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Random Constraint Satisfaction Problems

• Random K-Satisfiability
Consider N boolean variables xi and  M random clauses of K literals 
The average number of constraints is                 .
Is it possible to find an assignment of the variables that satisfies all the constraints? 
Ex: Random 3-SAT

 (x1 OR ~x2 OR x3) AND (~x2 OR x4 OR x5) AND (~x6 OR x7 OR ~x3) AND ... 

• Random q-Coloring
Consider q colors, N points  and a random set of M edges connecting them.
Is it possible to color the points so that none of them has the same color as one of its 
neighbors ?
The average number of constraints is                            ,where c is the average 
connectivity
Ex: Random 3-COL
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   COL and SAT are both NP-complete
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Example of CSP: the Coloring of a random graph

Less trivial example

3

N=100 vertices, M=218 edges, average degree c=2M/N=4.36
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Why is random constraint satisfaction interesting?

Existence of a sharp 

SAT/UNSAT (or COL/UNCOL) 
threshold

comes steeper as n increases. At n = 50, the prob-
ability of satisfiability stays close to 1 for m/n ra-
tios up to about 4; then the probability falls
steeply and remains close to 0 at all ratios greater
than about 5. In other words, almost any formula
with 50 variables and 200 clauses can be satis-
fied; but with 50 variables and 250 clauses, satis-
fiable formulas are rare. The abruptness of this
transition is intriguing. And it gets even sharper,
approaching the form of a step function as n be-
comes arbitrarily large.

The steepness of the crossover is one reason for
describing what happens in SAT as a phase tran-
sition. Changes of state in the physical world are
similarly abrupt: Water is a liquid at 1 degree Cel-
sius but a solid at –1 degree. The steepening of the
SAT transition as the system gets larger is also a
characteristic of phase changes, although a less-fa-
miliar one. When you measure size by counting
atoms, just about anything is enormous, and so
the “softer” phase transitions of small systems are
seldom apparent in everyday experience. Never-
theless, experiments and simulations that vary
the number of particles in a sample generate fam-
ilies of curves much like those in Figure 3.

Tabulating the effort needed to solve each prob-
lem instance brings further illumination (see Fig-
ure 4). At a low ratio of clauses to variables, the
problems are mostly easy. At very high ratios, the
effort per problem is only a little greater. In be-
tween is a hump in the curve where the average
difficulty is much higher; this peak in solution
cost corresponds to the crossover region in the
probability graph. For any given value of n, the
highest concentration of hard problems comes at
an  m/n ratio near the point where 50 percent of
the formulas are satisfiable. Also, as n increases
and the crossover becomes more abrupt, the peak
in the cost curve grows dramatically taller.

Here is a qualitative explanation of the cost
curve: In the underconstrained region (at a low
m/n ratio) a typical formula has many possible
solutions, and so it takes little effort to find one.
For example, the Davis-Putnam algorithm often
proceeds straight to a satisfying assignment, with
little or no backtracking. Overconstrained for-
mulas, on the other hand, are almost all unsatis-
fiable, with dozens of literals in conflict; an algo-
rithm will usually expose a fatal inconsistency
after checking only a small fraction of the possi-
ble labelings. The middle of the curve is where
problems are hard because this is the realm of
just-barely-satisfiable and almost-satisfiable for-
mulas. Here many partial labelings can be ex-
tended almost to completion before an inconsis-
tency appears. Thus few branches of the solution
tree are pruned away early.

