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Random Constraint Satisfaction Problems

Random K-Satisfiability

Consider N boolean variables xi and M random clauses of K literals
M
The average number of constraints is o = —

Is it possible to find an assignment of the varlables that satisfies all the constraints?
Ex: Random 3-SAT

(x1 OR ~x2 OR x3) AND (~x2 OR x4 OR x5) AND (~xs OR x7 OR ~x3) AND ...

Random g-Coloring

Consider q colors, N points and a random set of M edges connecting them.

Is it possible to color the points so that none of them has the same color as one of its
neighbors ? M .

The average number of constraints is &« = — — — ,where c is the average
connectivity 2

Ex: Random 3-COL

COL and SAT are both NP-complete
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Example of CSP: the Coloring of a random graph

N=100 vertices, M=218 edges, average degree c=2M/N=4.36
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Why is random constraint satisfaction interesting?

percent satisfiable

Existence of a sharp
SAT/UNSAT (or COL/UNCOL)

threshold
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e SAT/UNSAT threshold at average degree O
 w.h.p. colorable for & < (xgand w.h.p. uncolorable for & > O/
e (A part of ) Proof of existence (Friedgut 1997, Achlioptas, Friedgut, 1999)
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e The time needed to decide satisfiability increases a lot close to o
Computationally hard region near to the colorable threshold
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Why is random constraint satisfaction interesting?

Existence of a sharp Computationally “hard” region
SAT/UNSAT (or COL/UNCOL) near to the threshold
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Can we compute the location of the COL/UNCOL threshold?

Are there other sharp transitions in the problem?

Why are some instances so hard? Is there a way to make them easy?
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Coloring random graphs for physicist

¥ Consider the following Potts anti-ferromagnet Hamiltonian:
H = E 5(87;, Sj)
#A configuration with zero energy is a proper coloring. <13>

¥To see if a graph is colorable just compute the ground-state
energy and see if it is zero.

Si:1,2,...,q

¢ A random graph is locally tree-like with large loops (of typical
size log(N)): mean field methods are exact!
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Coloring random graphs for physicist

¥ Consider the following Potts anti-ferromagnet Hamiltonian:
H = E 5(8@, Sj)
#A configuration with zero energy is a proper coloring. <13>

¥To see if a graph is colorable just compute the ground-state
energy and see if it is zero.

Si:1,2,...,q

¢ A random graph is locally tree-like with large loops (of typical
size log(N)): mean field methods are exact!

Random Constraint Satisfaction Problems such
as g-COL of K-SAT can be studied within mean
field spin glass theory using the “cavity method”

Mézard, Parisi, Zecchina, Science (2002)
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Overview

e Brief presentation of the cavity method

e Computation of the phase diagram

e Algorithmic consequences
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Statistical Physics of random CSP

Cavity approach: A mean field method for statistical physics models on tree-like graphs.
Equivalent to the replica method of disordered systems

Parisi, Mézard, Virasoro ‘87, Parisi, Mézard 00,

Accomplishments
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Statistical Physics of random CSP

Cavity approach: A mean field method for statistical physics models on tree-like graphs.
Equivalent to the replica method of disordered systems

Parisi, Mézard, Virasoro ‘87, Parisi, Mézard 00,

@ Accomplishments %

Prediction of a glassy (clustered) phase in the colorable region
Mézard, Zecchina, Parisi, ‘02, Biroli, Monasson, Weigt, ‘99

The exact SAT/UNSAT threshold computed. Survey Propagation algorithm designed.

K-SAT: Mézard, Zecchina, Parisi, ‘02,
q-COL: Mulet, Pagnani, Weigt, Zecchina, ‘03
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What are clusters?

Roughly said: Lumps (groups) of nearby solutions which are in some
sense disconnected from each other.

For mathematical physicist: “Extremal Gibbs measures = pure states”.
For computer scientist: Fixed points of belief propagation.
For spin glass physicist: Solutions of TAP equations.

Cd Cg

Y Y
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What are clusters?

Roughly said: Lumps (groups) of nearby solutions which are in some
sense disconnected from each other.

For mathematical physicist: “Extremal Gibbs measures = pure states”.
For computer scientist: Fixed points of belief propagation.
For spin glass physicist: Solutions of TAP equations.

What is the distribution of the sizes of the clusters ?

Cd Cg

Y Y

o
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A refined analysis of clusters

» Entropy (size) of a cluster s:

logarithm of the number of solutions belonging to the cluster (divided by the
number of variables).

» Complexity function >(s) : . :
logarithm of the number of clusters of size s N(S) = GNZ(S):

If32(s)>0, there are exponentially many states of size s.
If 3(8)<0, then states of size s become exponentially rare as N grows.

2®)

/ s
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A refined analysis of clusters

» Entropy (size) of a cluster s:

logarithm of the number of solutions belonging to the cluster (divided by the
number of variables).

