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Using a Fermi-liquid approach, we provide a comprehensive treatment of the current and current noise
through a quantum dot whose low-energy behavior corresponds to an SU(N) Kondo model, focusing on the
case N=4 relevant to carbon nanotube dots. We show that for general N, one needs to consider the effects of
higher-order Fermi-liquid corrections even to describe low-voltage current and noise. We also show that the
noise exhibits complex behavior due to the interplay between coherent shot noise, and noise arising from
interaction-induced scattering events. We also treat various imperfections relevant to experiments, such as the

effects of asymmetric dot-lead couplings.
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I. INTRODUCTION

The Kondo effect has long served as a paradigm in the
field of strongly correlated electron physics. It is perhaps the
simplest example of a system where many-body interactions
can give rise to highly nontrivial behavior: its essence in-
volves nothing more than a localized magnetic impurity
which is exchange coupled to conduction electrons in a
metal. Despite having been studied for over 40 years, interest
in Kondo physics shows no sign of abating. A large part of
this continued interest has been fueled by recent advances
allowing the controllable realization of unusual Kondo ef-
fects in nanostructures. These include multichannel Kondo
effects,! where there are many conserved flavors of conduc-
tion electrons: such systems can give rise to non-Fermi-
liquid physics and have recently been realized using semi-
conductor quantum dots.> Another class of exotic Kondo
effects are so-called SU(N) Kondo effects, where N>2.
Such systems involve only a single channel of conduction
electrons but the effective spin of the impurity and conduc-
tion electrons is greater than 1/2. While such systems are still
described at low energies by a Fermi-liquid fixed point, the
properties of this Fermi liquid are modified in several inter-
esting ways compared to the spin-1/2 case.> The case N=4
has received particular attention due to its realizability in
double*~® and triple quantum dots’ as well as carbon nano-
tube quantum dots.3-12

Research on Kondo physics has also been spurred by the
possibility of studying experimentally its behavior when
driven out of equilibrium, where nonequilibrium is either
achieved by the application of a drain-source voltage across
a quantum dot'>'* or by externally radiating a quantum
dot." The nonequilibrium induced by a voltage has been the
subject of a number of recent theoretical works.!0-%?

In this paper, we will focus on a topic which combines
two of the above avenues of Kondo research: we will study
nonequilibrium charge transport through a voltage-biased
quantum dot exhibiting an SU(N) Kondo effect, focusing on
the low-temperature regime where the physics is described
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by an effective Fermi-liquid theory. We present calculations
for both the nonlinear conductance as well as for the current
noise. As has been stressed in a number of recent papers,?3-23
the fluctuations of current through a Kondo quantum dot are
extremely sensitive to the two-particle interactions associ-
ated with the underlying Fermi-liquid theory. This was first
discussed in the case of the standard SU(2) Kondo effect by
Sela et al.,” and was even measured for this system in a
recent experiment by Zarchin er al.?® As discussed in Refs.
24 and 25, the situation becomes even more interesting for
N>2, as now one must deal with the interplay between co-
herent partition noise (due to the zero-energy transmission
coefficient through the dot not being one) and the
interaction-induced scattering events. Of particular interest is
the case N=4, which can be realized in carbon nanotube
quantum dots. Very recently, current noise in such a system
has been measured experimentally by Delattre et al.,”’
though not in the low-temperature Fermi-liquid regime we
describe here.

The results presented here both clarify and extend those
presented in Refs. 24 and 25 as well as provide details un-
derlying the calculational approach. Particular attention is
given to the role of higher-order Fermi-liquid corrections,
something that was not correctly treated in previous works
(see erratum, Ref. 28). We show clearly how in the N=4
case, such corrections lead to an effective shift of the Kondo
resonance with applied bias voltage. As a result, the nonlin-
ear conductance does not increase with voltage, as would be
expected from a simple picture of the Kondo resonance as a
resonant level sitting above the Fermi energy. These Fermi-
liquid energy shifts are absent in the usual N=2 Kondo ef-
fect. We also describe the experimentally relevant case where
there is an asymmetry in the coupling between the quantum
dot and the source and drain electrodes. Such an asymmetry
has not been investigated thoroughly in previous works.