Like the probability curve, the SAT cost curve
will look familiar to students of phase transitions
and critical phenomena. The canonical system for
the study of critical behavior is a ferromagnet near
its Curie point, which is the temperature where
the material loses all magnetization. Above the

Curie temperature, the electron spins that give rise
to ferromagnetism are randomly oriented, and so
they cancel out and leave no net magnetization.
As the material cools toward the Curie point, clus-
ters of spins line up in parallel, and at the Curie
point itself these clusters become effectively infi-
nite in extent: A magnet is born. The Curie point
also marks a sharp peak in the magnetic suscepti-
bility—the material’s sensitivity to a small external
field. At high temperature, an applied field has lit-
tle effect because thermal agitation disrupts any
incipient magnetized regions. At low temperature
the susceptibility is low again, but for a different
reason: A weak external field cannot overcome the
established magnetization. Near the Curie point
the material is exquisitely sensitive; the smallest
imposed field can reverse vast numbers of spins.
A graph of the susceptibility near the Curie tem-
perature looks just like the SAT cost curve, includ-
ing a tendency for the peak to become steeper and
to shift to slightly lower temperatures as the size
of the system increases.

Dissatisfactions
The idea of interpreting events in a purely math-
ematical system as phase transitions is not new.
The earliest instance I know of was in the context
of graph theory, and specifically in the study of
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Figure 3. Transition from satisfiable to unsatisfiable gets steeper as the

number of variables increases. Each dot is the average of 300 instances.

Figure 4. Peak in the cost of finding solutions also gets sharper as the

number of variables rises. Data are from the same instances as Figure 3.
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• SAT/UNSAT threshold at average degree 
• w.h.p. colorable for                and w.h.p. uncolorable for        

• (A part of ) Proof of existence (Friedgut 1997, Achlioptas, Friedgut, 1999)

αs
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m/n ratio) a typical formula has many possible
solutions, and so it takes little effort to find one.
For example, the Davis-Putnam algorithm often
proceeds straight to a satisfying assignment, with
little or no backtracking. Overconstrained for-
mulas, on the other hand, are almost all unsatis-
fiable, with dozens of literals in conflict; an algo-
rithm will usually expose a fatal inconsistency
after checking only a small fraction of the possi-
ble labelings. The middle of the curve is where
problems are hard because this is the realm of
just-barely-satisfiable and almost-satisfiable for-
mulas. Here many partial labelings can be ex-
tended almost to completion before an inconsis-
tency appears. Thus few branches of the solution
tree are pruned away early.

Like the probability curve, the SAT cost curve
will look familiar to students of phase transitions
and critical phenomena. The canonical system for
the study of critical behavior is a ferromagnet near
its Curie point, which is the temperature where
the material loses all magnetization. Above the

Curie temperature, the electron spins that give rise
to ferromagnetism are randomly oriented, and so
they cancel out and leave no net magnetization.
As the material cools toward the Curie point, clus-
ters of spins line up in parallel, and at the Curie
point itself these clusters become effectively infi-
nite in extent: A magnet is born. The Curie point
also marks a sharp peak in the magnetic suscepti-
bility—the material’s sensitivity to a small external
field. At high temperature, an applied field has lit-
tle effect because thermal agitation disrupts any
incipient magnetized regions. At low temperature
the susceptibility is low again, but for a different
reason: A weak external field cannot overcome the
established magnetization. Near the Curie point
the material is exquisitely sensitive; the smallest
imposed field can reverse vast numbers of spins.
A graph of the susceptibility near the Curie tem-
perature looks just like the SAT cost curve, includ-
ing a tendency for the peak to become steeper and
to shift to slightly lower temperatures as the size
of the system increases.

Dissatisfactions
The idea of interpreting events in a purely math-
ematical system as phase transitions is not new.
The earliest instance I know of was in the context
of graph theory, and specifically in the study of
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Figure 3. Transition from satisfiable to unsatisfiable gets steeper as the

number of variables increases. Each dot is the average of 300 instances.

Figure 4. Peak in the cost of finding solutions also gets sharper as the

number of variables rises. Data are from the same instances as Figure 3.

4

Can we compute the location of the COL/UNCOL threshold?

Are there other sharp transitions in the problem?

Why are some instances so hard?  Is there a way to make them easy?

αα
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H =
∑

<ij>

δ(si, sj)
Consider the following Potts anti-ferromagnet Hamiltonian:

A configuration with zero energy is a proper coloring.

To see if a graph is colorable just compute the ground-state 
energy and see if it is zero.

