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@ Introduction to (some) glassy phenomenology

@ The bulk melting problem

@ Glassy and melting dynamics are (sometimes!)
in the same university class




What is a glass ?
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“The deepest and most interesting unsolved problem in solid
state theory is probably the nature of glass and the glass
transition”. P.W. Anderson, Science ‘95
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Supercooled liquids
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Supercooled liquids
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Glass transition(s
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Supercooled liquids
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Supercooled liquids
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Supercooled liquids
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"Two-steps”

relaxation in time correlation function

Time
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"Two-steps”

relaxation in time correlation function
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No apparent sign of order
of correlation lengths...
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“Glass”

The hard spheres problem: Pictures from Werner Krauth
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.. but growing of subtle correlation lengths!

A dynamic correlation length: heterogeneous dynamics

Evolution between time tand t + T
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.. but growing of subtle correlation lengths!

A dynamic correlation length: heterogeneous dynamics

Evolution between time tand t + T

Berthier et al. 2004
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.. but growing of subtle correlation lengths!

A dynamic correlation length: heterogeneous dynamics

Evolution between time tand t + T

Berthier et al. 2004
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.. but growing of subtle correlation lengths!

A dynamic correlation length: heterogeneous dynamics

1) Consider the following 4-points correlation

Cy(t1,ta,71,72) = (p(t1,71)p(t1,m2)p(t2, 71)p(t2,72))
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. but growing of subtle correlation lengths!

A dynamic correlation length: heterogeneous dynamics

1) Consider the following 4-points correlation
Cy(t1,t2,71,72) = (p(t1,71)p(t1,72)p(t2, 1) p(t2,72))

2) Define the following suscep’ribili’ry (or correlated volume)

Wit 1) = /d”'“1d7“204(t1,t2,7“1,7“2)
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.. but growing of subtle correlation lengths!

A dynamic correlation length: heterogeneous dynamics

1) Consider the following 4-points correlation
Cy(t1,t2,71,72) = (p(t1,71)p(t1,72)p(t2, 1) p(t2,72))

2) Define the following susceptibility (or correlated volume)
1
Xa(t1,t2) = v /d”'“1d7“204(t1,t2,7“1,7“2)

3) At equilibrium, time translational invariance impose that
Xa(t1,t2) = xa(At = t2 — t1)
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A dynamic correlation leng’r Direct Experimental Evidence of a
Growing Length Scale

; Accompanying the Glass Transition
]. ) CO nsSi d er 1' h e L. Berthier," G. Biroli,” J.-P. Bouchaud,>* L. Cipelletti,’

D. El Masri,” D. L'Hote,* F. Ladieu,* M. Pierno’

wdacabncndlaw wlase Bavasatlan a a dhallacwe hacaiiaa Aha adebaca

C4(t17t2’r1’r2) e A Dynamncsus
ceptlbllltles N, X

units,” right side of [T o

'\
. relations 5 and 6 for ""“\‘
s three glass formers. S N
2) Define the following S ERES n,, ) NM 0‘0 \ |
desiccated Argon envi- “ ’\‘
ronment to prevent “
X 4 (tl ) t2) water absorption by M
using standard capaci-
tive dielectric measure- 1
ments for 192 K< T < 10 104 102 107 100 107 102
3 A 1_ 3 l b 4 1- 1_ 232K (T, = 185 K). () 2rio (s)
t) was obtained in
) eq u' | rl U m / I m e ra n )c(ol(ltzndal hard spheres by dynamic light scattering. The static prefactor, pk, T, was evaluated
from the Camahan-Starling equation of state (20). From left to right, ¢ = 0. 18, 0.34, 0.42,
X (t t ) 0.46, 0.49, and 0.50. (C) yx,(t) was obtained in a binary Lennard-Jones (L)) mixture by
4 1 7 2 numerical simulation. From left to right, T= 2.0, 1.0, 0.74, 0.6, 0.5, and 0.465 [in reduced L)

units (24, 25)). Relative errors at the peak are at most about 10% for (A) and (C) and 30%
for (B). For all of the systems, dynamic susceptibilities display a peak at the average

for 99.6% pure super

kpT? A (@),

cooled glycerol in

relaxation time whose height increases when the dynamics slows down. which is direct
evidence of enhanced dynamic fluctuations and a growing dynamic length scale.

