

From mean field to three-dimensional spin glasses (A journey through the numerics)

Florent Krząkała

Thanks to

O.C. Martin,
T. Jörg,
J.P. Bouchaud,
H. Katzgraber,
and others...

Find these slides on my webpage: www.pct.espci.fr/~florent/

Very simple model (at least to define):

A starting point to understand glasses, aging, out-of-equilibrium dynamics (and other fundamental questions of modern physics).

Very simple model (at least to define):

A starting point to understand glasses, aging, out-of-equilibrium dynamics (and other fundamental questions of modern physics).

Mean field spin glasses are useful outside physics:

Neural networks, optimization problems, random graphs theory, error correcting codes...

♥Very simple model (at least to define):

A starting point to understand glasses, aging, out-of-equilibrium dynamics (and other fundamental questions of modern physics).

Mean field spin glasses are useful outside physics:

Neural networks, optimization problems, random graphs theory, error correcting codes...

Spin glasses exists!

3d Randomly Diluted Magnets (AuFe, CuMn, etc...) Edwards-Anderson Hamiltonian on a 3d lattice

[©]Very simple model (at least to define):

A starting point to understand glasses, aging, out-of-equilibrium dynamics (and other fundamental questions of modern physics).

Mean field spin glasses are useful outside physics:

Neural networks, optimization problems, random graphs theory, error correcting codes...

Spin glasses exists!

3d Randomly Diluted Magnets (AuFe, CuMn, etc...) Edwards-Anderson Hamiltonian on a 3d lattice

Few rigorous results in finite dimension

- cf: Newman & Stein lectures
- Self-averaging: Variance of the Free energy grows as volume (Aizenman-Wehr 90')
- No proof of phase transition in <u>any finite dimension!</u>
- Many controversies. The 10⁶\$ question: are finite-dimensional model "meanfieldish"?

Few rigorous results in finite dimension

- cf: Newman & Stein lectures
- Self-averaging: Variance of the Free energy grows as volume (Aizenman-Wehr 90')
- No proof of phase transition in <u>any finite dimension!</u>
- Many controversies. The 10⁶\$ question: are finite-dimensional model "meanfieldish"?

Some "accepted" results from the numerics:

- Free-energy distribution is Gaussian with variance N in finite dimension J.-P. Bouchaud, FK, O.C. Martin PRE 02'
- Spin glass phase transition for d>=3 for Ising Spins (Heisenberg still subject of debate!)

Young PRL 83', Marinari Parisi & Luiz-Lorenzo 97, Palassini & Caracciolo PRL 99', Houdayer EPJB 01', Palassini & Young PRB'01, Jörg PRE 06'

Few rigorous results in finite dimension

- cf: Newman & Stein lectures
- Self-averaging: Variance of the Free energy grows as volume (Aizenman-Wehr 90')
- No proof of phase transition in <u>any finite dimension!</u>
- Many controversies. The 10⁶\$ question: are finite-dimensional model "meanfieldish"?

Some "accepted" results from the numerics:

- Free-energy distribution is Gaussian with variance N in finite dimension J.-P. Bouchaud, FK, O.C. Martin PRE 02'
- Spin glass phase transition for d>=3 for Ising Spins (Heisenberg still subject of debate!)

Young PRL 83', Marinari Parisi & Luiz-Lorenzo 97, Palassini & Caracciolo PRL 99', Houdayer EPJB 01', Palassini & Young PRB'01, Jörg PRE 06'

Some which are not "accepted" yet:

- The phase diagram in presence of a field or a magnetic bias
- Presence or absence of Temperature chaos
- Nature of the spin glass phase

The questions (in this seminar)

- Is there a spin glass phase under an applied magnetic field?
- Is there temperature/disorder chaos?

Compute (and discuss) the prediction for (diluted) mean field systems
Discuss heuristic arguments

Compare with numerical simulations of small systems in finite dimension

The questions (in this seminar)

- Is there a spin glass phase under an applied magnetic field?
- Is there temperature/disorder chaos?

Compute (and discuss) the prediction for (diluted) mean field systems

Discuss heuristic arguments

These analytical results are not yet rigorously proven and remain a challenge for mathematicians

Compare with numerical simulations of small systems in finite dimension

The questions (in this seminar)

- Is there a spin glass phase under an applied magnetic field?
- Is there temperature/disorder chaos?

