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Some which are not “accepted” yet:

The phase diagram in presence of a field or a magnetic bias
Presence or absence of Temperature chaos
Nature of the spin glass phase
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e Is there a spin glass phase under an applied magnetic field ?

e |s there temperature/disorder chaos ?

/A Physicist Strategy\

Compute (and discuss) the Compare with numerical
prediction for (diluted) simulations of small systems
mean field systems in finite dimension

Discuss heuristic arguments

\

\ 4

T hese analytical results are not
yet rigorously proven and remain
a challenge for mathematicians

Answering (at the heuristic level)

the long-standing question. does
3d model are “mean-field like” ?




Ordering of the Ising Spin Glass under an applied
magnetic field

T. Jorg, H. Katzgraber & FK 07, in preparation
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SK: Almeida & Thouless ‘78:

A Spin glass phase exists under Tc
for low enough magnetic field
The critical value of the field diverges at T=0

SG Te
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Diluted model: Jorg, Katzgraber & FK 07:

A similar phase diagram with a finite hc(T=0)
6-connectivity regular graph with Gaussian couplings
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Finite dimensional Spin glass under a field

Finite dimension Mc Millian ‘84:

Imrie-Ma argument: the ground
state is highly unstable under a field

Spin glass phase: existence of large low energy excitations

Consider the ground state and an excitation of size £ with
excess energy | = AP
With a field h, we have now E = A¢® & Bht?/?

If 0 <d/2 the ground state is unstable for large size.
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Spin glass phase: existence of large low energy excitations

Consider the ground state and an excitation of size £ with
excess energy | = AP
With a field h, we have now E = A¢® & Bht?/?

If 0 <d/2 the ground state is unstable for large size.

Is the Imrie-Ma argument convincing ?
(even for a physicist...)
e It applies equally well to the spin glass on a Bethe Lattice where there is an AT line !

e The same argument 1s used with temperature variation to suggest Temperature Chaos
but not the absence of a spin glass phase in temperature !




A modified Imrie-Ma argument

e Consider a large sample with a magnetization by spin M under a field H

 Question: are there large excitations with low energies ?
* Fliping a cluster of size g :

» Costsanenergy F; ., M H @
e That we try to compensate by a gain from the boundaries: EJij o f%s

e For large “droplet”, the field energy dominates and is large !
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e Consider a large sample with a magnetization by spin M under a field H

 Question: are there large excitations with low energies ?
* Fliping a cluster of size g :

» Costsanenergy F; ., M H @
e That we try to compensate by a gain from the boundaries: EJij o f%s

e For large “droplet”, the field energy dominates and is large !

It is very hard to have low energy large-scale excitation under a field
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The controversy Magnetic field

A

versus

1 P

03 Tc

Te S ‘ z Temperature
0

Monte-Carlo simulations

 Generating a representative set of configurations (with the proper
weight) for small systems

 Using Metropolis dynamics and parallel tempering (mixing different
replicas at different temperatures)

* Question 1: Are we able to see the AT line for random graphs ?
e Question 2: What do we observe on 3d lattices ?
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Spin glass transition on random graph
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“Accord parfait” between simulation and theory
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From replica theory, we expect that at the
transition
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The AT line on random graph
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Compute the spin glass susceptibility

XSG 2 2
207 gt > — < g >
N 4 9

From replica theory, we expect that at the
transition

xsaq o< N1/3

“Accord parfait” between simulation and theory again !
Simulations are able to see the AT line when it is there !
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Spin glass in field in 3d spin glasses ?
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Temperature and Disorder chaos

FK & O. Martin, EPJ B 01
FK & J.-P. Bouchaud, EPL 05
H. Kaztgraber & FK, PRL 07
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Random energies strike back:The Re-Rem

. €6 ) E’I»Z
Let us consider 2V “states exp (_ N )

with free energies F=E-TS; ~ PBE:) = VN~ ps(Ss) = VN2ar

f REM like

Re-REM like

Temperature chaos arises from level crossings !