X4(At = 7) increase strongly when approaching
the fransition (and is expected to diverge!)
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.. but growing of subtle correlation lengths!
An equilibrium correlation length
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

aaredsases ) Consider an equilibrium configuration
&) . ....’6*..¢..“
0¢9% 000950,
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

A .\mgf:&':q 1) Consider an equilibrium configuration
SOLIEX 'ofd%‘ 2) Freeze the system and make a hole

(A
=X XXy
(AN (cavity) of size 4 inside the system
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

SOOI
RO =00 .é...i 2) Freeze the system and make a hole

woiaTas=arses 1) Consider an equilibrium configuration
RSN q y
0

(cavity) of size 4 inside the system
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

cavity: does it stay close to the
original configuration ?
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

T 09I Tasares 1) Consider an equilibrium configuration

e asuyrses i :

® .{0:,‘. oo Jote@% 2) Freeze the system and make a hole
S

A

A

0, Y@@ (cavity) of size £ inside the system

3) Un-freeze the system inside the
cavity: does it stay close to the
original configuration ?
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

19 0001
FeeIe

aTaezaxes 1) Consider an equilibrium configuration
9200 *0’\5.&..?.9& ® T 9
'.t’ @ ! Q.QQY..*GQQa
e PO Ot NG 2) Freeze the system and make a hole

i.(‘ .\ '. (cavity) of size 4 inside the system

cavity: does it stay close to the
original configuration ?

4) The length beyond which the system
in the cavity decorrelates is £,
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

@8 1) Consider an equilibrium configuration
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o8 ¥ @ 3) Un-freeze the system inside the
cavity: does it stay close to the
original configuration ?

4) The length beyond which the system
in the cavity decorrelates is £,
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Point-to-Set correlations !
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.. but growing of subtle correlation lengths!
An equilibrium correlation length

"l 4 N/
s
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W,

e #%es 1) Consider an equilibrium configuration
(X @ A
@ 0)

19 0001
FeeIe

9 Doe
S R OO S Se e cessg
® 35 *“\993@‘9.1 2) Freeze the system and make a hole

(cavity) of size 4 inside the system

cavity: does it stay close to the
original configuration ?

4) The length beyond which the system
in the cavity decorrelates is £,

Point-to-Set correlations !

£¢c increase strongly when approaching
the transition (and is expected to diverge
if there is a genuine transition)
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LETTERS

Thermodynamic signature of growing
amorphous order in glass-forming liquids

G. BIROLI", J.-P. BOUCHAUD?, A. CAVAGNA3, T. S. GRIGERA#>* AND P. VERROCCHIO®

'CEA, DSM, Institut de Physique Théorique, IPhT, CNRS, MPPU, URA2306, Saclay, F-911
2Science & Finance, Capital Fund Management, 6 Bd Haussmann, 75009 Paris, France
3Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, Via dei Taurini 19, - 0.7 d
*Instituto de Investigaciones Fisicoquimicas Tedricas y Aplicadas (INIFTA -CCT La Plat |
Universidad Nacional de La Plata, c.c. 16, suc. 4, 1900 La Plata, Argentina 0.4 -
>Consejo Nacional de Investigaciones Cientificas y Técnicas, c.c. 16, suc. 4, 1900 La P|
® Dipartimento di Fisica, Universita di Trento, via Sommarive 14, 38050 Povo, Trento, Ita
*e-mail: tgrigera@inifta.unip.edu.ar
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0.2 1

)
.QO:QL} 4) The len
M inthe

Point-to-Set
Figure 1 Change of the overlap with mobile cavity size. Overlap at the centre of

' the mobile cavity versus radius R of the cavity, for temperatures 7= 0.482
'eC I n C re a S e s .I. ro n g (diamonds), 0.350 (triangles), 0.246 (squares) and 0.203 (circles). Lines are fits to
141 ' equation (1). Inset: Comparison of g.(R) — g, at T= 0.203 (filled circles) with the
.I. h e 1. ra n s l .I. | O n (a n d l s overlap Q(R) — g, integrated over the whole sphere (open circles, data ref. 23). The

if there is a ge

local observable g.(R) shows a much sharper behaviour. Error bars were obtained
from a jack-knife estimate from sample-to-sample fluctuations.
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Phenomenology of
glass former liquids

@ Super exponentially
relaxation

@ Kauzmann paradox & Adam-
Gibbs relation

@ Two steps correlation function
@ Dynamical heterogeneities

@ “Divergence”’ of a length scale
(Point-To-Set correlations)
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Phenomenology of
glass former liquids

