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PACS. 05.30.Fk – Fermion systems and electron gas.

PACS. 32.80.Pj – Optical cooling of atoms; trapping.

PACS. 47.37.+q – Hydrodynamic aspects of superfluidity.

Abstract. – We show that, with reasonable hypotheses leading to a simple modeling, a link
can be obtained from experiments on the axial low-frequency collective modes between the ratio
aM/a, of the molecular scattering length aM to the atomic scattering length, and the energy
parameter ξ ≡ 1+ β of the gas at the unitarity limit. We also point out that, in order to reach
the range where the features of the Bose limit can be clearly seen, experiments have to go to
more dilute situations than have been achieved presently.

Collective excitations of an ultracold strongly interacting 6Li Fermi gas, most likely in the
superfluid regime, have been studied experimentally for the first time very recently [1,2]. Both
groups have measured, at very low temperature and in some range of magnetic field around the
Feshbach resonance, the frequencies and damping times of the radial and axial compression
modes in cigar-shaped optical traps. In particular, Bartenstein et al. [2] have covered in part
the crossover range going from the unitarity limit to the BEC regime domain [2]. This is the
region to which we will restrict the scope of this paper. In this domain the scattering length
a is positive. Physically, this is the range where, for a dilute gas, molecules form out of the
fermions. At unitarity where a = ∞, these molecules are infinitely large and get increasingly
small when a decreases. In this last limit, these molecules are expected to behave as bosons,
and indeed the Bose-Einstein condensation of these molecules has by now been observed by
several groups [3]. On the other hand, this will obviously no longer be true at unitarity.
Hence studying the crossover where the internal stucture of the molecules will manifest itself
progressively is a very interesting question.

In this paper we consider the detailed information which can be extracted from the ex-
perimental results on the low-frequency collective modes in this crossover [4]. We show that,
in order to see the specific features of the Bose limit, experiments have to go to more dilute
situations than what has been done up to now. With reasonable hypotheses we find that a
link can be obtained from experiments between the molecular scattering length aM and the
energy of the gas at the unitarity. Hence experiments [5] could provide aM together with the
first corrective term in the energy to this dilute limit, which is of very high theoretical inter-
est. Moreover we show that, even in the range of dilution which has already essentially been
reached, precise experiments can already extract these pieces of information from a detailed
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analysis of the data. More specifically, we will consider in this paper only the quasi–one-
dimensional situations found for very elongated trap clouds [1, 2]. However, our approach
could be extended to other less anisotropic situations. We also restrict ourselves to the case
of atoms being only in two hyperfine states, with equal number of atoms in each hyperfine
state. For practical matters we will consider only 6Li, on which all mode experiments have
been performed to date.

In our range of interest we expect superfluid hydrodynamics to be valid because the energy
scales set by the molecular binding energy or the pair-breaking energy can easily be large,
compared to the mode frequencies. In a related way experiments have already reached temper-
atures low compared to these scales, so that there are few elementary excitations, dissipation
can be neglected and we can use perfect-fluid hydrodynamics. Indeed, dissipation is found to
be quite small [2] experimentally. Hence this domain is expected to be much simpler than
the negative-a region, where the pair-breaking energy will become smaller as |a| decreases.
In particular, this will make damping higher, as is indeed found experimentally. Therefore
the validity of reactive superfluid hydrodynamics is much more uncertain when one goes in
the negative-a domain. Note that we have assumed in this physical discussion that the gas
is superfluid, which is most likely the case. However, since in the following we will make use
only of reactive hydrodynamics, our calculations would also apply if the gas is in the normal
state with a collision time small compared to the period of the collective excitations, ensuring
that we are deep in the hydrodynamic regime.

The mode frequency is determined from the dependence [6] of the chemical potential µ(n)
on the total atomic density n. More precisely, it is related to the derivative of µ(n) with
respect to n so it conveys detailed and sensitive information on µ(n) and on the energy of the
gas. It is conversely possible [7] to invert experimental data on the mode frequency to obtain
the equation of state of the gas. This requires only that µ(n) is known in some limiting case,
from which one then goes away by an iterative procedure, making use of the experimental
knowledge of the mode frequency as a function of particle number. The basic ingredient of this
method has been shown recently [8] to have an accuracy of order 10−3. However, presently
the number and the accuracy of the data is not enough to carry out the above program with a
sensible precision. Nevertheless, we will show that, with reasonable hypotheses, it is possible
to analyze the data and extract quite important physical quantities.