The remainder of this paper is structured as follows. In
Sec. II, we outline the basic description of our model and the
Fermi-liquid approach. Secs. III and IV are devoted to pro-
viding a detailed discussion of our results for both the con-
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ductance and the shot noise as well as details on their deri-
vation. In Sec. V, we summarize our main results for the
conductance and shot noise of a SU(N) Kondo quantum dot,
and conclude.

II. MODEL DESCRIPTION
A. Kondo Hamiltonian

We give here a compact synopsis of the quantum-dot
model we study and how it gives rise to Kondo physics. The
dot connected to the leads is described by the following
Anderson Hamiltonian?’

H=HD+HL+HT

=eg X g+ U X o + 2, 8k(CE,kaCL,ko + Csz,kaCR,ka)

o o<a’ k,o
+ 2 (1.0] 4o+ IRCR ko) + Hec (1)
ko

CLR ko 18 the annihilation operator for an electron of spin o
=1...N and energy g,=fvyk (measured from the Fermi en-
ergy ep) confined on the left/right lead. d, is the electron
operator of the dot and n,,=d§d,, the corresponding density.
U denotes the charging energy, g4 the single-particle energy
on the dot and f;,z denotes the tunneling-matrix elements
from the dot to the left/right lead. The general case of asym-
metric leads contacts is parametrized by # =fcos 6, R
=t sin @ with 0=[0,7/2]. O=m/4 recovers the symmetric
case. The rotation in the basis of leads electrons

bis cos 0 sin € \[cLio
leo)=(ms Zollie) e
iy sin 6 —cos 0/ \cg o
decouples the a;, operators from the dot variables. The
Kondo screening then involves only the b, variables. In the
symmetric case, =m/4, b;, and a,,, represent, respectively,
even and odd wave functions with the dot placed at x=0.
We consider in this work the Kondo limit where the
charging energy U is by far the largest energy scale. Below
this energy, the charge degree of freedom on the dot is
quenched to an integer value and does not fluctuate. For g4
=U(l-m—m/N), the number of electrons is = n,=m. The
virtual occupation of other charge states by exchange tunnel-
ing with the leads is accounted for by the standard
Schrieffer-Wolff transformation® (or second-order perturba-
tion theory). It transforms Eq. (1) to the Kondo Hamiltonian
H=Ek’08k(bzvbk0+a,tu,akg) +HK where

+ m N
HI(=JK E (dado’__60,0’>bk’g-’bk(f (3)
! ! N
kok',o
and J| K:’l—zjm(;\\,]im). This Hamiltonian acts in the subspace con-

strained by X2 n,=m. In this paper, we concentrate on the
choice e4=U(l-m—m/N) for which potential scattering
terms vanish after the Schrieffer-Wolff transformation. In-
cluding potential scattering in the formalism is possible, for
example, along the line of Ref. 31. It however remains out-
side the scope of this work where we focus on the asymmet-
ric dot-lead couplings.
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The lead electrons transform under the fundamental rep-
resentation of SU(N). With exactly m electrons, the localized
spin on the dot transforms as a representation of SU(N) cor-
responding to a single column Young tableau of m boxes. A
basis of generators for this SU(N) representation is formed
by the N?-1 traceless components N =d§dg,
—(m/N)S, 4 with (o,0”)# (N,N). This basis can be used
to rewrite Eq. (3) as an antiferromagnetic coupling

HK=JK§'T (4)

between the impurity (dot) spin S=($4,A=1,...,N*~1) and
the spin operator of the lead electrons taken at x=0, T
=S 0.0rbigly gbrror A=1, ... ,N>=1). The NXN matri-
ces t* are generators of the fundamental representation of
SU(N) while $4 are #im), % matrices acting on
states with m electrons.

