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Introduction to (some) glassy phenomenology

The bulk melting problem

Glassy and melting dynamics are (sometimes!)     
in the same university class
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What is a glass ?

“The deepest and most interesting unsolved problem in solid 
state theory is probably the nature of glass and the glass 
transition”. P.W. Anderson, Science ʻ95
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     Empirical Adam-Gibbs relation 
between viscosity and excess entropy !

η ≈ e
A

(T−TK )

η ≈ e
A

T∆S

Supercooled liquids

Vogel-Fulscher
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“Two-steps” 
relaxation in time correlation function

Time
Correlation
Function
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“Two-steps” 
relaxation in time correlation function

Time
Correlation
Functionτ

τ ≈ τ0e
A

T−TK ∝ e
B

T∆s
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No apparent sign of order 
of correlation lengths... 

“Liquid” “Glass”

The hard spheres problem: Pictures from Werner Krauth
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A dynamic correlation length: heterogeneous dynamics
... but growing of subtle correlation lengths! 

Evolution between time t and t + τ
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A dynamic correlation length: heterogeneous dynamics
... but growing of subtle correlation lengths! 

Berthier et al. 2004

Evolution between time t and t + τ

Large 
T

Lower 
T
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C4(t1, t2, r1, r2) = �ρ(t1, r1)ρ(t1, r2)ρ(t2, r1)ρ(t2, r2)�c

1) Consider the following 4-points correlation

A dynamic correlation length: heterogeneous dynamics
... but growing of subtle correlation lengths! 
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1) Consider the following 4-points correlation

A dynamic correlation length: heterogeneous dynamics
... but growing of subtle correlation lengths! 

2) Define the following susceptibility (or correlated volume)

χ4(t1, t2) =
1
V

�
dr1dr2C4(t1, t2, r1, r2)

      increase strongly when approaching 
the transition (and is expected to diverge!)

χ4(∆t = τ)

3) At equilibrium, time translational invariance impose that
χ4(t1, t2) = χ4(∆t = t2 − t1)
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... but growing of subtle correlation lengths! 
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An equilibrium correlation length
... but growing of subtle correlation lengths! 

1) Consider an equilibrium configuration
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Phenomenology of 
glass former liquids

Super exponentially 
relaxation

Kauzmann paradox & Adam-
Gibbs relation

Two steps correlation function

Dynamical heterogeneities

“Divergence” of a length scale 
(Point-To-Set correlations) 
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Tg/Tτ ≈ τ0e
A

T−TK

Good fit:
Vogel-Fulcher “law”
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Phenomenology of 
glass former liquids

Super exponential relaxation

Kauzmann paradox & Adam-
Gibbs relation 

Two steps correlation function

Dynamical heterogeneities

“Divergence” of a length scale 
(Point-To-Set correlations) 

τ ≈ τ0e
A

T−TK ∝ e
B

T∆s

Δs is called the “Configurational entropy” or “Complexity” 
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op
y

∆s = sliquid − ssolid
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Phenomenology of 
glass former liquids

Super exponential relaxation

Kauzmann paradox & Adam-
Gibbs relation 

Two steps correlation function

Dynamical heterogeneities

“Divergence” of a length scale 
(Point-To-Set correlations) 

χ4(t1, t2) = 1
V

�
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Phenomenology of 
glass former liquids

Super exponential relaxation

Kauzmann paradox & Adam-
Gibbs relation 

Two steps correlation function

Dynamical heterogeneities

“Divergence” of an equilibrium  
length scale                   
(Point-To-Set correlations) 
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Phenomenology of 
glass former liquids

Super exponential relaxation

Kauzmann paradox & Adam-
Gibbs relation 

Two steps correlation function

Dynamical heterogeneities

“Divergence” of an equilibrium  
length scale                   
(Point-To-Set correlations) 

ℓ
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Phenomenology of 
glass former liquids

Super exponential relaxation ?

Kauzmann paradox & Adam-

Gibbs relation ?

Two steps correlation function

Dynamical heterogeneities

“Divergence ?” of a length 
scale (Point-To-Set correlations) 

Still many debates on how to 
describe this transition

Random First Order 
Phenomenology ?

Thirumalai, Kirkpatrick, Wolynes (87-89)

(replica theory) First principles 
computations in glasses

Mézard-Parisi (99’)
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A very debated 
question....

“I think we have a very good constructive 
theory of that these days,” Dr. Wolynes 
said. “Many people tell me this is very 

contentious. I disagree violently with them.”

Dr. Wolynes and his collaborators so insisted 
they were right that “you had the 

impression they were trying to sell you an 
old car,” said Jean-Philippe Bouchaud of the 

Atomic Energy Commission in France.

David A. Weitz, a physics professor at 
Harvard, joked, “There are more theories of 
the glass transition than there are theorists 

who propose them.” 
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In this talk: Two Statements

TWO: Melting dynamics and equilibrium dynamics              
are exactly equivalent in some models.