@ Super exponential relaxation

@ Kauzmann paradox & Adam-
Gibbs relation

@ Two steps correlation function
@ Dynamical heterogeneities

@ 'Divergence” of a length scale
(Point-To-Set correlations)
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Phenomenology of
glass former liquids

o Super exponential relaxation

m,o-Xylene

@ Kauzmann paradox & Adam-

Gibbs relation m,o-Fluorotoluene

Chlorobenzene

@ Two steps correlation function U2l

o-Terphenyl
K + Bi*+ClI~
K+Ca?*NO,

@ Dynamical heterogeneities

@ 'Divergence” of a length scale
(Point-To-Set correlations)

Good fit:

Vogel-Fulcher “law”
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Phenomenology of
glass former liquids

@ Super exponential relaxation

o Kauzmann paradox & Adam-
Gibbs relation

@ Two steps correlation function
@ Dynamical heterogeneities

o ‘Divergence” of a length scale
(Point-To-Set correlations)
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Phenomenology of
glass former liquids

@ Super exponential relaxation

o Kauzmann paradox & Adam-
Gibbs relation

As = Sliquid — Ssolid

@ Two steps correlation function

Entropy

@ Dynamical heterogeneities

o ‘Divergence” of a length scale
(Point-To-Set correlations)

A B
T R Tp€ ' " K Ot it

Temperature

As is called the "Configurational entropy” or “Complexity”
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Phenomenology of
lass former liquids

@ Super expogm’rial relaxation

@ Kauzmann paradox & Adam-
Gibbs relation

o Two steps correlation
function

@ Dynamical heterogeneities

o “Divergence” of a length scale
(Point-To-Set correlations)

A B
T R Tp€' K X gias
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Phenomenology of
oo glass former liquids

tial relaxation
402 100 100 10t 102 106 1

1 o 10

@ Kauzmann paradox & Adam-
Gibbs relation

o Two steps correlation
function

@ Dynamical heterogeneities
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o “Divergence” of a length scale
(Point-To-Set correlations)
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Phenomenology of
glass former liquids

@ Super exponential relaxation

@ Kauzmann paradox & Adam-
Gibbs relation

@ Two steps correlation function

o Dynamical heterogeneities

@ 'Divergence” of a length scale
(Point-To-Set correlations)
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Phenomenology of
glass former liquids

@ Super exponential relaxation

@ Kauzmann paradox & Adam-
Gibbs relation

@ Two steps correlation functionjs

o Dynamical heterogeneities

@ "Divergence” of a length scaleji
(Point-To-Set correlations) :
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Phenomenology of
lass former liquids

@ Super expogﬁrial relaxation

@ Kauzmann paradox & Adam-
Gibbs relation

@ Two steps correlation function

@ Dynamical heterogeneities

o "Divergence” of an equilibrium
length scale
(Point-To-Set correlations)
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Phenomenology of
oo glass former liquids

@ tial relaxation
WaNOEwSgwan=o'y
@ Kauzmann paradox & Adam- X X KPS 2.(‘?%*95’0 @)
Gibbs relat 28 8s0ca® e !
ibbs relation ) \ K ‘@.. )

@ Two steps correlation function

@ Dynamical heterogeneities

o "Divergence” of an equilibrium
length scale
(Point-To-Set correlations)
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Phenomenology of
glass former liquids

Still many debates on how to

@ Super exponential relaxation ¢ : : o
describe this transition

@ Kauzmann paradox & Adam-

Gibbs relation ?

Random Fs’r Order

Phenomenology ?
@ Dynamical heterogeneities Thirumalai, Kirkpafrick, Wolynes (87-89)

@ Two steps correlation function

@ “Divergence ?” of a length

scale (Point-To-Set correlations) : V. 7
(replica theory) First principles

computations in glasses
Mezard-Parisi (99')



A very debated
question....
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In this talk: Two Statements




In this talk: Two Statements

ONE: All this complex “glassy” phenomenology
can be observed in the bulk melting problem.




In this talk: Two Statements

ONE: All this complex “glassy” phenomenology
can be observed in the bulk melting problem.

TWO: Melting dynamics and equilibrium dynamics
are exactly equivalent in some models.

