
Florent Krząkała

From mean field to three-dimensional spin glasses 
(A journey through the numerics)

Find these slides on my webpage:
www.pct.espci.fr/~florent/

Thanks to 
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• No proof of phase transition in any finite dimension !

• Many controversies. The 106$ question: are finite-dimensional model “meanfieldish” ?

Perform Numerical Simulations
In order to get a feeling “what’s going on...”

Some “accepted” results from the numerics:
Free-energy distribution is Gaussian with variance N in finite dimension   

Spin glass phase transition for d>=3 for Ising Spins (Heisenberg still subject of debate ! )
 J.-P. Bouchaud, FK, O.C. Martin PRE 02’

Young PRL 83’,  Marinari Parisi & Luiz-Lorenzo 97, Palassini & Caracciolo PRL 
99’, Houdayer EPJB 01’, Palassini & Young PRB’01, Jörg PRE 06’

Some which are not “accepted” yet:
The phase diagram in presence of a field or a magnetic bias 
Presence or absence of Temperature chaos
Nature of the spin glass phase
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• Is there a spin glass phase under an applied magnetic field ?

• Is there temperature/disorder chaos ?

A Physicist Strategy

Compute (and discuss) the 
prediction for (diluted) 

mean field systems
Discuss heuristic arguments

Compare with numerical 
simulations of small systems

in finite dimension

These analytical results are not 
yet rigorously proven and remain 
a challenge for mathematicians

Answering (at the heuristic level) 
the long-standing question: does 
3d model are “mean-field like” ?



 

Ordering of the Ising Spin Glass under an applied 
magnetic field

T. Jörg, H. Katzgraber & FK 07, in preparation
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A Spin glass phase exists under Tc
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The critical value of the field diverges at T=0
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Diluted model: Jörg, Katzgraber & FK 07: 
A similar phase diagram with a finite hc(T=0)

6-connectivity regular graph with Gaussian couplings
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Finite dimension Mc Millian ‘84:
Imrie-Ma argument: the ground 
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Spin glass phase: existence of large low energy excitations

Consider the ground state and an excitation of size      with 
excess energy
With a field h, we have now 

If                    the ground state is unstable for large size.

!
E = A!θ

E = A!θ ±Bh!d/2
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• It applies equally well to the spin glass on a Bethe Lattice where there is an AT line !
• The same argument is used with temperature variation to suggest Temperature Chaos 
but not the absence of a spin glass phase in temperature !

Is the Imrie-Ma argument convincing ?
(even for a physicist...)
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• Question: are there large excitations with low energies ?

• Fliping a cluster of size    :
• Costs an energy   

• That we try to compensate by a gain from the boundaries:

• For large “droplet”, the field energy dominates and is large !

!

Efield ∝MH!d

EJij ∝ !ds

!

It is very hard to have low energy large-scale excitation under a field
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• Generating a representative set of configurations (with the proper 
weight) for small systems

• Using Metropolis dynamics and parallel tempering (mixing different 
replicas at different temperatures)

• Question 1: Are we able to see the AT line for random graphs ?

• Question 2: What do we observe on 3d lattices ?  

Monte-Carlo simulations
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The AT line on random graph
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“Accord parfait” between simulation and theory again !
Simulations are able to see the AT line when it is there !

Compute the spin glass susceptibility

From replica theory, we expect that at the 
transition

χSG

N
=< q2 > − < q >2

χSG ∝ N1/3
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Good (and convincing) evidence for the absence of a SG transition in field

Compute the spin glass correlation length

From usual theory of phase transition, we 
expect that at the transition 

ξ(L, T = Tc) ∝ L

< SSr >2
c∝ e−r/ξ



 

Temperature and Disorder chaos

FK & O. Martin, EPJ B 01
FK & J.-P. Bouchaud, EPL 05
H. Kaztgraber & FK, PRL 07
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with free energies Fi=Ei-TSi

ρE(Ei) =
exp

(
−E2

i
N

)

√
Nπ

ρS(Si) =
exp

(
− S2

i
N2α

)

√
N2απ

F

T

F

T

REM like Re-REM like

Temperature chaos arises from level crossings !

Free energies being random Gaussian, the model is solvable with a mapping to the REM:

α < 0.5 α > 0.5α = 0.5

F non-extensive

Tc =
1

2
√

ln 2
Tc =

1√
4 ln 2− 1

≈ 0.75 Tc →∞
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Level crossings in the Re-Rem

T

Fo

T

Fo

F0 ≈ −
√

2N log 2σf = −N
√

log 2(1 + T 2N2α−1)Free-energy of the 
lowest state is

NN (T, T + δT ) = NαδTg(
T

N0.5−α
)

Number of lowest states crossings :

0.01

0.1

1

0 2 4 6

g(
x)

x
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T

High quality numerical determination of g(x) 
(up to 2800 levels simulated)
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• States to state fluctuations induces extensive level crossing

• Temperature chaos, magnetic field chaos etc etc

• The Re-Rem is the simplest “mean-field” model with T-chaos

But what about finite dimensions ?
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If                    the ground state is unstable for large size.

!
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The Imrie-Ma argument over and over again
• Consider a small change in temperature T+dT
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F (T1) = γ(T1)"θ

S = σ(T )"ds/2

Spin glass phase: existence of large low energy excitations
Consider two temperatures and the free energy of one “droplet”

According to the droplet picture, the energy is almost T-independent

where

Therefore, it exists again a size beyond which large droplets have to be flipped
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!
F (T2) ≈ F (T1) + T1S(T1)− T2S(T2).

F (T1) = γ(T1)"θ

S = σ(T )"ds/2

“Chaotic” length scale:

!c =
(

γ(T1)
T2 σ(T2)− T1 σ(T1)

)1/ζ

with ζ =
ds

2
− θ.

!c(T1, T2) ∝
(
T 3/2

2 − T 3/2
1

)−1/ζ
.

Spin glass phase: existence of large low energy excitations
Consider two temperatures and the free energy of one “droplet”

According to the droplet picture, the energy is almost T-independent

where

Therefore, it exists again a size beyond which large droplets have to be flipped
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Q(L, T,∆J) = f2(L/l∆J
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Temperature and disorder chaos in 3d

Jij → J ′
ij =

Jij + xij∆J√
1 + ∆J2

,

Monte Carlo simulations
Two copies with couplings J and J’

Q(L, T,∆T ) = f1(L/l∆T
chaos)

Q(L, T,∆J) = f2(L/l∆J
chaos)

The two functions might even be the same !
(up to a rescaling factor)
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Conclusions

• Numerical simulations show that 3d systems look quite different 
from mean field one...

• ... but that some features have still to be understood

• Presence of temperature chaos in simulation

• Can temperature and disorder chaos be better characterized 
(from a rigorous point of view) ?

• The Re-REM: an Interesting extension of the REM
• Temperature chaos

• Level Crossings 

• What can be demonstrated for random graphs ?

Final remark: A simple case where the mean field picture applies
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...and clustering properties !


