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Community structure...

• Online communities 
• Word adjacency networks
• Food webs
• Metabolic networks
• Protein-protein interaction networks
• ...

... is observed in many systems:

The problem:
Predict the community structure 
from the topology of the network
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New algorithm for community detection                  
(Bayesian inference using Belief Propagation)

“Phase transitions” in inference/inverse problems ?                 
(Hard, Easy, and Impossible as in 3-SAT?)

Community detection is connected to many problems in 
inference, statistical physics and computer science:

Planted models, compressed sensing
Finite temperature decoding 
Reconstruction on trees with noisy channels
Random optimization (coloring, partitioning...)
Spin glass and Nishimori symmetry
Glass transition vs first-order...

(our) Motivations
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Hundreds of papers on the topic (Newman, Girvan’04, ...........)

Maximize modularity function  

State of art

Q =
1

2M

�

ij

�
Aij −

didj

2M

�
δqi,qj

Sunday, February 20, 2011



Hundreds of papers on the topic (Newman, Girvan’04, ...........)

Maximize modularity function  
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Problem: this method (and virtually any 
method in the literature) is unable to tell 
that a random graph does not have any 
communities. 
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Hundreds of papers on the topic (Newman, Girvan’04, ...........)

Maximize modularity function  

State of art

Q =
1

2M

�

ij

�
Aij −

didj

2M

�
δqi,qj

Problem: this method (and virtually any 
method in the literature) is unable to tell 
that a random graph does not have any 
communities. 

Example: 
Ising model on a 3-regular random graphs 
Best bisection looks like a good clustering
(only 11% of edges between the 2 groups)
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State of art
Problem: this method (and virtually any 
method in the literature) is unable to tell 
that a random graph does not have any 
communities. 
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Missing measures of significance, estimates of 
probability of error ...
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Problem: this method (and virtually any 
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that a random graph does not have any 
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Missing measures of significance, estimates of 
probability of error ...

 Maximizing inter-connections? But nodes of the same kind 
are not always inter-connected (e.g. food-web, adjacency 
of words in text...), and can also be directed.

State of art
Problem: this method (and virtually any 
method in the literature) is unable to tell 
that a random graph does not have any 
communities. 
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 Maximizing inter-connections? But nodes of the same kind 
are not always inter-connected (e.g. food-web, adjacency 
of words in text...), and can also be directed.
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Problem: this method (and virtually any 
method in the literature) is unable to tell 
that a random graph does not have any 
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Equal group sizes? There is no reason for this a priori... 
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Missing measures of significance, estimates of 
probability of error ...

 Maximizing inter-connections? But nodes of the same kind 
are not always inter-connected (e.g. food-web, adjacency 
of words in text...), and can also be directed.

State of art
Problem: this method (and virtually any 
method in the literature) is unable to tell 
that a random graph does not have any 
communities. 

Need for a more fundamental, and principled approach:
Let’s switch to Bayesian inference, and synthetic data

Equal group sizes? There is no reason for this a priori... 
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The Block model
q groups, N nodes

     proportion of nodes in group 

               probability that an edge present 
between node from group a and another 
from group b 

na a = 1, . . . , q

Generate a random network as follows: 

pab =
cab

N
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The Block model
q groups, N nodes

     proportion of nodes in group 

               probability that an edge present 
between node from group a and another 
from group b 

na a = 1, . . . , q

Generate a random network as follows: 

pab =
cab

N

n1 = 7/12 n2 = 5/12

p11 = p22 = 0.39
p12 = p21 = 0.14
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The Block model
q groups, N nodes

     proportion of nodes in group 

               probability that an edge present 
between node from group a and another 
from group b 

na a = 1, . . . , q

Generate a random network as follows: 

pab =
cab

N

n1 = 7/12 n2 = 5/12

p11 = p22 = 0.39
p12 = p21 = 0.14

I am giving you the network, can you infer the values of 
q, na and pab? Can you detect the original assignment?
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P ({na, pab}|G) =
P ({na, pab})

P (G)
P (G|{na, pab})

=
P ({na, pab})

P (G)

�

{qi}

P (G, {qi}|{na, pab})