Free energies being random Gaussian, the model is solvable with a mapping to the REM:

a < 0.5 a=0.5 o> 0.5
1 1
TC: TC:
vV4In2 —1

~ 0.75 T, — o0

F non-extensive

2+/1n 2
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Level crossings in the Re-Rem

Free-energy of the
lowest state 1s

Fy =~ —/2Nlog20; = —N+/log2(1 + T2N2a-1)

=,
-
-~

Number of lowest states crossings :

T
NO.5—a)

NN(T, T + 6T) = N*§Tg(

1)

High quality numerical determination of g(x)

(up to 289 [evels simulated) bop | V000 - e
01 b N=800 - g
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e Temperature chaos, magnetic field chaos etc etc
e The Re-Rem is the simplest “mean-field” model with T-chaos




The Re-Rem

o States to state fluctuations induces extensive level crossing
e Temperature chaos, magnetic field chaos etc etc
e The Re-Rem is the simplest “mean-field” model with T-chaos

But what about finite dimensions ?




The Imrie-Ma argument again

e Consider a small change in disorder Jigg = J{- = Lo o C%AJ,
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Spin glass phase: existence of large low energy excitations

Consider the ground state and an excitation of size £ with
excess energy | — AEQ
Changing the couplings, we have now E = A¢® + BA J¢%s/?

If 0 < ds/2 the ground state is unstable for large size.

McKay, Berker & Kirkpatrick, PRL 82’
Fischer-Huse PRB 86°
Bray-Moore PRL 87°




The Imrie-Ma argument again

e Consider a small change in disorder Jigg = J{- = Lo o C%AJ,
T V14+AJ?

Spin glass phase: existence of large low energy excitations

Consider the ground state and an excitation of size £ with
excess energy | — AEQ
Changing the couplings, we have now E = A¢® + BA J¢%s/?

If 0 < ds/2 the ground state is unstable for large size.

B
“Chaotic” length scale: Echaos O AJ ™ 3s72=9

McKay, Berker & Kirkpatrick, PRL 82’
Fischer-Huse PRB 86°
Bray-Moore PRL 87°
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Ground states computations:
Two copies with couplings J and J’
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suggests that the overlap is just a function of
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Ground states computations:
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The Imrie-Ma argument over and over again

e Consider a small change in temperature T+dT

Spin glass phase: existence of large low energy excitations
Consider two temperatures and the free energy of one “droplet”

F(Th) = (1)
According to the droplet picture, the energy is almost T-independent

F(TQ) ~ F(Tl) = TlS(Tl) == TQS(TQ)

where

S = 0(T)€ds/2

Therefore, it exists again a size beyond which large droplets have to be flipped
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e Consider a small change in temperature T+dT

Spin glass phase: existence of large low energy excitations
Consider two temperatures and the free energy of one “droplet”

F(Th) = (1)
According to the droplet picture, the energy is almost T-independent

F(TQ) ~ F(Tl) = TlS(Tl) == TQS(TQ)
where
S = 0(T)€ds/2

Therefore, it exists again a size beyond which large droplets have to be flipped

_ v(T1) He : _ s
gc_ <T2 O'(TQ)—Tl O'(Tl)) with C_E_e

—1/¢
“Chaotic’ length scale: 0 (T1,T5) (TZ?’ /2 _ Tf’ / 2) :




Temperature and disorder chaos in 3d

Monte Carlo simulations
Two copies with couplings J and J’

T, —>J’ S AF @Byl
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Temperature and disorder chaos in 3d

Monte Carlo simulations
Two copies with couplings J and J’

Jij —I—IEijAJ
V1i+AJ2'

I

Q(L T AT) fl (L/lchaos)
) f2 (L/lchaos)

<
T A

- open: disorder
| closed: temperature |

IIII|IIII|IIII|IIII|IIII 10—4

0O 5 10 15 20 25 102101 1 10!

L/(AL,) L/(AL)

The two functions might even be the same !
(up to a rescaling factor)
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Conclusions

e Numerical simulations show that 3d systems look quite different
from mean field one...

e ... but that some features have still to be understood
e Presence of temperature chaos in simulation

e Can temperature and disorder chaos be better characterized
(from a rigorous point of view) ?

e The Re-REM: an Interesting extension of the REM
e Temperature chaos
e Level Crossings

e What can be demonstrated for random graphs ?

Final remark: A simple case where the mean field picture applies
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