» Complexity function >(s) : . :
logarithm of the number of clusters of size s N(S) = GNZ(S);

If32(s)>0, there are exponentially many states of size s.
If 3(8)<0, then states of size s become exponentially rare as N grows.

» We compute the complexity function using the zero temperature cavity method
via a Legendre transform ®(m) of ¥(s) .

» Main idea (vézarg, Palassini, Rivoire, ‘05): Weight each cluster by its size to the power m:

VM) — N2 (Neaym — / NIHEGNqs  B(m) = ms + (s),

o

Note: the approach of Mézard, Zecchina, Parisi ‘02; Mulet, Pagnani, Weigt, Zecchina ‘02 was at m=0.
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Solve (mostly numerically) the 1RSB cavity equations

+ Work out the several special cases when the equations simplify
(m=1, m=0, frozen variables, regular graphs ...)
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Overview

e Brief presentation of the cavity method

e Computation of the phase diagram

e Algorithmic consequences
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Learning fromX(s)

Example of 6-coloring, connectivities 17, 18, 19, 20 (from top).

>, 0.2

0.15

0.1
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6 coloring of regular random graph very low connectivity
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6 coloring of regular random graph connectivity ¢=17




6 coloring of regular random graph connectivity ¢c=18




6 coloring of regular random graph connectivity ¢c=19




6 coloring of regular random graph connectivity ¢=20




Many phase transitions
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Many phase transitions

v Clustering transition

¢ The phase space splits into exponentially many states
ca(3) =4, cq(4) = 8.35, cq(b) = 12.84
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Many phase transitions

Cc
v Clustering transition

¢ The phase space splits into exponentially many states
ca(3) =4, cq(4) = 8.35, cq(b) = 12.84

v¢ Condensation transition

¢ Entropy dominated by finite number of the largest states.
ce(3) =4, c.(4) = 8.46, c.(5) = 13.23
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Many phase transitions

Cc
w Clustering transition
¢ The phase space splits into exponentially many states

ca(3) =4, cq(4) = 8.35, cq(5) = 12.84
v¢ Condensation transition

¢ Entropy dominated by finite number of the largest states.
ce(3) =4, c.(4) = 8.46, c.(5) = 13.23

ww COL/UNCOL transition

¢ No more clusters, uncolorable phase
cs(3) = 4.69, cs(4) = 8.90, c5(5) = 13.67

Moreover: The entropically dominating clusters are 1RSB stable in the colorable phase
(at least for q>3)

Florent Krzakala International Workshop on Statistical-Mechanical Informatics, Kyoto 2007



Same phenomenology as in

Ma nyp hase transitions the ideal glass transition (ex: p-spin)

Ce Cs
w Clustering transition .
¢ The phase space splits into exponentially many states Dynamic

cq(3) =4, cq(4) = 8.35, cq(b) = 12.84 (Ergodicity Breaking) transition
v¢ Condensation transition

Entropy dominated by finite number of the largest states. ¢/, (Kauzmann) transition
ce(3) =4, c.(4) = 8.46, c.(5) = 13.23

v COL/UNCOL transition

¢ No more clusters, uncolorable phase
cs(3) = 4.69, cs(4) = 8.90, c5(5) = 13.67

Moreover: The entropically dominating clusters are 1RSB stable in the colorable phase
(at least for q>3)
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The freezing of clusters

Ce

Two types of clusters are found

Soft or “unfrozen” clusters Hard or “frozen” clusters

A finite fraction of variables are allowed only
one color in all solutions belonging to the
cluster: we say that these variables “freeze”

All variables are allowed at least two
different colors in the cluster
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Ce

Two types of clusters are found

Soft or “unfrozen” clusters Hard or “frozen” clusters

A finite fraction of variables are allowed only
one color in all solutions belonging to the
cluster: we say that these variables “freeze”

All variables are allowed at least two
different colors in the cluster

W Rigidity transition
¢ Frozen variables appears in the dominating states.
cr(?)) = 4.60, cr(4) = 8.83, cr(5) = 13.55
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v Clustering/Dynamic transition

vt Condensation/Static transition

v COL/UNCOL transition

w Freezing of clusters and the rigidity transition
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Overview

e Brief presentation of the cavity method

e Computation of the phase diagram

e Algorithmic consequences
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Cr

Meaning of the transitions

v Clustering/Dynamic transition

vt Condensation/Static transition

v COL/UNCOL transition

w Freezing of clusters and the rigidity transition
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Ce

v Clustering/Dynamic transition

» “Ergodicity breaking transition”, equilibration time diverges
» Metropolis Monte-Carlo inefficient for sampling

v Condensation/Static transition

v COL/UNCOL transition

w Freezing of clusters and the rigidity transition
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Ce Cs