(in particular the Random First Order Theory is mappable
to a melting problem of some sort...)
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ONE

Melting dynamics
of superheated solids




Dynamics from fully ordered
initial conditions




Dynamics from fully ordered
initial conditions

1) Consider a problem with
a first-order transition at Tc




Dynamics from fully ordered
initial conditions

® Liquid-Solid

® Potts models

® Spin models with
3-body interactions

1) Consider a problem with
a first-order transition at Tc
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Dynamics from fully ordered
initial conditions

® Liquid-Solid

® Potts models

® Spin models with
3-body interactions

1) Consider a problem with
a first-order transition at Tc

2) Initialized your system
in the fully ordered configuration
(i.e. the ground state configuration)
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Dynamics from fully ordered
initial conditions

® Liquid-Solid

® Potts models

® Spin models with
3-body interactions

1) Consider a problem with
a first-order transition at Tc

2) Initialized your system
in the fully ordered configuration
(i.e. the ground state configuration)

® Crystal state
® All spins equal
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Dynamics from fully ordered
initial conditions

® Liquid-Solid

® Potts models

® Spin models with
3-body interactions

1) Consider a problem with
a first-order transition at Tc

2) Initialized your system
in the fully ordered configuration
(i.e. the ground state configuration)

® Crystal state
® All spins equal

Set the temperature to T>Tc and observe the melting dynamics
of the ordered phase into the less ordered one
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Dynamics from fully ordered
initial conditions

® Liquid-Solid

® Potts models

® Spin models with
3-body interactions

1) Consider a problem with
a first-order transition at Tc

2) Initialized your system
in the fully ordered configuration
(i.e. the ground state configuration)

® Crystal state
® All spins equal

Set the temperature to T>Tc and observe the melting dynamics
of the ordered phase into the less ordered one

Periodic Boundary
conditions = No boundaries!

No “surface melting”
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First order transitions

free energy landscape

very high T




First order transitions

free energy landscape

high T




First order transitions

free energy landscape

lower T




First order transitions

free energy landscape

Transition Tc




First order transitions

free energy landscape

Low T




Melting dynamics

free energy landscape

Large enough
Temperature
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Melting dynamics
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Melting dynamics

In mean-field:
Melting dynamics is
trapped by the high

free-energy state

In finite dimension:
Metastability &
Activation process
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Melting dynamics

In mean-field:
Melting dynamics is
trapped by the high

free-energy state

In finite dimension:
Metastability &
Activation process
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Nucleation argument

Cost: Gain:
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Nucleation argument

Cost: Gain:
Fs:’)/fd_l Fv:Afzd

Total Free energy cost of the droplet
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Nucleation argument

Cost: Gain:
Fs=7€d_1 Fv:Afgd

Total Free energy cost of the droplet

AF
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The nucleation argument

Free energy barrier

’}/d

az ~ A fd—1

AF,,

Arrhenius factor
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The nucleation argument

Free energy barrier

d
0
AFmaaf; ~ Afd_l

Arrhenius factor

T X eﬁA/Afd_l

BA/(T—Tc)% 1

T X €
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The nucleation argument

Potts model D=2
H:—Zési,Sj SZl,...,C]

d
Af Ist order for g>4 o =l . /q)

Arrhenius factor q=10, Tc=0.70123...

Free energy barrier

T X eﬁA/Afd_l

BA/(T—Tc)% 1

T X €
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The nucleation argument

Free energy barrier

Arrhenius factor

o BA/(T=Tc)*™

Potts model D=2
H:—Zési,Sj 821,...,6_]

<1y >
1st order for g>4

q=10, Tc=0.70123...

9
A LT
7 ) j,"" “{-Ii-,-:{l-.ﬁ.,!.lx'l,‘l,'q',ihl”:'MH”‘ ||||||||||||||||||||||||
. bay F0ng gy My, S TR D T
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The nucleation argument

Potts model D=2
Arrhenius factor
H:—Zési,Sj 821,...,6_]

d—1 _
T X eﬁA/(T_TC) <7

Ist order for g>4 o =l . /q)

g=10, Tc=0.70123..