Starting from high energies, Jx grows under renormaliza-
tion. It presages the complete screening of the dot spin by the
formation of a many-body SU(N) singlet in the ground state.
A large body of studies has shown that the strong-coupling
fixed point that dominates at low energy is a Fermi-liquid
one. Exact results from the Bethe-Ansatz®® find low-energy
exponents that characterize a Fermi liquid. Writing the
Kondo Hamiltonian (3) in terms of current, Affleck®* has
shown by completing the square that the impurity spin can
be absorbed by lead electrons. The resulting (conformal
field) theory is that of free fermions and it is believed to
describe the strong-coupling fixed point. It shows a simple
translation of energies in the spectrum corresponding to an
electron phase shift imposed by the Friedel sum rule

mir

Q=" ()
The identification of the leading irrelevant operator at this
fixed point yields Fermi-liquid behavior.>' Alternatively and
following Ref. 1 the ground state of Eq. (4) has been
shown’? to be a singlet state. Turning the coupling to the
leads does not destabilize this singlet leading again to Fermi-
liquid exponents. Finally, numerical renormalization group
(NRG) calculations have confirmed this picture for SU(2)
(Ref. 35) and SU(4).4>810

B. Fermi-liquid theory

We now discuss in detail the Fermi-liquid theory for the
Kondo effect, first introduced by Noziéres.’® It describes the
low-energy regime—the vicinity of the strong-coupling fixed
point and allows one to make quantitative predictions even in
an out-of-equilibrium situation. In Ref. 3, the Fermi-liquid
theory of Nozieres has been extended with the introduction
of the next-to-leading-order corrections to the strong-
coupling fixed point. These corrections are necessary in the
SU(N) case for observables like the current and the noise
since their energy (kgT, eV, or ugB) dependence is mostly
quadratic.

The Kondo many-body singlet (also called the “Kondo
cloud”) having been formed, we wish to describe how lead
electrons scatter off it. At low energies, two channels open:
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an elastic and an inelastic one. Both take place at the dot
position x=0. Elastic scattering is described by an energy-
dependent phase shift. At the Fermi level ey, it is equal to &,
see Eq. (5). We expand the phase shift around the Fermi
energy

a) a
Sule) = 6y + T—Ks + T_isz’ (6)

where the energy e is measured from &r. a; and a, are
dimensionless coefficients of order one.

It is instructive to think of the elastic scattering off the
Kondo singlet in terms of an effective noninteracting
resonant-level model (RLM), where this effective resonance
represents the many-body Kondo resonance. This is the pic-
ture of the Kondo effect provided by slave-boson mean-field
theory?” and is an exact description of the SU(N) Kondo
effect in the large N limit.3® Note that for finite N, one must
also deal with true two-particle scattering off the singlet,
something that will never be captured by the RLM; we thus
only use it to obtain insight into the elastic-scattering prop-
erties. In the RLM picture, the first two terms in the phase
shift in Eq. (6) are attributed to a Lorentzian scattering reso-
nance centered at gx=T cot & with a width «T}.? In the
SU(4) case, one thus finds that the Kondo resonance is cen-
tered at a distance ex=Ty above the Fermi energy, giving a
heuristic explanation for the fact that the low-energy trans-
mission coefficient through the dot is only 7=1/2. The fact
that the Kondo resonance sits above the Fermi energy is
indeed seen in exact NRG calculations of the impurity spec-
tral density.®10

The low-energy expansion of the RLM phase shift &(¢)
=arctan($) also gives the form Eq. (6) with a,/ a%
=cot 9. Note that there is no apriori reason that this relation
must hold for the expansion of the true phase shift, as the
correspondence to a noninteracting resonant level is not ex-
act. Despite this caveat, one finds that the prediction from the
RLM picture is quite good even at a quantitative level. The
exact relation between a; and a, is extracted® from the
Bethe-Ansatz solution®* and reads

N -2T(1/N)tan(m/N
a ( )an(w>)cot5o’ ™

@@ N-1 (1 1

Vol -+ —
2 N
where &, is given Eq. (5). In the SU(2) case, or more gener-
ally for a half-filled dot with m=N/2, a,=0, corresponding
to a Kondo resonance centered at the Fermi level. This is
expected for a model where particle-hole symmetry is not
broken. In the SU(4) case, Eq. (7) gives®® a,/aj=1.11284
instead of 1 in the RLM. As expected, the agreement be-
comes even better at larger N and RLM result is indeed the
N=c limit of Eq. (7).