 A random graph is locally tree-like with large loops (of typical 
size log(N)): mean field methods are exact!

si = 1, 2, . . . , q

Coloring random graphs for physicist

8
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H =
∑

<ij>

δ(si, sj)
Consider the following Potts anti-ferromagnet Hamiltonian:

A configuration with zero energy is a proper coloring.

To see if a graph is colorable just compute the ground-state 
energy and see if it is zero.

 A random graph is locally tree-like with large loops (of typical 
size log(N)): mean field methods are exact!

si = 1, 2, . . . , q

Random Constraint Satisfaction Problems such 
as q-COL of K-SAT can be studied within mean 
field spin glass theory using the “cavity method”

Mézard, Parisi, Zecchina, Science (2002)

Coloring random graphs for physicist

8



 

Florent Krzakala International Workshop on Statistical-Mechanical Informatics, Kyoto 2007

Overview

• Brief presentation of the cavity method

• Computation of the phase diagram

• Algorithmic  consequences 

9
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Statistical Physics of random CSP
Cavity approach: A mean field method for statistical physics models on tree-like graphs. 
Equivalent to the replica method of disordered systems

11

Parisi, Mézard, Virasoro  ‘87 ,  Parisi, Mézard  ’00, 

Accomplishments
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Statistical Physics of random CSP
Cavity approach: A mean field method for statistical physics models on tree-like graphs. 
Equivalent to the replica method of disordered systems

11

Parisi, Mézard, Virasoro  ‘87 ,  Parisi, Mézard  ’00, 

Accomplishments

cd cs

Prediction of a glassy (clustered) phase in the colorable region
                             Mézard, Zecchina, Parisi, ‘02, Biroli, Monasson, Weigt, ‘99

The exact SAT/UNSAT threshold computed. Survey Propagation algorithm designed.
                           K-SAT: Mézard, Zecchina, Parisi, ‘02, 
                             q-COL: Mulet, Pagnani, Weigt, Zecchina, ‘03
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What are clusters?

• Roughly said: Lumps (groups) of nearby solutions which are in some 
sense disconnected from each other.

• For mathematical physicist: “Extremal Gibbs measures = pure states”.

• For computer scientist: Fixed points of belief propagation.

• For spin glass physicist: Solutions of TAP equations.

12

cd cs
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• Roughly said: Lumps (groups) of nearby solutions which are in some 
sense disconnected from each other.

• For mathematical physicist: “Extremal Gibbs measures = pure states”.

• For computer scientist: Fixed points of belief propagation.

• For spin glass physicist: Solutions of TAP equations.
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cd cs

What is the distribution of the sizes of the clusters ?
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‣ Entropy (size) of a cluster s: 

logarithm of the number of solutions belonging to the cluster (divided by the 
number of variables).

‣ Complexity function            : 

logarithm of the number of clusters of size s

If         >0, there are exponentially many states of size s.

If         <0, then states of size s become exponentially rare as N grows. 

13

Σ(s)

A refined analysis of clusters

N (s) = eNΣ(s)

Σ(s)
Σ(s)

! (s)

s
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‣ Entropy (size) of a cluster s: 

logarithm of the number of solutions belonging to the cluster (divided by the 
number of variables).

‣ Complexity function            : 

logarithm of the number of clusters of size s

If         >0, there are exponentially many states of size s.

If         <0, then states of size s become exponentially rare as N grows. 

14

Σ(s)

A refined analysis of clusters

N (s) = eNΣ(s)

Σ(s)
Σ(s)

Φ(m) = ms + Σ(s),
∂Σ(s)

∂s
= −m

Σ(s)Φ(m)

eNΦ(m) =
∑

α

(eNsα)m =
∫

eN [ms+Σ(s)]ds

Note: the approach of Mézard, Zecchina, Parisi ‘02; Mulet, Pagnani, Weigt, Zecchina ‘02 was at m=0. 

‣ We compute the complexity function using the zero temperature cavity method 
via a Legendre transform           of           . 