A
TVS 1 /(T-Tc)++1&’+

H*M +

c
2
-+

O
N
-+

Q

C

(&)

O

=
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The nucleation argument

Potts model D=2
Arrhenius factor
H:—Zési,Sj 821,...,6_]
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T X eﬁA/(T_TC) <7
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Melting in the 2d Potts model:
nucleation and growth




Melting in the 2d Potts model:
nucleation and growth

TIHE = 263287
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Melting in the 2d Potts model:
nucleation and growth

S
S
-
-
-
-
=
2
-
=
=
=

£

.,

grpananannt

1
AY

i

—ay)

Growing of dynamical
heterogeneities

1
Xa(t1,t2) = % /dT1dT2C4(t1,t2,7“177“2)

xa(t) = xr(t) = N(< m(£)* > — <m(t) >7)

1466
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Correlation length ?
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Divergence of an equilibrium
Correlation length ?

1) Consider the initial
configuration

2) Freeze the system and
make a hole of size 4

3) Un-freeze the system
inside the cavity




Divergence of an equilibrium
Correlation length !

Tc=0.70123

T=0.702

© T=0.704

Growing and divergence
of a (large) equilibrium
correlation length....
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Melting phenomenology...

@ Plateau in the correlation function

@ From Power-law (mean-field) to Vogel-Fulcher (finite dimension)
d—1

@ Relation between static and dynamic T o ePABS

@ Heterogeneous dynamics

@ Divergence of a “static” length scale
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Melting phenomenology...

@ Plateau in the correlation function

@ From Power-law (mean-field) to Vogel-Fulcher (finite dimension)
d—1

@ Relation between static and dynamic T o ePABS

@ Heterogeneous dynamics

@ Divergence of a “static” length scale

.. Just like glass phenomenology!
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Differences between melting dynamics and
the equilibrium dynamics of glass formers

Melting glass forming liquids

Out-of equilibrium process == Equilibrium dynamics
Happens only once -»@ Equilibrium Stationary process

Free energy difference

Entropy difference

BAJAF*: BA/AS

THEX € X 6

Latent heat In
first order transition

No Latent heat at
the glass transition
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TWO

Glassy dynamics can be
sometime mapped exactly to a
melting problem...




The mean-field p-spin model

Multi-spin interaction models

= Z JijkOiSj Ok 321 with prob. p and J=-1 with prob. (1-p)
ik Ex: Bethe lattice, c=5

Starting point of the Random-First-Order Theory
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The mean-field p-spin model

Multi-spin interaction models

= Z JijkOiSj Ok 321 with prob. p and J=-1 with prob. (1-p)
ik Ex: Bethe lattice, c=5

On the Nishimori line, a gauge symmetry allows to
compute many quantities and to derive many idenfities
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A new (and powerful) result on the NL
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o (8

Equilibrium correlation function
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(e - m™ (1)

Magnetization starting from
the fully ordered state

1
Ceq(t) = llinoo N ZS ot m(t) = < > Si(t), with m(0) =1

Equilibrium correlation function



Melting=equilibrium glassy dynamics

The equilibrium time correlation
IS equal to the melting correlation

Ceq (t) — Mmelting (t)
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Melting=equilibrium glassy dynamics

The mean-field glass
transition

IS rigorously equivalent
to a melting problem !

The equilibrium relaxation time is The equilibrium time correlation
equal to the melting relaxation time is equal to the melting correlation
7-eq(ﬁ) — Tmelting (6) Ceq(t) — Mmelting (t)

The static (point-to-set) and dynamic (heterogeneities)
length scales in the are equal to the melting ones

qu(t) 5 Xr;elting (t) KPTS( 5) A ZFERRO( 5)

The mode coupling fransition-point is equivalent to the spinodal point!
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Mean field model on the Nishimori line

Bethe lattice (Regular Random graph, c=5), Solvable with the Cavity/Replica method

® First order ferromagnetic transition (jump in the magnetization)
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Mean field model on the Nishimori line

Bethe lattice (Regular Random graph, c=5), Solvable with the Cavity/Replica method
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® First order ferromagnetic transition (jump in the magnetization)
® The energy is confinuous and analytic at the transition

® “Entropy driven” transition: As=sjquid-Ssoid 0 at the transition
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Mean field model on the Nishimori line

Bethe lattice (Regular Random graph, c=5), Solvable with the Cavity/Replicd method

-0.1

-0.15

O
IS
»
T
9
3
R=a
v
]
3

-0.2

-0.25 —

06 065 0.7 075 08 085 09 0.95

T

® First order ferromagnetic transition (jump in the magnlefizal’rion)
® The energy is confinuous and analytic at the transition

® “Entropy driven” transition: As=sjquid-Ssoid 0 at the transition
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Mean field model on the Nishimori line