A Bayesian Approach to community detection
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A Bayesian Approach to community detection
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P ({na, pab}|G) =
P ({na, pab})

P (G)
P (G|{na, pab})

=
P ({na, pab})

P (G)

�

{qi}

P (G, {qi}|{na, pab})

P (G, {qi}|{na, pab}) =
N�

i=1

nqi

�

ij

pAij
qiqj

(1− pqiqj )
1−Aij

A Bayesian Approach to community detection

Z({na, pab}) ≡
�

{qi}

P (G, {qi}|{na, pab})
Maximize Z to 
learn{na, pab}
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Z({na, pab}) ≡
�

{qi}

P (G, {qi}|{na, pab})
Maximize Z to 
learn{na, pab}

Equilibrium statistical physics of the Hamiltonian: 

−H({qi}) =
N�

i=1

log nqi +
�

ij

�
Aij log pqiqj + (1−Aij) log (1− pqiqj )

�

=
N�

i=1

log nqi +
�

(ij)∈E

log
pqiqj

1− pqiqj

+
q�

a,b=1

NaNb log (1− pab)

A Bayesian Approach to community detection

P (G, {qi}|{na, pab}) =
N�

i=1

nqi

�

ij

pAij
qiqj

(1− pqiqj )
1−Aij
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A Bayesian Approach to community detection

Once the parameters {na,pab} have been inferred:

• A configuration sampled from the Boltzmann measure 
has the correct group sizes and number of connections 
between groups

• The configuration overlapping the most with the original 
assignment is obtained by computing marginals (local 
magnetizations) and taking the most probable value.

(as in finite temperature decoding Nishimori’93, Sourlas’94)

P (G, {qi}|{na, pab}) =
N�

i=1

nqi

�

ij

pAij
qiqj

(1− pqiqj )
1−Aij
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(1) Compute averages:
➡ With Monte Carlo (detailed balance) slow....
➡ With Belief Propagation faster and exact for large 

networks generated by the block model
(2) Update parameters to perform a steepest ascent

(3) Repeat until convergence.

A Bayesian Approach to community detection

na =
1
N

�
�

i

δa,qi

�
. pabnanb =

1
N2

�
�

(ij)∈E

δa,qiδb,qi

�
.

(4) Assign the most probable value: qi = argmaxqi
Pi(qi)
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Phase transition in Community 
detection for the Block model

 Consider the a priori difficult cases where each 
community has the average degree

3 different cases may arise depending on the      
parameters used to generate the network
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The maximum partition 
sum is obtained for trivial 
“paramagnetic” marginals

(1) The paramagnetic case:
Impossible inference

log Z

M
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Assume we know the 
correct parameters {na,pab}

M is the (normalized) overlap 
with the original assignment

M = 0

Pi(q) = nq ∀i
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The maximum partition 
sum is obtained for trivial 
“paramagnetic” marginals

(1) The paramagnetic case:
Impossible inference
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Assume we know the 
correct parameters {na,pab}

The original assignment
can not be detected

M is the (normalized) overlap 
with the original assignment

M = 0

Pi(q) = nq ∀i
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(1) The paramagnetic case:
Impossible inference
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(1) The paramagnetic case:
Impossible inference

In fact, what have been created is simply a random graph! 
Can be proved by generalizing a theorem on quiet planting (Achlioptas, Coja-Oghlan’08). 
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(2) The ordered case:
Easy inference

M

log Z

M = 0

The maximum partition 
sum is now obtained for 

“ordered” non trivial marginals

Assume we know the 
correct parameters {na,pab}

The original assignment
can now be detected

M ≈ 1
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(2) The ordered case:
Easy inference

M

Look for the critical case (spinodal point)

log Z

M = 0

M

The maximum partition 
sum is now obtained for 

“ordered” non trivial marginals

Assume we know the 
correct parameters {na,pab}M ≈ 1

The original assignment
can now be detected
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(2) The ordered case:
Easy inference

M

Look for the critical case (spinodal point)

log Z
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sum is now obtained for 