‣ Main idea (Mézard, Palassini, Rivoire, ‘05): weight each cluster by its size to the power m: 
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Solve (mostly numerically) the 1RSB cavity equations

+ Work out the several special cases when the equations simplify 
(m=1, m=0, frozen variables, regular graphs ...)

15
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Overview

• Brief presentation of the cavity method

• Computation of the phase diagram

• Algorithmic  consequences 

16
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 Learning from         

      Example of 6-coloring, connectivities 17, 18, 19, 20 (from top). 

Σ(s)
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6 coloring of regular random graph connectivity c=19



 

6 coloring of regular random graph connectivity c=20
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Many phase transitions
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Many phase transitions

cd(3) = 4, cd(4) = 8.35, cd(5) = 12.84

Clustering transition
The phase space splits into exponentially many states
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Many phase transitions

Moreover: The entropically dominating clusters are 1RSB stable in the colorable phase 
(at least for q>3)
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Many phase transitions

Moreover: The entropically dominating clusters are 1RSB stable in the colorable phase 
(at least for q>3)

cd(3) = 4, cd(4) = 8.35, cd(5) = 12.84

Clustering transition
The phase space splits into exponentially many states

cd

cc(3) = 4, cc(4) = 8.46, cc(5) = 13.23

Condensation transition 
  Entropy dominated by finite number of the largest states.

cc

cs(3) = 4.69, cs(4) = 8.90, cs(5) = 13.67

COL/UNCOL transition 
No more clusters, uncolorable phase

cs

Dynamic
 (Ergodicity Breaking) transition

Static (Kauzmann) transition

Same phenomenology as in
 the ideal glass transition (ex: p-spin)
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The freezing of clusters

cd cc cs

Two types of clusters are found

Soft or “unfrozen” clusters Hard or “frozen” clusters

All variables are allowed at least two 
different colors in the cluster

A finite fraction of variables are allowed only 
one color in all solutions belonging to the 
cluster: we say that these variables “freeze” 
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The freezing of clusters

cd cc cs

Two types of clusters are found

Soft or “unfrozen” clusters Hard or “frozen” clusters

All variables are allowed at least two 
different colors in the cluster

A finite fraction of variables are allowed only 
one color in all solutions belonging to the 
cluster: we say that these variables “freeze” 

cr

cr(3) = 4.66, cr(4) = 8.83, cr(5) = 13.55

 Rigidity transition 
Frozen variables appears in the dominating states.
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The phase transitions

Clustering/Dynamic transition

cd

Condensation/Static transition 

cc

COL/UNCOL transition 

cs

Freezing of clusters and the rigidity transition

cr
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Overview

• Brief presentation of the cavity method

• Computation of the phase diagram

• Algorithmic  consequences 
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Meaning of the transitions

Clustering/Dynamic transition

cd
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Freezing of clusters and the rigidity transition
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Meaning of the transitions

Clustering/Dynamic transition
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Meaning of the transitions

Clustering/Dynamic transition

cd

Condensation/Static transition 

cc

COL/UNCOL transition 

cs

Freezing of clusters and the rigidity transition

‣“Ergodicity breaking transition”, equilibration time diverges
‣ Metropolis Monte-Carlo inefficient for sampling

Easy/Hard transition for  
the “MC sampling” problem
(but not for the “solving” problem)

‣“Static replica symmetry breaking transition”
‣ Many clusters exist, but a finite number of them covers almost all solutions
‣The overlap function P(q) becomes non-trivial

‣No solutions exist anymore
The frozen clusters are 

responsable for the difficulty 
of finding solutions 

(not the clustering in itself)

‣Solutions are hardly constraint within the cluster
‣For c>cr, most solutions belong to frozen clusters

cr



 

“Wet toes” algorithm

Arkless strategy for flood victims

You are on a rugged landscape that is being flooded



 

“Wet toes” algorithm

Arkless strategy for flood victims

Water goes up. When your toes are wet
 step back on the land!



 

“Wet toes” algorithm

Arkless strategy for flood victims

And wait until your toes get wet again...