We will assume that the (homogeneous) gas can be completely characterized when its den-
sity n and the scattering length a are known. This last quantity is controlled experimentally
through the applied magnetic field. This description has been introduced by Heiselberg [9]
and used by [10] O’Hara et al. in the analysis of their experiments. This hypothesis is far from
obvious since one might expect that, at least in the vicinity of the Feshbach resonance, more
parameters are needed to fully characterize the scattering properties. However, at least in the
case where the width of the resonance is quite large compared [11] to the Fermi energy, this
seems to be valid. This situation is found in 6Li and in 40K. Then for homogeneity reasons
the T = 0 chemical potential of an homogeneous gas with density n takes the general form

µ(n) = EFf(1/kFa), (1)

where EF = h̄2k2
F/2m is the Fermi energy and k3

F = 3π2n. This implies in particular at
resonance a−1 = 0 a universal behaviour, since the only energy scale is the Fermi energy. In
this case µ(n) = ξ EF, where ξ ≡ 1 + β = f(0). The energy per atom of the gas itself is given
by (3/5)ξ EF.

Actually, in a harmonic trap the experimental determination of the mode frequency as
a function of scattering length allows to obtain µ(n) only within a multiplicative constant.
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This is, for example, well known for the Bose case where only the linear dependence [12] of
µ(n) = gn on n is necessary to obtain the theoretical result for the frequency, but the constant
g = 4πh̄2a/m drops out, so the mode frequency does not allow to reach the scattering length
a. Similarly in the unitary case [13] the frequency does not depend on ξ and one has rather
to find ξ from measurements of the interaction energy of the gas [14], as it is obtained from
expansion experiments. However, since there is only a single multiplicative constant, one
could hope to find from the mode frequencies the scattering length a as soon as ξ is known, or
the reverse. Naturally, in order to do so, one needs to make a connection between the regions
with small a (in the Bose regime) and with large a (near the unitarity limit). We will make
this connection by taking a quite reasonable modeling between these two limiting regions.

In the vicinity of the unitarity limit a−1 ≈ 0, it is natural [15,16] to proceed to an expansion
of f(y) since y = 1/kFa is small. Hence we write

f(y) � ξ − Sy. (2)

Near the other limiting case, namely the Bose limit, it is also natural to proceed to an expan-
sion [13,17] in powers of the density. The standard expression [13] of the chemical potential in
the Bose limit is µM = 2µ(n) = gMnM in terms of the molecular density nM and the coupling
constant is given by gM = 4πh̄2aM/mM in terms of the molecular mass mM = 2m and the
molecule-molecule scattering length aM. The next order correction for the low-density expan-
sion for the standard gas of structureless bosons is [17] the Lee, Huang and Yang (LHY) term
(32/3

√
π)gMnM(nMa3

M)1/2. Hence we note that the expansion which comes out naturally in
this theoretical framework is in powers of n1/2. On the other hand, a gas of composite bosons
(each boson being made of two fermions) is physically different from a gas of structureless
bosons. Hence the low-density expansion has to be different, starting from some order [18].
Indeed as we have seen above, it is rather the variable kFa ∼ n1/3 which comes out in study-
ing the BEC-BCS crossover, corresponding physically to the fact that the internal fermionic
structure of the Bose molecule under consideration is now coming in. It is unclear whether
n1/2 terms will be present. At least it is an open theoretical question to find the specific form
of the low-density expansion, and in particular whether only n1/2 or n1/3 or both are coming
in. In particular, experiments on collective modes could contribute to clear up this question.
In the present case, since our purpose is to make the connection to the Fermi gas regime, we
want naturally to keep the n1/3 variable. On the other hand, we will not include for simplicity
n1/2 corrective terms, whose presence is unclear. They are anyway of higher order than n1/3.
In this way we are led to write the low-density expansion of our function f(y) as

f(y) � (A/y)(1 + c/y). (3)

This corresponds to the expansion µ(n) � (1/2)gMnM(1 + c(3π2)1/3n1/3a), provided we set
A = (1/3π)aM/a. Naturally, parameter c is physically important since it is responsible of the
departure of the mode frequency from its ideal Bose gas value in the vicinity of the Bose limit.
Similarly, parameter S is responsible [16] for the linear behaviour [2] of the mode frequency
in the vicinity of unitarity.