“ordered” non trivial marginals

Assume we know the 
correct parameters {na,pab}M ≈ 1
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The original assignment
can now be detected
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(2) The ordered case:
Easy inference

M

Look for the critical case (spinodal point)

log Z

M = 0

M

d2 log Z(m)
dm

���
m=0

= 0

The maximum partition 
sum is now obtained for 

“ordered” non trivial marginals

Assume we know the 
correct parameters {na,pab}

Physics: spinodal, or “de Almeida-Thouless” condition
Computer Science: “Kesten-Stigum” condition on census reconstruction 

M ≈ 1

2

The original assignment
can now be detected
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(2) The ordered case:
Easy inference

M

Look for the critical case (spinodal point)

log Z

M = 0

M

d2 log Z(m)
dm

���
m=0

= 0

The maximum partition 
sum is now obtained for 

“ordered” non trivial marginals

Assume we know the 
correct parameters {na,pab}

Physics: spinodal, or “de Almeida-Thouless” condition
Computer Science: “Kesten-Stigum” condition on census reconstruction 

|cin − cout| ≥ q
√

c

M ≈ 1

2

The original assignment
can now be detected
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(3) The “first-order” case:
Hard inference

M

M = 0

The maximum partition 
sum is obtained for 

“ordered” non trivial marginals...

Assume we know the 
correct parameters {na,pab}

... but finding this maximum is 
practically impossible!

M ≈ 1
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(3) The “first-order” case:
Hard inference

M

M = 0

The maximum partition 
sum is obtained for 

“ordered” non trivial marginals...

Assume we know the 
correct parameters {na,pab}

... but finding this maximum is 
practically impossible!

The original community
can be detected 

but one needs an exponential 
computational time

M ≈ 1
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Example I: with assortative communities

na =
1
q
, caa = cin, ca�=b = cout, cq = cin + (q − 1)cout

q = 4, c = 16
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Planted Partitioning problem
Potts ferromagnet 
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Example I: with assortative communities

na =
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Planted Partitioning problem
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Example II with “disassortative” communities

q = 5, na =
1
q
, caa = 0, ca�=b =

cq

q − 1
,

Planted Random graph coloring (Zdeborova, Krzakala’07)
Potts antiferromagnet
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Example II with “disassortative” communities

q = 5, na =
1
q
, caa = 0, ca�=b =

cq

q − 1
,

Planted Random graph coloring (Zdeborova, Krzakala’07)
Potts antiferromagnet

easyhardim
po

ss
ib

le

Fr
ac

ti
on

 d
et

ec
te

d 

 0

 0.2

 0.4

 0.6

 0.8

 1

 12  13  14  15  16  17  18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

c

 undetect. hard detect. easy detect.

q*=5,c*in=0

cd

cc

cs

init. ordered
init. random

c

IMPOSSIBLE
HARD EASY

Sunday, February 20, 2011



easyhardim
po

ss
ib

le

Fr
ac

ti
on

 d
et

ec
te

d 

 0

 0.2

 0.4

 0.6

 0.8

 1

 12  13  14  15  16  17  18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

c

 undetect. hard detect. easy detect.

q*=5,c*in=0

cd

cc

cs

init. ordered
init. random

c

The Relation with Potts Spin Glasses 

IMPOSSIBLE
HARD EASY

Impossible➪Possible
=

Kauzmann transition

Hard➪Easy
=

Almeida-Thouless

Planted Random graph coloring (Zdeborova, Krzakala’07)
Potts antiferromagnet
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Inference in community detection
Phase transitions from easy, hard and impossible inference

BP allows for a fast and exact solution and is an optimal 
algorithm for the block model...

...and can be generalized to any local generative model.

BP is also a very efficient tool for real-world networks 
(cf. Aurelien Decelle’s Talk) and for directed and weighted 
graphs.

arxiv:1102.1182
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Bonus
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How to learn the number of groups?

log Z(q)

q2 4 5 6 73
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Degree corrected block model 
Our block model generates Poisson degree 
distribution - it does not want to believe 
that nodes with very different degrees may 
be in the same group. 

Degree corrected (Karrer, Newman’10)

pqi,qj = didjωqi,qj
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