 

“Wet toes” algorithm

Arkless strategy for flood victims

Sooner or later you’ll find yourself on a smaller island...



 

“Wet toes” algorithm

Arkless strategy for flood victims

Then even a smaller one...



 

“Wet toes” algorithm

Arkless strategy for flood victims

Until eventually you’ll drown (if you can’t swim!)



 

“Wet toes” algorithm

Arkless strategy for flood victims

Finally, all land will be flooded!
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cd cK

“Wet toes” algorithm

Add links one by one and use a local algorithm to solve contradictions

calgo cs

The algorithm works until the cluster disappears

35
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cd cK

Frozen clusters make it hard!

Add links one by one and use a local algorithm to solve contradictions

calgo cs

36

• A fundamental properties of frozen clusters:
➡ Frozen clusters are fragile and disappear after the addition of few links.

➡ The number of needed changes is finite in unfrozen clusters and infinite in 
frozen ones Semerjian ‘07
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cd cK

Frozen clusters make it hard!

Add links one by one and use a local algorithm to solve contradictions

calgo cs

The algorithm works until the cluster disappears
and this happens when frozen variables appear

37
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Performance of the “Wet toes” algorithm

 Goes beyond the dynamical and the condensation transition for q=3 & 4

38
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Performance of the “Wet toes” algorithm

 Goes beyond the dynamical and the condensation transition for q=3 & 4
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Rigidity

But stops before the rigidity transition !



 

Another example:Walk-COL algorithm
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!(c)

cd cc cr cs

(1)Randomly choose a spin that has the same color as at least one of its neighbors.
(2)Change randomly its color. Accept this change with probability one if the number of 
unsatisfied spins has been lowered, otherwise accept  it with probability p.
(3)If there are unsatisfied vertices, go to step (i) unless the maximum running time is reached.
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Conclusions & perspectives

 Determination of the phase diagram of the random coloring 
problem. A rich “glassy”-like phenomenology is found :

dynamical transition

condensation/Kauzmann transition
“rigidity/freezing” transition
COL/UNCOL transition

 Discussion of the algorithmic implications
 Frozen variables are responsible for the computational hardness

 Future directions :
More (and possibly exact) results on the EASY/HARD transition and frozen clusters ?

See next talk by F. Zamponi

Toward a rigorous formulation of the cavity results? Numerical check of static and 
dynamic predictions?

‣ Enumeration (c.f. Last talk by A. Hartmann)

‣ Monte-Carlo simulations? 
Better algorithms using message passing (BP and SP)?

40
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Monte-Carlo simulations?

The typical phase diagram in a temperature/connectivity plane 

Is it possible to confirm these predictions in a Monte-Carlo 
simulation and to find the dynamic, static and Gardner transition?

41
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Conclusions & perspectives

 Determination of the phase diagram of the random coloring 
problem. A rich “glassy”-like phenomenology is found:

dynamical transition

clustering transition
“rigidity/freezing” transition
COL/UNCOL transition

 Discussion of the algorithmic implications
 Frozen variables are responsible for the computational hardness

 Future directions :
More (and possibly exact) results on the EASY/HARD transition and frozen clusters?

See next talk by F. Zamponi

Toward a rigorous formulation of the cavity results ? Numerical check of static and 
dynamic predictions?

‣ Enumeration (c.f. Last talk by A. Hartmann)

‣ Monte-Carlo simulations? 
Better algorithms using message passing (BP and SP)?

42
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Message Passing algorithms beyond SP ?
• Survey Propagation (cavity recursion on a single graph at m=0) is currently 

the best solver for random SAT

• Belief Propagation (replica symmetric cavity recursion on a single graph) 
can also be used with very good results (as it actually asymptotically gives 
exact marginals until the condensation)

• What is the limit of these algorithms? 

• What is the best way to use message passing in order to find a solution?