We will now connect smoothly the unitarity domain and the Bose domain by making use
of a Padé approximation [19] for f(y) with y running in the domain [0,∞[. This kind of
approximation is known to be often quite good in reproducing a function because it has the
potentiality of imitating the analytical structure of the function by the poles it may introduce.
Specifically, it amounts to approximate the function of interest by a rational fraction. In the
present case, it happens that we can make in a natural way such an approximation without
introducing more parameters than the four ones we have already discussed. Indeed we will
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take the following Padé approximation:

f(y) = A
y + p0

y2 + q1y + q0
. (4)

Requiring this form to give the proper expansion for small and large y leads to the following
expressions for p0, q0 and q1:

p0 = ξ
A + ξc

ξ2 − AS
, q0 =

Ap0

ξ
, q1 = p0 − c. (5)

Naturally behind this approximation we make is hidden the assumption that µ(n) is a smooth
function of n when one goes from the unitarity to the Bose regime. This means that there is
no break in the physical properties during this crossover. Although this is a most common
assumption, it is by no means obvious and it is important that it can be justified by detailed
experiments on the mode frequencies as a function of scattering length. Indeed it could be
then seen if eq. (4) gives or not a proper description of these frequencies throughout the whole
range of scattering lengths.

We could naturally treat all of our four parameters as free parameters. However, this
would make our study somewhat heavy. Moreover, in the case of 6Li, there are already rather
reliable data on the parameters ξ and S. Indeed experimental [14] and theoretical [20, 21]
evaluations of ξ converge around a value ξ ≈ 0.45. Whatever the final outcome, it is not
expected to be so far from this value. So we will take ξ = 0.45 as granted. Similarly, the
analysis [16] of the axial mode frequency data [2] leads to S ≈ 0.5, so we will take S = 0.5.
This leaves us with only two parameters, A and c.

Parameter A is essentially the molecular scattering length and is our central interest. It has
been shown theoretically [22] that aM = 0.6a in a nearly resonant situation, which corresponds
to A = 0.064. It would naturally be very interesting to check experimentally this result and
we will see that the mode frequency offers a promising way to do it. On the other hand,
parameter c is the equivalent of the LHY correction in our case and is also clearly of high
theoretical interest, since it should contain contributions due to the fermionic nature of the
molecular components. Theoretically, it is unclear to even decide the sign of c. However, if
we take into account the analytical result, to be given below, for the mode frequency near
the Bose limit, its extrapolation toward the unitarity region seems to go clearly below the
experimental results [2] if c < 0. We will therefore restrict ourselves to the domain c ≥ 0.

We will now, for consistency, restrict further our parameter domain. First, we want f(y)
to smoothly interpolate between the unitarity limit where f(0) = ξ and the Bose regime where
f(y) ≈ A/y, so we do not want any zero of f(y) for y ≥ 0. This implies p0 > 0, i.e. A < 0.4
or aM/a < 3.8 (note that, in this case, we have also q0 > 0 and q1 > 0). This relation is
well satisfied by all the current possibilities [23] for aM/a considered in the literature. Next,
we certainly do not want any pole for y > 0. But even poles for y < 0 correspond to a
nearby singularity which contradicts somewhat our smoothness requirement. Hence we will
require that f(y) has no pole for real y (since we have q1 > 0, the real part of the poles
location is negative, which puts them away from our y > 0 domain). This means q2

1 < 4q0.
This condition implies that A < 0.3 (i.e. aM/a < 2.8) and, in this case, we have the further
restriction c < (0.73/A)[1 + (1− 2.47A)3/2]− 2.7.

Before discussing our results, let us first briefly indicate how we proceed to get them and
give analytical results in limiting cases. Since we are interested in the axial mode where the gas
behaves as a 1D system, we have first [8] to calculate, from the relation between the 3D density
n(µ) and the chemical potential µ, the relation n1(µ) =

∫ µ

0
dµ′n(µ′) between the effective 1D
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Fig. 1 – Reduced axial mode frequency squared as a function of arctan(1/kFa) for the model equa-
tion (4) for c = 0, 2 and 4, and values of aM/a as indicated near the various curves. For com-
parison, we have also plotted with the c = 0 case, as the thin line, the result of the model [16]
f(y) = 1/2− (1/π) arctan(πy/2).

density n1 and the chemical potential µ on the long axis of the trap. In our case, this
calculation can be performed analytically from eq. (2), but we do not write the lengthy result.
On the other hand, this relation becomes much simpler near unitarity where f(y) � ξ − Sy.
Introducing a parameter t it can be written as n1 = t5 − (5/8)(S/ξ)t4, with µ = t2 − (S/ξ)t.
In these expressions for n1 and µ, we have actually dropped useless multiplicative factors
since they do not enter the final result for the mode frequency. Similarly, near the Bose limit
where f(y) = (A/y)(1 + c/y), we obtain n1 = t6 + (8/7)ct7, with µ = t3 + ct4. In the general
case analogous parametric relations are obtained. The above parameter is actually given by
t = n̄1/3/κ, where n̄ is the (3D) gas density on the long axis of the trap, divided by its
maximum value found at the center of the trap, and κ = yM with yM being the maximal value
of y = 1/kFa found at the center of the trap. Hence the maximum value of t is tM = kM maxa.