A Physicist Strategy

Compute (and discuss) the prediction for (diluted) mean field systems
Discuss heuristic arguments

These analytical results are not yet rigorously proven and remain a challenge for mathematicians

Compare with numerical simulations of small systems in finite dimension

Answering (at the heuristic level) the long-standing question: does 3d model are "mean-field like"?

T. Jörg, H. Katzgraber & FK 07, in preparation

Mean field Ising Spin glass under a field

SK: Almeida & Thouless '78:

A Spin glass phase exists under Tc for low enough magnetic field The critical value of the field diverges at T=0

Mean field Ising Spin glass under a field

SK: Almeida & Thouless '78:

A Spin glass phase exists under Tc for low enough magnetic field The critical value of the field diverges at T=0

Diluted model: Jörg, Katzgraber & FK 07:

A similar phase diagram with a finite $h_c(T=0)$ 6-connectivity regular graph with Gaussian couplings

Finite dimensional Spin glass under a field

Finite dimension Mc Millian '84:

<u>Imrie-Ma argument:</u> the ground state is highly unstable under a field

Spin glass phase: existence of large low energy excitations

Consider the ground state and an excitation of size ℓ with excess energy $E = A\ell^{\theta}$ With a field h, we have now $E = A\ell^{\theta} \pm Bh\ell^{d/2}$ If $\theta < d/2$ the ground state is unstable for large size.

Finite dimensional Spin glass under a field

Finite dimension Mc Millian '84:

Magnetic field

<u>Spin glass phase:</u> existence of large low energy excitations

Consider the ground state and an excitation of size ℓ with excess energy $E = A\ell^{\theta}$

With a field h, we have now $E = A\ell^{\theta} \pm Bh\ell^{d/2}$

If $\theta < d/2$ the ground state is unstable for large size.

Finite dimensional Spin glass under a field

Finite dimension Mc Millian '84:

<u>Imrie-Ma argument:</u> the ground state is highly unstable under a field

Magnetic field

<u>Spin glass phase:</u> existence of large low energy excitations

Consider the ground state and an excitation of size ℓ with excess energy $E = A\ell^{\theta}$ With a field h, we have now $E = A\ell^{\theta} \pm Bh\ell^{d/2}$ If $\theta < d/2$ the ground state is unstable for large size.

Is the Imrie-Ma argument convincing? (even for a physicist...)

- It applies equally well to the spin glass on a Bethe Lattice where there **is** an AT line!
- The same argument is used with temperature variation to suggest <u>Temperature Chaos</u> but <u>not the absence of a spin glass phase</u> in temperature!

A modified Imrie-Ma argument

- Consider a large sample with a magnetization by spin M under a field H
- Question: are there large excitations with low energies?
- Fliping a cluster of size ℓ :

 - Costs an energy $E_{field} \propto MH\ell^d$ That we try to compensate by a gain from the boundaries: $E_{J_{ij}} \propto \ell^{d_s}$
- For large "droplet", the field energy dominates and is large!

A modified Imrie-Ma argument

- Consider a large sample with a magnetization by spin M under a field H
- Question: are there large excitations with low energies?
- Fliping a cluster of size p:

 - Costs an energy $E_{field} \propto MH\ell^d$ That we try to compensate by a gain from the boundaries: $E_{J_{ij}} \propto \ell^{d_s}$
- For large "droplet", the field energy dominates and is large!

It is very hard to have low energy large-scale excitation under a field

Monte-Carlo simulations

Monte-Carlo simulations

- Generating a representative set of configurations (with the proper weight) for small systems
- Using Metropolis dynamics and parallel tempering (mixing different replicas at different temperatures)
- Question 1: Are we able to see the AT line for random graphs?
- Question 2: What do we observe on 3d lattices ?

