and the long time 
dynamics 

IV.Result II: Analyzing simulated annealing: 
Canyons versus Valleys. 

V. Result III: Presence of temperature chaos in 
the glass phase.
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Is finding a ground state hard or easy?
Usual answer: Hard to find ground 

state in a glassy landscape.

 Average
degree c

Glass Sat/Unsat

SAT UNSAT
Easy HARD
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But Monte-Carlo annealing 
works also in the glassy phase !!
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Landscapes: 
canyons, 

and valleys...
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Zero energy states

Positive energy states

Zero energy states

Positive energy states

Canyon dominated Valley dominated vs.

A question of basins of attraction

EASY HARDvs

Where is the bottom of a state typical at    ? Ed
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Valleys

Canyons
4-coloring of 9-regular random graphs

3-XOR-SAT with L=3

 0

 0.002

 0.004

 0  0.05  0.1  0.15  0.2
e(T) in 4-COL (c=9)

Td

 0

 0.01

 0.02

 0.03

 0  0.1  0.2  0.3  0.4
e(T) in XORSAT (c=3,K=3)

Td

en
er

gy
en

er
gy

T

T
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Valleys

Canyons
4-coloring of 9-regular random graphs

 0
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 0.006

 0.008

 0.01
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 0.014
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 0.018

 0.02

-0.1 -0.05  0  0.05  0.1

E(
S)

S

3-XOR-SAT with L=3

 0
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 0.01

 0.015

 0.02

 0.025

 0.03

-0.05  0  0.05

E(
S)

S

en
er

gy
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entropy

entropy
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Valleys

Canyons
4-coloring of 9-regular random graphs

3-XOR-SAT with L=3

Zero energy states

Positive energy states

Zero energy states

Positive energy states
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cd cs

Landscape of random 
optimization problems
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cd cs

Zero energy states

Positive energy states

Zero energy states

Positive energy states

Zero energy states

Positive energy states

Canyons to Valleys

Landscape of random 
optimization problems

Easy HARD
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Outline
I. Glassy landscapes

II. A new method to describe the landscape

III.Result I: Following states and the long time 
dynamics 

IV.Result II: Analyzing simulated annealing: 
Canyons versus Valleys. 

V. Result III: Presence of temperature chaos in 
the glass phase.
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Temperature chaos in spin glasses

Temperature chaos ≣ the equilibrium state changes 
completely when the temperature is slightly changed

Present in renormalization group studies of spin glasses     
(Bray-Moore 87’; Nifle, Hilhorst 92’)

Usual explanation for many experimentally observed 
effects in glassy systems (ex: memory and rejuvenation)
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Chaos and level crossing, 
in the glass phase
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What can we do more? 

๏ Jamming points - in mean field models for hard 
spheres following states in density (instead of 
temperature) 

๏ Generalization to follow states in magnetic field, 
transverse quantum field, coordination number, ....  

๏ Equilibrating in systems where it is impossible to 
equilibrate - via quiet planting, if E(log Z) = log E(Z)
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Conclusions
★ Method for following states: a cavity-like 

detailed description of the landscape: 

★ Gives access to long time dynamics...

★ .... predicts average algorithmic hardness ...

★ ... and the presence of temperature chaos ...

★ ... allows to see the landscape ....

★ ... and more to come ! 

Thursday, November 19, 2009



Conclusions
★ Method for following states: a cavity-like 

detailed description of the landscape: 

★ Gives access to long time dynamics...

★ .... predicts average algorithmic hardness ...

★ ... and the presence of temperature chaos ...

★ ... allows to see the landscape ....

★ ... and more to come ! 

      Thank you for your attention!
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Phase diagram with 
ferromagnetic bias...

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.56  0.58  0.6  0.62  0.64  0.66  0.68  0.7  0.72  0.74

T

Tp=1/2J0

T=Tp

Para phase

1RSB phase

FULL RSB phase
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Relation to the Franz-Parisi potential

Our method is looking directly at the minimum. 
Easily tractable in particular in the diluted systems.

(Franz, Parisi’97)
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Following states in equations

(3) Resulting boundary conditions define the Gibbs state, compute 
what measure they induce at a different temperature. 

Ps(ψ) =
∑

{si}

e−β
Pc−1

i=1 δs,si

(q − 1 + e−β)c−1

∫ ∏

i

dPsi(ψ
i)δ[ψ − F({ψi}, β̃)]

Fs({ψi},β) ≡
∏

i[1− (1− e−β)ψi
s]∑

r

∏
i[1− (1− e−β)ψi

r]

β ≤ βK

ex.: the Potts anti-ferromagnet on random graphs
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P a→i(ψa→i) =
1

Za→i

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP b→j(ψb→j)
[
Za→i({ψb→j},β)

]m
δ[ψa→i − F({ψb→j},β)]

P̃ a→i(ψ̃a→i) =
1

Z̃a→i

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP̃ b→j(ψ̃b→j)
[
Za→i({ψb→j},β)

]m
δ[ψ̃a→i − F({ψ̃b→j}, β̃)]

Works in all systems where 1RSB can be 
identified (random graphs or fully connected) 

Solving these equations: via population dynamics, 
only as difficult as ordinary 1RSB solution (in 

many models above    mapping to RS equations). 

General formulas

TK
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Testing the cavity predictions for the clustering transition

Prediction: beyond the so-called “dynamic” 
threshold, the Monte-Carlo Dynamic is trapped!

Ex: 3-XORSAT, Td=0.255

A better Approach:

Start with an equilibrated initial condition
Many temperatures:

Divergence of the
relaxation time

T=0.3

T=0.28
T=0.27

T=0.255

T=0.265

T=0.29

T=0.26

time

Co
rr

ela
tio
n
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