We then calculate the mode frequency ω by making use of the “α-p modeling” together
with a first-order correction [7, 8]. We take the above relation between n̄1 ≡ n1/n1 max and
µ̄ ≡ µ/µmax (n1 max and µmax being the center trap values of n1 and µ) and make a best
approximation of it by n̄1 = [1−(1−µ̄)α/2]p. We then make a first-order correction to account
for the difference between this model and the actual relation n̄1(µ̄). This procedure leads [8] to
a precision of order 10−3. At unitarity we have the simple result n̄1 = µ̄5/2, equivalent to α = 2
and p = 5/2, leading [13] to ω2/ω2

z = 12/5, where ωz is the axial trap frequency. Then our
first-order correction leads, in the vicinity of unitarity, to the analytical [15,16] result ω2/ω2

z =
12/5 + (256/875π)(S/ξ)(1/kF maxa). Similarly, in the Bose limit we have n̄1 = µ̄2, equivalent
to α = 2 and p = 2. This leads to ω2/ω2

z = 5/2. Then a perturbative calculation gives, near
this Bose limit, ω2/ω2

z−5/2 = (3
√

π/32)(Γ(13/3)/Γ(29/6))c(kF maxa) � 0.082c(kF maxa). This
is to be compared with the coefficient one would obtain [17] from the LHY result, which can
be rewritten as f(y) = (A/y)(1+64(aM/6πa)3/2/y3/2) � (A/y)(1+0.78(aM/a)3/2/y3/2). The
corresponding result [17] can be written ω2/ω2

z−5/2 = (105/256
√
6π)(aM/a)3/2(kF maxa)3/2 �

0.094(aM/a)3/2(kF maxa)3/2. If we were to add the LHY term to our expression eq. (4), which
we can do meaningfully only in the Bose limit, we should add the above correction to our
result. This is displayed in fig. 2.

We give in fig. 1 the results of our numerical calculations for c = 0, 2 and 4, and values
of aM/a compatible with the restriction given above. In fig. 2 we take the result aM/a = 0.6
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Fig. 2 – Reduced axial mode frequency squared as a function of arctan(1/kFa) for the model equa-
tion (4) with the value of aM/a = 0.6 of Petrov [22] et al. and for c = 0, 2, 4 and 8. The filled squares,
with error bars, are the data of Bartenstein [2] et al. The dash-dotted line is the possible additional
contribution [17] coming from the LHY correction.

of Petrov et al. and give our results for c = 0, 2, 4 and 8 together with the experimental
results. In agreement with our specific choice of S/ξ, all our curves start with the same
slope near unitarity. Near the Bose limit our results rise (for c �= 0) above the Bose limit
ω2/ω2

z = 2.5. The slope for this rise is naturally proportional to c, in agreement with our
analytical result. However, this rise is always rather small, in contrast to what one might guess
at first. Moreover, values above the Bose limit are essentially obtained only in the density
domain beyond the one which has been reached experimentally, so that a positive value for c
is not in contradiction with present experimental data. From fig. 2 we see that aM/a = 0.6
and c ≥ 2. seems compatible with present experimental data. In this respect, we notice that
when we translate a dilution parameter [2] nMa3

M = 10−3, which sounds to correspond very
much to a dilute situation, we find (assuming aM/a = 0.6) 1/kFa � 1.54 of order unity, and
arctan(1/kFa) � 1. is not in the range where the typical Bose behaviour occurs.

Next we see that, starting from the unitarity value ω2/ω2
z = 2.4, the rise toward the Bose

value is faster for small c and aM/a. This is easy to understand from eq. (5), since these
small values imply also small values for our parameters p0, q0 and q1. Accordingly, the Bose
regime, which from eq. (4) is found for y 
 p0, q0, q1, is rapidly reached. For larger values
of c and aM/a, parameters p0, q0 and q1 get correspondingly larger and the Bose regime is
reached only for larger values of 1/kFa. Nevertheless, increasing c or aM/a does not lead to
the same change in the mode frequency, as can be seen from fig. 1. Hence, by making precise
measurements up to 1/kFa � 2, it should be possible to obtain both c and aM/a, and even
to check if our approximation eq. (1) of the equation of state gives an accurate description
of the data. More precisely, we believe that experiments which would reach a typical relative
precision of 10−3 on the frequency over a range typically half of the total range spanned by
our figures should be enough to provide a fair constraint on aM/a.

∗ ∗ ∗
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