Compute the spin glass susceptibility

$$\frac{\chi_{SG}}{N} = \langle q^2 \rangle - \langle q \rangle^2$$

From replica theory, we expect that at the transition

$$\chi_{SG} \propto N^{1/3}$$

Compute the spin glass susceptibility

$$\frac{\chi_{SG}}{N} = \langle q^2 \rangle - \langle q \rangle^2$$

From replica theory, we expect that at the transition

$$\chi_{SG} \propto N^{1/3}$$

Compute the spin glass susceptibility

$$\frac{\chi_{SG}}{N} = \langle q^2 \rangle - \langle q \rangle^2$$

From replica theory, we expect that at the transition

$$\chi_{SG} \propto N^{1/3}$$

"Accord parfait" between simulation and theory

Compute the spin glass susceptibility

$$\frac{\chi_{SG}}{N} = \langle q^2 \rangle - \langle q \rangle^2$$

From replica theory, we expect that at the transition

$$\chi_{SG} \propto N^{1/3}$$

Compute the spin glass susceptibility

$$\frac{\chi_{SG}}{N} = < q^2 > - < q >^2$$

From replica theory, we expect that at the transition

$$\chi_{SG} \propto N^{1/3}$$

Compute the spin glass susceptibility

$$\frac{\chi_{SG}}{N} = \langle q^2 \rangle - \langle q \rangle^2$$

From replica theory, we expect that at the transition

$$\chi_{SG} \propto N^{1/3}$$

"Accord parfait" between simulation and theory again! Simulations are able to see the AT line when it is there!

Spin glass transition in 3d

Magnetic field

Spin glass transition in 3d

Magnetic field

Spin glass transition in 3d

Magnetic field

Compute the spin glass correlation length

$$\langle SS_r \rangle_c^2 \propto e^{-r/\xi}$$

From usual theory of phase transition, we expect that at the transition

$$\xi(L,T=T_c)\propto L$$

Spin glass transition in 3d

Magnetic field

Compute the spin glass correlation length $< SS_r >_c^2 \propto e^{-r/\xi}$

From usual theory of phase transition, we expect that at the transition

$$\xi(L,T=T_c)\propto L$$

Spin glass transition in 3d

Magnetic field

Compute the spin glass correlation length $< SS_r >_c^2 \propto e^{-r/\xi}$

From usual theory of phase transition, we expect that at the transition

$$\xi(L,T=T_c)\propto L$$

Good (and convincing) evidence for the presence of a SG transition

Magnetic field

Magnetic field

Magnetic field

Compute the spin glass correlation length

$$\langle SS_r \rangle_c^2 \propto e^{-r/\xi}$$

From usual theory of phase transition, we expect that at the transition

$$\xi(L,T=T_c)\propto L$$

Magnetic field

Compute the spin glass correlation length $< SS_r >_c^2 \propto e^{-r/\xi}$

From usual theory of phase transition, we expect that at the transition

$$\xi(L,T=T_c)\propto L$$

Compute the spin glass correlation length $< SS_r >_c^2 \propto e^{-r/\xi}$

From usual theory of phase transition, we expect that at the transition

$$\xi(L,T=T_c)\propto L$$

Good (and convincing) evidence for the absence of a SG transition in field

Temperature and Disorder chaos

FK & O. Martin, EPJ B 01 FK & J.-P. Bouchaud, EPL 05 H. Kaztgraber & FK, PRL 07

Random energies strike back: The Re-Rem

Let us consider
$$2^N$$
 "states"
$$\rho_E(E_i) = \frac{\exp\left(-\frac{E_i^2}{N}\right)}{\sqrt{N\pi}} \quad \rho_S(S_i) = \frac{\exp\left(-\frac{S_i^2}{N^{2\alpha}}\right)}{\sqrt{N^{2\alpha}\pi}}$$

Random energies strike back: The Re-Rem

Let us consider
$$2^N$$
 "states"
$$\rho_E(E_i) = \frac{\exp\left(-\frac{E_i^2}{N}\right)}{\sqrt{N\pi}} \quad \rho_S(S_i) = \frac{\exp\left(-\frac{S_i^2}{N^{2\alpha}}\right)}{\sqrt{N^{2\alpha}\pi}}$$

Temperature chaos arises from level crossings!