43
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➡See the recent paper by Montanari et al.  arxiv:0709.1667
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Bonus Section
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Large number of colors (analytical results)
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0

cSP ! q(log q + log log q + 1− log 2)

cr ! q(log q + log log q + 1)

cg ! 2q log q − log q − 2 log 2
cq ! 2q log q − log q − 12q log q

q log q



 

The Cavity Method

Parisi, Mézard, Virasoro  ‘87 
Parisi, Mézard                  ‘00 
Parisi, Mézard, Zechinna ‘02



 

The iterative solution on a tree

k

i

k

i

j

Recursive equations on a tree (Belief propagation):

ψi→j
si

=
1

Zi→j

∏

k∈V (i)−j

∑

sk

(1− δsisk) ψk→i
sk

=
1

Zi→j

∏

k∈V (i)−j

(1− ψk→i
si

)

Coloring = anti-ferromagnetic Potts model at zero temperature

ψi→j
si

is the set of probabilities that the spin i takes the color q in absence of the spin j 



 

 The replica symmetric solution on a graph

A random graph being locally tree-like, assume a “fast” decay of 

correlations, then the RS solution should be correct.



 

 The replica symmetric solution on a graph

A random graph being locally tree-like, assume a “fast” decay of 

correlations, then the RS solution should be correct.

Rigorously proven for regular random graphs for c < q-1....
Bandyopadhyay, Gamarnik ‘05

... and believed to be correct even beyond (until c ~q log q).



 

 The replica symmetric solution on a graph

Solution of the self-consistent equation: 
Only the “paramagnetic”                                         in the COL phase.

This leads to the following entropy:

ψ = (1/q, 1/q, . . . )

sRS = log q +
c

2
log

(
1− 1

q

)

A random graph being locally tree-like, assume a “fast” decay of 

correlations, then the RS solution should be correct.

Rigorously proven for regular random graphs for c < q-1....
Bandyopadhyay, Gamarnik ‘05

... and believed to be correct even beyond (until c ~q log q).



 

When is the tree solution expected to be correct ?

If we are in a “paramagnetic phase” .

From spin glass theory, we expect however a transition to a spin 
glass phase.

1) Continuous transition (divergence of the Spin glass susceptibility) 

like in the Sherrington-Kirkpatrick model                                    

2) Discontinuous transition (like in the p-spin or the Random Energy 

model model)



 

Replica symmetry breaking

The  phase space splits into an exponential number        of components.

Define the complexity (or configurational entropy)      as

The complexity can be computed using a “modified” partition sum:

∑

α

Zm
α =

∑

α

(
∑

s∈α

e−βE(s)

)m

=
∫

f
dfe−N(βmf(β)−Σ(f)) = e−βmNΦ(β,m)

cqcd

N = eNΣ
N

Σ



 

Replica symmetry breaking

The  phase space splits into an exponential number        of components.

Define the complexity (or configurational entropy)      as

The complexity can be computed using a “modified” partition sum:

∑

α

Zm
α =

∑

α

(
∑

s∈α

e−βE(s)

)m

=
∫

f
dfe−N(βmf(β)−Σ(f)) = e−βmNΦ(β,m)

cqcd

N = eNΣ
N

Σ

−βmΦ(m,β) = −βmF (β) + Σ(F )
The “Replicated” free energy is the Legendre transform of the complexity



 

The replica symmetry breaking recursion

Order Parameter: 
Probability distribution                      of fields for every edge.
 
Self-consistent equation:

P i→j(ψ) =
1

Zi→j

∫
δ[ψi→j

si
− F({ψk→i

si
})] em∆Si→j ∏

k∈V (i)−j

dP k→i(ψ)

P i→j(ψ)



 

The replica symmetry breaking recursion

Numerical Solution - Population dynamics: very heavy!!!

Simplifications : m=0, m=1, regular graphs, hard fields...

                             Large q expansion

Order Parameter: 
Probability distribution                      of fields for every edge.
 
Self-consistent equation:

P i→j(ψ) =
1

Zi→j

∫
δ[ψi→j

si
− F({ψk→i

si
})] em∆Si→j ∏

k∈V (i)−j

dP k→i(ψ)

P i→j(ψ)