Bethe lattice (Regular Random graph, c=5), Solvable with the Cavity/Replica method

o
—

Pa
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O
—
-+
C
\)
O
c
2
S
—
3
(@)
=
c
O
o

" 06 065 07 075 08 085 09 095 1

T

® First order ferromagnetic transition (jump in the magnlefizal’rion)
® The energy is confinuous and analytic at the transition

® “Entropy driven” transition: As=sjquid-Ssoid 0 at the transition

.y

® Equilibrium dynamics along the line has a mean-glass transition
(described by a mode-coupling phenomenology )

® The configurational entropy is given by 2=As=S|iquid-Ssolid
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Mean field model on the Nishimori line

Bethe lattice (Regular Random graph, c=5), Solvable with the Cavity/Replica method

Dynamical
heterogeneities

Correlation
functions
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Melting & Glassy dynamics

@ In mean field spin glasses, equilibrium glassy dynamics can
be mapped to a particular melting phenomenon.
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Melting & Glassy dynamics

@ In mean field spin glasses, equilibrium glassy dynamics can
be mapped to a particular melting phenomenon.

@ The Random First-Order Theory is mappable to a melting
problem driven by entropy only

@ Such mapping are not limited to mean field systems and
similar results can be obtfained in some 3-dimensional spin
models.
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A 3D p-spin model on the Nishimori line

Melting Relaxation time
= Equilibrium relaxation time

o
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Q
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10*  10°
time (log scale)
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A 3D p-spin model on the Nishimori line

Melting Relaxation time
= Equilibrium relaxation time

VFT with T.=0.88

VFT with T,=0.88

Magnetization

1 12 14 16 1.8
T

10> 10*
time (log sc.
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A frustrated model on a 3D Lattice
Melting dynamics

Growing of an equilibrium
length scale, correlated with
ordered boundaries

Point-to-set correlations

el <>

o »a

K
7 7N

o
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Conclusions & perspectives

@ Melting dynamics has a similar phenomenology as fragile glass formers.

@ The two problems are equivalent in some models: Bulk melting in disordered
spin models is in the same "universality” class as glassy dynamics!
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Conclusions & perspectives

@ Melting dynamics has a similar phenomenology as fragile glass formers.

@ The two problems are equivalent in some models: Bulk melting in disordered
spin models is in the same "universality” class as glassy dynamics!

@ Toward a better understanding
& characterization of finite

dimensional effects for glasses
in a standard first order setting:

% Nucleation processes ?

% Correction to mode-coupling-
theory?

@ Allows efficient simulations and
help to rationalize the theory
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Conclusions & perspectives

@ Melting dynamics has a similar phenomenology as fragile glass formers.

@ The two problems are equivalent in some models: Bulk melting in disordered
spin models is in the same "universality” class as glassy dynamics!

@ Toward a better understanding

& characterization of finite Pl TR0 heelling

dimensional effects for glasses Er‘l’ le,fnfw' h,f, he eyes of the

in a standard first order setting: G CH I

% Nucleation processes ? % New analytical tools/Analogy ?

% Correction to mode-coupling- % Can we observed experimentally
theory? J *the heterogenous dynamics...

*the point-to-set correlation...

> g . .
@ Allows efficient simulations and i:";i ;l‘;'g‘egg,r“ekde Seo\{ﬁj”’[f---
help to rationalize the theory '
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Thank you for your attention!




BONUS
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Demonstration

Step 1: A gauge symmetry

H=—Y JixS:5;5%

ijk

Thire 11
Si — Tid;

Ji =l JiTiTka
The Hamiltonian is invariant in this transformation

The dynamics is transformed in a trivial way

m(l i %ZS@(IS) > ]1[257;(?5)77;
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Demonstration i

Step 2: averaging over disorder

N L

O = |5 D087

av
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Demonstration 248
Step 2: averaging over disorder
O = |5 3087 <t> = 3" [T P(him) > 57




Demonstration i

Step 2: averaging over disorder

4 NL

ol = | 308/0| - =S TP 30510

i J klm
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Demonstration 2%

Step 2: averaging over disorder

1 NL

@I = |23 870| - =3 T PUm) Y870

) d av J kim




Demonstration 345

Step 3: apply the Gauge transform

1 e2ekim Jrim |

Ot =D g e R i )