Random energies strike back: The Re-Rem

Let us consider 2^N "states" with free energies $F_i=E_i-TS_i$

$$\rho_E(E_i) = \frac{\exp\left(-\frac{E_i^2}{N}\right)}{\sqrt{N\pi}} \quad \rho_S(S_i) = \frac{\exp\left(-\frac{S_i^2}{N^{2\alpha}}\right)}{\sqrt{N^{2\alpha}\pi}}$$

Temperature chaos arises from level crossings!

Free energies being random Gaussian, the model is solvable with a mapping to the REM:

$$\alpha < 0.5$$

$$T_c = \frac{1}{2\sqrt{\ln 2}}$$

$$\alpha = 0.5$$

$$T_c = \frac{1}{\sqrt{4 \ln 2 - 1}} \approx 0.75$$

$$\alpha > 0.5$$

$$T_c \to \infty$$

F non-extensive

Level crossings in the Re-Rem

Free-energy of the lowest state is

$$F_0 \approx -\sqrt{2N\log 2}\sigma_f = -N\sqrt{\log 2(1 + T^2N^{2\alpha - 1})}$$

Level crossings in the Re-Rem

Free-energy of the lowest state is

$$F_0 \approx -\sqrt{2N\log 2}\sigma_f = -N\sqrt{\log 2(1 + T^2N^{2\alpha - 1})}$$

Number of lowest states crossings:

$$\mathcal{N}_N(T, T + \delta T) = N^{lpha} \delta T g(rac{T}{N^{0.5-lpha}})$$

High quality numerical determination of g(x) (up to 2^{800} levels simulated)

The Re-Rem

- States to state fluctuations induces extensive level crossing
- Temperature chaos, magnetic field chaos etc etc
- The Re-Rem is the simplest "mean-field" model with T-chaos

The Re-Rem

- States to state fluctuations induces extensive level crossing
- Temperature chaos, magnetic field chaos etc etc
- The Re-Rem is the simplest "mean-field" model with T-chaos

But what about finite dimensions?

The Imrie-Ma argument again

Consider a small change in disorder

$$J_{ij} \to J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

<u>Spin glass phase:</u> existence of large low energy excitations

Consider the ground state and an excitation of size ℓ with excess energy $E = A\ell^{\theta}$ Changing the couplings, we have now $E = A\ell^{\theta} \pm B\Delta J\ell^{d_s/2}$ If $\theta < d_s/2$ the ground state is unstable for large size.

The Imrie-Ma argument again

Consider a small change in disorder

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

Spin glass phase: existence of large low energy excitations

Consider the ground state and an excitation of size ℓ with excess energy $E = A\ell^{\theta}$ Changing the couplings, we have now $E = A\ell^{\theta} \pm B\Delta J\ell^{d_s/2}$ If $\theta < d_s/2$ the ground state is unstable for large size.

"Chaotic" length scale: $\xi_{chaos} \propto \Delta J^{-\frac{1}{d_s/2-\theta}}$

McKay, Berker & Kirkpatrick, PRL 82' Fischer-Huse PRB 86' Bray-Moore PRL 87'

<u>Ground states computations:</u> <u>Two copies with couplings J and J'</u>

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

"Chaotic" length $\Delta J^{-1/\xi}$

suggests that the overlap is just a function of

$$g(L\Delta J^{1/\xi})$$

<u>Ground states computations:</u> <u>Two copies with couplings J and J'</u>

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

"Chaotic" length $\Delta J^{-1/\xi}$ suggests that the overlap is just a function of $g(L\Delta J^{1/\xi})$

Ground states computations:
Two copies with couplings J and J'

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

"Chaotic" length $\Delta J^{-1/\xi}$ suggests that the overlap is just a function of $g(L\Delta J^{1/\xi})$

Ground states computations:
Two copies with couplings J and J'

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

"Chaotic" length $\Delta J^{-1/\xi}$ suggests that the overlap is just a function of $g(L\Delta J^{1/\xi})$