W Clustering/Dynamic transition Easy/Hard transition for

» “Ergodicity breaking transition”, equilibration time diverges  the “MC sampling” problem
» Metropolis Monte-Carlo inefficient for sampling (but not for the “solving” problem)

v Condensation/Static transition

v COL/UNCOL transition

w Freezing of clusters and the rigidity transition
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Cr

Meaning of the transitions

W Clustering/Dynamic transition Easy/Hard transition for

» “Ergodicity breaking transition”, equilibration time diverges  the “MC sampling” problem
» Metropolis Monte-Carlo inefficient for sampling (but not for the “solving” problem)

W Condensation/Static transition
p “Static replica symmetry breaking transition”
» Many clusters exist, but a finite number of them covers almost all solutions
» The overlap function P(q) becomes non-trivial

v COL/UNCOL transition
» No solutions exist anymore

w Freezing of clusters and the rigidity transition

» Solutions are hardly constraint within the cluster
» For c>c;, most solutions belong to frozen clusters
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Cr

Meaning of the transitions

w Clustering/Dynamic transition Easy/Hard transition for

» “Ergodicity breaking transition”, equilibration time diverges  the “MC sampling” problem
» Metropolis Monte-Carlo inefficient for sampling (but not for the “solving” problem)

W Condensation/Static transition
p “Static replica symmetry breaking transition”
» Many clusters exist, but a finite number of them covers almost all solutions
» The overlap function P(q) becomes non-trivial

v COL/UNCOL transition
» No solutions exist anymore

A . S - The frozen clusters are
¢ Freezing of clusters and the rigidity transition e T e e e

» Solutions are hardly constraint within the cluster of finding solutions
p For c>c;, most solutions belong to frozen clusters (not the clustering in itself)
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“Wet toes” algorithm

Arkless strategy for flood victims

You are on a rugged landscape that is being flooded




“Wet toes” algorithm

Arkless strategy for flood victims

Water goes up. When your toes are wet
step back on the land!




“Wet toes” algorithm

Arkless strategy for flood victims

And wait until your toes get wet again...




“Wet toes” algorithm

Arkless strategy for flood victims

Sooner or later you’ll find yourself on a smaller island...




“Wet toes” algorithm

Arkless strategy for flood victims

Then even a smaller one...




“Wet toes” algorithm

Arkless strategy for flood victims

Until eventually you’ll drown (if you can’t swim!)




“Wet toes” algorithm

Arkless strategy for flood victims

Finally, all land will be flooded!




“Wet toes” algorithm

|
|

Calgo

The algorithm works until the cluster disappears
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Frozen clusters make it hard!

Cd CK Calgo Cs

A fundamental properties of frozen clusters:
= Frozen clusters are fragile and disappear after the addition of few links.

= The number of needed changes is finite in unfrozen clusters and infinite in
frozen ones Semerjian ‘07
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Frozen clusters make it hard!

| | |
1 1 |

Cd CK Calgo

The algorithm works until the cluster disappears
and this happens when frozen variables appear
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Performance of the “Wet toes” algorithm

1e+07 :
16406 |
100000 |
10000 |

1000 |

100 |

10 |

1 I s -
0 10

Goes beyond the dynamical and the condensation transition for qg=3 & 4
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Performance of the “Wet toes” algorithm

1e+07 :
16406 |
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1000 |
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Goes beyond the dynamical and the condensation transition for qg=3 & 4

Florent Krzakala

But stops before the rigidity transition !
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Another example:Walk-COL algorithm

gl%Randomly choose a spin that has the same color as at least one of its neighbors.
2)Change randomly its color. Accept this change with probability one if the number of
unsatisfied spins has been lowered, otherwise accept it with probability p.

(3)If there are unsatisfied vertices, go to step (i) unless the maximum running time is reached.

i
0.1 ¢ N=200 000 ———

001 | .

0.001 ¢

Fraction of unsatisfied variables

le-04 |
| 1000 '
le-05 L— S N <= R -
1000 10000 100000 le+06 le+07

t/N




Conclusions & perspectives

~~ Determination of the phase diagram of the random coloring

problem. A rich “glassy”-like phenomenology is found :
“~ dynamical transition
“~ condensation/Kauzmann transition
~ “rigidity/freezing” transition
“~ COL/UNCOL transition

< Discussion of the algorithmic implications
“~ Frozen variables are responsible for the computational hardness

“» Future directions :

~~ More (and possibly exact) results on the EASY/HARD transition and frozen clusters ?
See next talk by F. Zamponi
“~~ Toward a rigorous formulation of the cavity results? Numerical check of static and
dynamic predictions?
> Enumeration (c.f. Last talk by A. Hartmann)
> Monte-Carlo simulations?
~~ Better algorithms using message passing (BP and SP)?
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Monte-Carlo simulations?