The phase shift in Eq. (6) completely characterizes the
low-energy elastic scattering off the Kondo singlet. For fur-
ther calculations, it is useful to describe it using a Hamil-
tonian formulation. The free Hamiltonian describing purely
elastic scattering is given by
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Hy= 2 ey(blbro+ ajytyy). (8)

k.o

Decoupled from the outset, the @, variables are the same as
in the original model. In contrast, the b;,, variables have been
modified to now include the elastic phase shift §,(¢) in Eq.
(6). This point will be expanded on in Sec. III when we
discuss the calculation of the current.

We turn now to inelastic effects, which arise from quasi-
particle interactions in the Fermi-liquid theory. These inter-
actions can be written in a Hamiltonian form?

P
H. =
nt ’7TV2TK

A ¥ .
2 hhubeibybo s,

o<d’ {k;}

2 i : :
+4m/27§< E <E 8ki>~bo,k,bo,k2bgr,k3bo',k4-

o<o' {k;} i

X2 i T i
- > bi i Dokl B kB i Do
Ko<o'<o”

{k;}

)

where :: denotes normal ordering and v=1/(hvy) is the den-
sity of state for one-dimensional fermions moving along one
direction. To summarize, the Fermi-liquid theory is generated
by the Hamiltonian H=H,+ H;,, given by Egs. (8) and (9),
with the elastic phase shift Eq. (6). In fact, Egs. (6) and (9)
correspond to a systematic expansion of the energy,>3® com-
patible with the SU(N) symmetry and the Pauli principle. It
includes all first and second-order terms in the low-energy
coupling strength o1/ 7.

The great advantage of the Fermi-liquid approach is that it
can also be applied to nonequilibrium situations. Note that
the Fermi level e appears twice in the above equations: it
defines the reference for energies in the elastic phase shift
Eq. (6) and also for the normal ordering in Eq. (9). When the
system is put out of equilibrium, for instance when each lead
has its own Fermi level, & loses its meaning as a Fermi level
and becomes merely an absolute energy reference. This can
be used to relate’ the coefficients (ay,a,, @y, d,,x2) as we
shall show below.

C. Kondo floating and perturbation theory

To make progress in calculating physical observables at
low energies, we will treat the interacting part Hy, [cf. Eq.
(9)] of the Fermi-liquid Hamiltonian perturbatively. Among
the various diagrams built from Eq. (9), it is convenient to
separate the trivial Hartree contributions to the electron self-
energy from the more complicated diagrams. The former are
obtained by keeping an incoming and an outgoing line and
by closing all other external lines to form loops as shown
Fig. 1. The resulting diagrams are then in correspondence
with the diagrams describing scattering by a local potential.
Therefore they can be included in the elastic phase shift
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FIG. 1. Examples of Hartree diagrams for the self-energy built
from Eq. (9). The full dots (respectively, black and gray) indicate
vertices with four or six external lines. «, 8, and 7y denote spins.
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where we have defined 6Ny ,=[dedn,(e) and OJF,,
=[deebn,(e). on,(e)=n,(e)—O(er—¢e) is the actual quasi-
particle distribution [n,(g,)=(b] by,)] relative to the ground
state with Fermi energy ep. We see again that & sets the
reference in Eq. (10) for both & and n,(g). Including Har-
tree diagrams is essentially tantamount to a mean-field treat-
ment of the interaction term Eq. (9). On a physical level,
these Hartree terms can be interpreted as a mean-field energy
shift of the Kondo resonance arising from a finite quasipar-
ticle population and their interactions. We shall see that in
the case of an SU(4) Kondo quantum dot, these Hartree
terms play a significant role in determining the nonlinear
conductance; this is not the case in the more conventional
SU(2) Kondo effect.