 $L \Delta J^{l/\xi}$

The Imrie-Ma argument over and over again

Consider a small change in temperature T+dT

<u>Spin glass phase:</u> existence of large low energy excitations Consider two temperatures and the free energy of one "droplet"

$$F(T_1) = \gamma(T_1)\ell^{\theta}$$

According to the droplet picture, the energy is almost T-independent

$$F(T_2) \approx F(T_1) + T_1 S(T_1) - T_2 S(T_2).$$

where

$$S = \sigma(T)\ell^{d_{\rm s}/2}$$

Therefore, it exists again a size beyond which large droplets have to be flipped

The Imrie-Ma argument over and over again

Consider a small change in temperature T+dT

<u>Spin glass phase:</u> existence of large low energy excitations Consider two temperatures and the free energy of one "droplet"

$$F(T_1) = \gamma(T_1)\ell^{\theta}$$

According to the droplet picture, the energy is almost T-independent

$$F(T_2) \approx F(T_1) + T_1 S(T_1) - T_2 S(T_2).$$

where

$$S = \sigma(T)\ell^{d_{\rm s}/2}$$

Therefore, it exists again a size beyond which large droplets have to be flipped

$$\ell_{\rm c} = \left(\frac{\gamma(T_1)}{T_2 \ \sigma(T_2) - T_1 \ \sigma(T_1)}\right)^{1/\zeta} \text{ with } \zeta = \frac{d_{\rm s}}{2} - \theta.$$

"Chaotic" length scale:
$$\ell_{\rm c}(T_1,T_2) \propto \left(T_2^{3/2}-T_1^{3/2}\right)^{-1/\zeta}$$
.

Temperature and disorder chaos in 3d

Monte Carlo simulations
Two copies with couplings J and J'

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

$$Q(L, T, \Delta T) = f_1(L/l_{chaos}^{\Delta T})$$

$$Q(L, T, \Delta J) = f_2(L/l_{chaos}^{\Delta J})$$

Temperature and disorder chaos in 3d

Monte Carlo simulations
Two copies with couplings J and J'

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

$$Q(L, T, \Delta T) = f_1(L/l_{chaos}^{\Delta T})$$

$$Q(L, T, \Delta J) = f_2(L/l_{chaos}^{\Delta J})$$

Temperature and disorder chaos in 3d

Monte Carlo simulations
Two copies with couplings J and J'

$$J_{ij} \rightarrow J'_{ij} = \frac{J_{ij} + x_{ij}\Delta J}{\sqrt{1 + \Delta J^2}},$$

$$Q(L, T, \Delta T) = f_1(L/l_{chaos}^{\Delta T})$$

$$Q(L, T, \Delta J) = f_2(L/l_{chaos}^{\Delta J})$$

The two functions might even be the same! (up to a rescaling factor)

• Numerical simulations show that 3d systems look quite different from mean field one...

- Numerical simulations show that 3d systems look quite different from mean field one...
- ... but that some features have still to be understood

- Numerical simulations show that 3d systems look quite different from mean field one...
- ... but that some features have still to be understood
- Presence of temperature chaos in simulation

- Numerical simulations show that 3d systems look quite different from mean field one...
- ... but that some features have still to be understood
- Presence of temperature chaos in simulation
- Can temperature and disorder chaos be better characterized (from a rigorous point of view)?

- Numerical simulations show that 3d systems look quite different from mean field one...
- ... but that some features have still to be understood
- Presence of temperature chaos in simulation
- Can temperature and disorder chaos be better characterized (from a rigorous point of view)?
- The Re-REM: an Interesting extension of the REM
 - Temperature chaos
 - Level Crossings

- Numerical simulations show that 3d systems look quite different from mean field one...
- ... but that some features have still to be understood
- Presence of temperature chaos in simulation
- Can temperature and disorder chaos be better characterized (from a rigorous point of view)?
- The Re-REM: an Interesting extension of the REM
 - Temperature chaos
 - Level Crossings
- What can be demonstrated for random graphs?

- Numerical simulations show that 3d systems look quite different from mean field one...
- ... but that some features have still to be understood
- Presence of temperature chaos in simulation
- Can temperature and disorder chaos be better characterized (from a rigorous point of view)?
- The Re-REM: an Interesting extension of the REM
 - Temperature chaos
 - Level Crossings
- What can be demonstrated for random graphs?

Final remark: A simple case where the mean field picture applies

Many states....

Many states....

Many states....

Many states....

Many states....

Many states....

...Non trivial overlap (in titles)...

...and clustering properties!