J
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Demonstration 4
Step 3: apply the Gauge transform
1 e2ekim Jrim |
e S? (¢
[m( )]av Z]: oM COShMﬂ N z@: i ( )
Ty 7= i
S@ M 7'7;5'
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Demonstration 4
Step 3: apply the Gauge transform
1 e2ekim Jrim |
e S? (¢
[m( )]av Z]: oM COShMﬂ N z@: i ( )
Ty 7= i
S@ M TiS

1 GZklm S o T T i 1

m(t)|ae = 28 T —— Z S7(t)




Demonstration A

Step 4: average over all possible gauges

]_ QZklm L (e LA, 1

i)l O S T s RS (i

A
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Demonstration A

Step 4: average over all possible gauges

]_ QZklm L (e LA, 1

(i)l =D s — g 2 ST (@

A

GZklm T o T ] T 1

il o L L 2M cosh™ 3 Z Si ()
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Demonstration A

Step 4: average over all possible gauges

]_ QZklm L (e LA, 1

(i)l =D s — g 2 ST (@

A

GZklm T o T ] T 1

il o L L 2M cosh™ 3 Z Si ()

For mean field
models, as 7 = 2% cosh g
long as T>Tk
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Demonstration A

Step 4: average over all possible gauges

]_ QZklm L (e LA, 1

(i)l =D s — g 2 ST (@

A

GZklm T o T ] T 1

il g L L 2M cosh™ f3 Z Si ()

For mean field
models, as 7 = 2% cosh g
long as T>Tk
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Demonstration A

Step 4: average over all possible gauges

]_ QZklm L (e LA, 1

(i)l =D s — g 2 ST (@

A

GZklm T o T ] T 1

il o L L 2M cosh™ 3 Z Si ()

ezklm N |

m()] 27 = > ). IR0
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Demonstration 28

Step 5: Final steps

This is the equilibrium
correlation

/

ezklm N |

N 2.5




Demonstration

Step 5: Final steps

This is the spin glass
disorder average

ezklm N |

N 2.5

m()] 27 = > ).




Demonstration

Step 5: Final steps

This is the spin glass
disorder average

ezklm N |

N 2.5

m@OFEY wDe




Demonstration 28

Step 5: Final steps

av av

m()]ay = [Ceq()av

The decay of magnetization on the Nishimori line
is equal to the spin glass correlation function

ezklm N |

N 2.5

ZQMZ




P-Spin model and the Nishimori line
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P-Spin model and the Nishimori line

Sunday, January 30, 2011



P-Spin model and the Nishimori line
Ceq(t) — Mmelting (t>
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P-Spin model and the Nishimori line
Ceq(t) — Mmelting (t>

Equilibrium correlation function Magnetization starting from
the Fully ordered state

CGQ( :thinooﬁzs i(fw + 1) ZS i s 1 (0) = 1

Sunday, January 30, 2011




Melhng equilibrium dynamic

On the
Nishimori line
in any dimension

The equilibrium time correlation
IS equal to the melting correlation

Ceq (t) — Mmelting (t)
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Melhng equilibrium dynamic

On the
Nishimori line
in any dimension

The equilibrium relaxation time is The equilibrium time correlation
equal to the melting relaxation fime is equal to the melting correlation

Teq(ﬁ) — Tmelting (6) Ceq(t) — Mmelting (t)
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Melhng equilibrium dynamic
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Nishimori line
in any dimension

The equilibrium relaxation time is The equilibrium time correlation
equal to the melting relaxation fime is equal to the melting correlation
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The static (point-to-set) and dynamic (heterogeneities)
length scales in the are equal to the melting ones
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Melhng equilibrium dynamic

On the
Nishimori line
in any dimension

The equilibrium relaxation time is The equilibrium time correlation
equal to the melting relaxation fime is equal to the melting correlation
Teq(ﬁ) — Tmelting (6) Ceq(t) — Mmelting (t)

The static (point-to-set) and dynamic (heterogeneities)
length scales in the are equal to the melting ones

qu(t) @ Xr;elting (t) KPTS( 5) il ZFERRO( 5)

The free-energy is equal to the Franz-Parisi potential (cf. Parisi talk yesterday)

f(m) = frp(q)
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A 3D p-spin model on the Nishimori line

H=— Z J¢S:SupSLErrSrIGHTSBEHIND + J.SiSBOTTOMSLEFTSRIGHT SFRONT

7

A 5-body interaction model... on the Nishimori line.
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