The typical phase diagram in a temperature/connectivity plane

Temperature

A

"Dynamic" Gardner phase
glass

eGs(CL -

Connectivity

Is it possible to confirm these predictions in a Monte-Carlo
simulation and to find the dynamic, static and Gardner transition?
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Conclusions & perspectives

~~ Determination of the phase diagram of the random coloring

problem. A rich “glassy”-like phenomenology is found:
“~ dynamical transition
“~ clustering transition
~ “rigidity/freezing” transition
“~ COL/UNCOL transition

< Discussion of the algorithmic implications
“~ Frozen variables are responsible for the computational hardness

“» Future directions :

~~ More (and possibly exact) results on the EASY/HARD transition and frozen clusters?
See next talk by F. Zamponi
“~ Toward a rigorous formulation of the cavity results ? Numerical check of static and
dynamic predictions?
> Enumeration (c.f. Last talk by A. Hartmann)
> Monte-Carlo simulations?
~~ Better algorithms using message passing (BP and SP)?
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Message Passing algorithms beyond SP ?

e Survey Propagation (cavity recursion on a single graph at m=0) is currently
the best solver for random SAT

e Belief Propagation (replica symmetric cavity recursion on a single graph)
can also be used with very good results (as it actually asymptotically gives
exact marginals until the condensation)

1%

L% @ :
L | 4-col
0.8 | - .

06 r

04 r

Fraction of succes

0.2 + N=2000 —+—
N=4000 - ===
N=8000 ----%----
5 N=16000 = . ‘ : .
8 8.2 8.4 8.6 8.8 9

e What is the limit of these algorithms?
e What is the best way to use message passing in order to find a solution?

m See the recent paper by Montanari et al. arxiv:0709.1667
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Bonus Section
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Large number of colors (analytical results)
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sPnontrivial  ¢sp =~ q(log g + loglogq + 1 — log 2)

Clustering

Rigidity ¢ ~ q(log q + loglogq + 1)

Condensation Cqg ~ 2q log q — log q — 2 log 2
Col/Uncol Cqg = 2q lOg q — lOg q — 1
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The Cavity Method

Parisi, Mezard, Virasoro ‘87

Parisi, Mézard

‘00

Parisi, Mézard, Zechinna ‘02




The iterative solution on a tree

Coloring = anti-ferromagnetic Potts model at zero temperature

i
j :j"i:‘;

Recursive equations on a tree (Belief propagation):

keV(i)—j Sk

keV(i)—j

wzjj is the set of probabilities that the spin i takes the color q in absence of the spin j



The replica symmetric solution on a graph

A random graph being locally tree-like, assume a “fast” decay of
correlations, then the RS solution should be correct.
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The replica symmetric solution on a graph

A random graph being locally tree-like, assume a “fast” decay of
correlations, then the RS solution should be correct.

Bandyopadhyay, Gamarnik ‘05

' Rigorously proven for regular random graphs for c <qg-1....

... and believed to be correct even beyond (until ¢ ~q log q).

Solution of the self-consistent equation:
Only the “paramagnetic” 1) = (1/q,1/q, ... ) in the COL phase.

This leads to the following entropy:

1
Srs = logq + Elog (1 — —)
2 q




When is the tree solution expected to be correct ?

w If we are in a “paramagnetic phase” .

v From spin glass theory, we expect however a transition to a spin
glass phase.

@)

¢ 1) Continuous transition (divergence of the Spin glass susceptibility)

like in the Sherrington-Kirkpatrick model

O

¢ 2) Discontinuous transition (like in the p-spin or the Random Energy
model model)
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The phase space splits into an exponential numberN of components.
N>

L
>

Define the complexity (or configurational entropy) " asj\/ — e

The complexity can be computed using a “modified” partition sum:

gm — eﬁﬂs)) _ / dfe~NBmFB)=3(f)) _ o~BmN®(3:m)
o=y (gem) -

o SE«

The “Replicated” free energy is the Legendre transform of the complexity

—fm®(m, B) = —FmE(F) + X(F)




The replica symmetry breaking recursion

Order Parameter: -
Probability distribution P*—J (w) of fields for every edge.

Self-consistent equation:

Pi() = — / ST — F({yE= ] emdS ™ T dPFiy)

Zi—]
keV(i)—j




The replica symmetry breaking recursion

Order Parameter: -
Probability distribution P*—J (w) of fields for every edge.

Self-consistent equation:
. . 1 . . . 'L—) .
1—7 _ i—j k—1 mAS* I k—1

P (Y) = i3 /5[ s —F{vs "Hle [[ dP* (v

keV(i)—j

Numerical Solution - Population dynamics: very heavy!!!

Simplifications : m=0, m=1, regular graphs, hard fields...

Large q expansion