(in particular the Random First Order Theory is mappable 
to a melting problem of some sort...)

ONE: All this complex “glassy” phenomenology                                
can be observed in the bulk melting problem.
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Melting dynamics 
of superheated solids

ONE
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Dynamics from fully ordered 
initial conditions
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Dynamics from fully ordered 
initial conditions

1) Consider a problem with 
a first-order transition at Tc

2) Initialized your system 
in the fully ordered configuration
(i.e. the ground state configuration)

Set the temperature to T>Tc and observe the melting dynamics
of the ordered phase into the less ordered one

• Liquid-Solid
• Potts models
• Spin models with     
3-body interactions

• Crystal state
• All spins equal

 Periodic Boundary 
conditions ⇒ No boundaries!

No “surface melting”
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No extensive barrier in finite d!

Melting dynamics

In mean-field:
Melting dynamics is 
trapped by the high 
free-energy state

In finite dimension:
Metastability &

Activation process
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Nucleation argument

ordered phase

liquid 
phase

ℓ

Cost: Gain:

Fs = γ�d−1 Fv = ∆f�d
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Nucleation argument

ordered phase

liquid 
phase

ℓ

Cost: Gain:

Fs = γ�d−1

Total Free energy cost of the droplet

∆F

�

Fv = ∆f�d

∆Fmax ≈
γd

∆fd−1

�c ≈
γ

∆f
Sunday, January 30, 2011



Free energy barrier

∆Fmax ≈
γd

∆fd−1

Arrhenius factor

τ ∝ eβA/∆fd−1

The nucleation argument

Sunday, January 30, 2011



Free energy barrier
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Arrhenius factor
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Free energy barrier
Potts model D=2

s = 1, . . . , q

βc = ln(1 +
√

q)1st order for q>4

q=10, Tc=0.70123...

H = −
�

<ij>

δsi, sj

∆Fmax ≈
γd

∆fd−1

Arrhenius factor

τ ∝ eβA/∆fd−1

τ ∝ eβA/(T−Tc)d−1

The nucleation argument
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Arrhenius factor
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Melting in the 2d Potts model:
nucleation and growth
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Maximum heterogeneities

Growing of dynamical 
heterogeneities

 

10-1

1
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102

103

104

105

1 10 102 103 104 105 106

large T

T ⋍ Tc

Melting in the 2d Potts model:
nucleation and growth

χ4(t) = χF (t) = N(< m(t)2 > − < m(t) >2)

χ4(t1, t2) =
1
V

�
dr1dr2C4(t1, t2, r1, r2)
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Divergence of an equilibrium 
Correlation length ?

1) Consider the initial 
configuration

2) Freeze the system and 
make a hole of size ℓ

3) Un-freeze the system 
inside the  cavity
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ℓ

Growing and divergence 
of a (large) equilibrium 
correlation length....
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Divergence of an equilibrium 
Correlation length !
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Melting phenomenology...
Plateau in the correlation function

From Power-law (mean-field) to Vogel-Fulcher (finite dimension)

Relation between static and dynamic

Heterogeneous dynamics

Divergence of a “static” length scale

τ ∝ eβA/∆fd−1
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Melting phenomenology...
Plateau in the correlation function

From Power-law (mean-field) to Vogel-Fulcher (finite dimension)

Relation between static and dynamic

Heterogeneous dynamics

Divergence of a “static” length scale

... just like glass phenomenology!

τ ∝ eβA/∆fd−1
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Melting glass forming liquids

Equilibrium Stationary processHappens only once

Free energy difference Entropy difference

τ ∝ eβA/∆F d−1
τ ∝ eβA/∆S

Out-of equilibrium process Equilibrium dynamics

Differences between melting dynamics and 
the equilibrium dynamics of glass formers

Latent heat in
first order transition

No Latent heat at 
the glass transition
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Glassy dynamics can be 
sometime mapped exactly to a 

melting problem...

TWO
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Multi-spin interaction models
J=1 with prob. ρ and J=-1 with prob. (1-ρ)

Ex: Bethe lattice, c=5

H = −
�

ijk

JijkSiSjSk

The mean-field p-spin model
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Starting point of the Random-First-Order Theory
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The mean-field p-spin model
Multi-spin interaction models

J=1 with prob. ρ and J=-1 with prob. (1-ρ)
Ex: Bethe lattice, c=5

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1

T TMCT

TK

Tspin.

TF

Liquid

Glass
Solid

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1

T TMCT

TK

Tspin.

TF

Liquid

Glass
Solid

ρNL(β) =
1

1 + e−2β

On the Nishimori line, a gauge symmetry allows to 
compute many quantities and to derive many identities
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The equilibrium time correlation 
is equal to the melting correlation

Melting=equilibrium glassy dynamics
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Melting=equilibrium glassy dynamics

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1

T TMCT

TK

Tspin.

TF

Liquid

Glass
Solid

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1

T TMCT

TK

Tspin.

TF

Liquid

Glass
Solid

The static (point-to-set) and dynamic (heterogeneities)                    
length scales in the are equal to the melting ones

χeq
4 (t) = χmelting

F (t) �PTS(β) = �FERRO(β)

The equilibrium relaxation time is 
equal to the melting relaxation time

τeq(β) = τmelting(β) ceq(t) = mmelting(t)

The mean-field glass 
transition

 is rigorously equivalent 
to a melting problem !

The mode coupling transition-point is equivalent to the spinodal point!

χeq
4 (t) = χmelting

F (t)
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Mean field model on the Nishimori line
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•  Equilibrium dynamics along the line has a mean-glass transition
(described by a mode-coupling phenomenology )
•  The configurational entropy is given by Σ=Δs=sliquid-ssolid

• First order ferromagnetic transition (jump in the magnetization)
•  The energy is continuous and analytic at the transition
•  “Entropy driven” transition: Δs=sliquid-ssolid →0 at the transition
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Melting & Glassy dynamics
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Melting & Glassy dynamics

In mean field spin glasses, equilibrium glassy dynamics can 
be mapped to a particular melting phenomenon.
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Melting & Glassy dynamics

In mean field spin glasses, equilibrium glassy dynamics can 
be mapped to a particular melting phenomenon.

The Random First-Order Theory is mappable to a melting 
problem driven by entropy only

Such mapping are not limited to mean field systems and 
similar results can be obtained in some 3-dimensional spin 
models.
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A 3D p-spin model on the Nishimori line

A 5-body interaction model... on the Nishimori line.

H = −
�

i

Ja
i SiSUP SLEFT SRIGHT SBEHIND + Jb

i SiSBOTTOMSLEFT SRIGHT SFRONT
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A frustrated model on a 3D Lattice

Growing of an equilibrium 
length scale, correlated with

 ordered boundaries
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Melting dynamics has a similar phenomenology as fragile glass formers.

The two problems are equivalent in some models: Bulk melting in disordered 
spin models is in the same “universality” class as glassy dynamics!

Conclusions & perspectives
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The two problems are equivalent in some models: Bulk melting in disordered 
spin models is in the same “universality” class as glassy dynamics!

Conclusions & perspectives

Toward a better understanding 
& characterization of finite 
dimensional effects for glasses 
in a standard first order setting:

★Nucleation processes ? 
★Correction to mode-coupling-

theory?

Allows efficient simulations and 
help to rationalize the theory

Glass transition
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Melting dynamics has a similar phenomenology as fragile glass formers.

The two problems are equivalent in some models: Bulk melting in disordered 
spin models is in the same “universality” class as glassy dynamics!

Conclusions & perspectives

Toward a better understanding 
& characterization of finite 
dimensional effects for glasses 
in a standard first order setting:

★Nucleation processes ? 
★Correction to mode-coupling-

theory?

Allows efficient simulations and 
help to rationalize the theory

Glass transition Bulk Melting

We should look to the melting 
problem with the eyes of the 
“glass” transitions....

★New analytical tools/Analogy ? 
★Can we observed experimentally 

*the heterogenous dynamics...      
*the point-to-set correlation... 
*the string-like events...              
in superheated solid ?
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Thank you for your attention!
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BONUS
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Demonstration

Si → τiSi

Step 1: A gauge symmetry 

τi = ±1

The Hamiltonian is invariant in this transformation

The dynamics is transformed in a trivial way

H = −
�

ijk

JijkSiSjSk

Ji → Jiτiτjτk

m(t) =
1
N

�

i

Si(t)→
1
N

�

i

Si(t)τi

1/5
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Demonstration
Step 2: averaging over disorder

[m(t)]NL
av =

�
1
N

�

i

SJ
i (t)

�NL

av

2/5
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Demonstration
Step 4: average over all possible gauges
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Demonstration
Step 5: Final steps
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[m(t)]NL
av = [Ceq(t)]SG

av

The decay of magnetization on the Nishimori line 
is equal to the spin glass correlation function
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Si(t), with m(0) = 1

Magnetization starting from 
the fully ordered state

P-Spin model and the Nishimori line
Ceq(t) = mmelting(t)

Equilibrium correlation function

Ceq(t) = lim
tw→∞

1
N

�

i

Si(tw)Si(tw + t)
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On the 
Nishimori line

in any dimension

The equilibrium time correlation 
is equal to the melting correlation

Melting=equilibrium dynamic
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equal to the melting relaxation time

τeq(β) = τmelting(β) ceq(t) = mmelting(t)
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On the 
Nishimori line

in any dimension

The equilibrium time correlation 
is equal to the melting correlation

Melting=equilibrium dynamic

The free-energy is equal to the Franz-Parisi potential (cf. Parisi talk yesterday)
f(m) = fFP (q)
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A 3D p-spin model on the Nishimori line

A 5-body interaction model... on the Nishimori line.

H = −
�

i

Ja
i SiSUP SLEFT SRIGHT SBEHIND + Jb

i SiSBOTTOMSLEFT SRIGHT SFRONT
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