While the idea of perturbatively treating H;, is straight-
forward enough, a possible weakness of the Fermi-liquid ap-
proach is the number of seemingly undetermined parameters
in Egs. (6) and (9). The standard Fermi-liquid treatment of
the Kondo effect allows one to relate the coefficients a; and
¢, via the so-called “floating” of the Kondo resonance (to be
discussed below); these coefficients correspond to leading-
order Fermi-liquid corrections. However, for transport quan-
tities in the general SU(N) Kondo case, we will see that the
remaining coefficients, corresponding to higher-order correc-
tions, are also important. Luckily, these too can be related to
one another using a recent and powerful extension of the
Kondo floating recently proposed in Ref. 3. It allows to re-
late the different phenomenological coefficients of Egs. (6)
and (9); we describe the basic reasoning involved in what
follows.

The Kondo resonance is a many-body phenomenon that
results from the sharpness of the Fermi sea boundary.®
Physically, conduction electrons build their own resonance.
The structure of this resonance is therefore changing with the
conduction-electron occupation numbers, as Eq. (10) shows
explicitly. However it cannot depend on &, which is a fixed
energy reference. This idea is implemented by shifting the
Fermi level e by Jep while keeping the absolute energy
ep+e and the absolute occupation numbers n (g) fixed in
Eq. (10). As a result e —&—38ep and dn,(g) — dn,(e)+6(e
— 8ep)— 6(e). Imposing invariance of the phase shift leads to
the following Fermi-liquid identities
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a=(N-1)¢y, (11a)

N-1

— ¢ Pr=(N-2)x.

7 (11b)

an =

where the first relation (11a) was initially derived for the
general SU(N) case by Nozieres and Blandin.!

Note that an alternative way to derive Egs. (11) is to insist
that the entire structure of the Kondo resonance simply
translates in energy when we dope the system with quasipar-
ticles in a way that corresponds to a simple increase in the
Fermi energy.® Nozieres’ original derivation of Eq. (11a) in
the SU(2) case3® also used this idea but restricted attention to
an initial state with no quasiparticles. Equations (11b) follow
when we apply the same reasoning to an initial state having
some finite number of quasiparticles. Note that for SU(2), or
a half-filled dot (m=N/2), a,=0 from Eq. (7) so that ¢,
=0 and y,=0. The next-to-leading-order corrections all van-
ish in agreement with previous works on the ordinary SU(2)
case,23-36:40.41

It is worth mentioning that the second generation of
Fermi-liquid terms (ay, ¢,,x,) can also be derived in the
framework of conformal field theory. In Ref. 3, a single cu-
bic Casimir operator is given, which reproduces the three
terms corresponding to the coefficients «,, ¢,, and x,. The
identities (11b) are then automatically satisfied.

The floating of the Kondo resonance (and resulting con-
ditions) also has an important consequence for calculations
of observables in the presence of a voltage: the results will
not depend on where one decided to place the dot Fermi
energy & within the energy window defined by the chemical
potentials of the leads. On a technical level, this is because,
by virtue of Egs. (11), any shift Sey of the dot Fermi energy
will be completely compensated by a corresponding shift in
the Hartree contributions arising from the quasiparticle inter-
actions. This invariance is explained in detail in Fig. 2. Note
also that this invariance has physical consequences as well: it
implies, for example, that the current is not affected by the
capacitive coupling to the leads (in the Kondo limit).

Given the above invariance, it is convenient for calcula-
tions to choose the Fermi level such that

Ny o= f deén,(e) =0 (12)

so that any closed fermionic loop built from an energy-
independent vertex vanishes. For this choice of position,
6N, , vanishes which greatly simplifies the phase shift ex-
pression (10). Moreover, the y, vertex in Eq. (9) does not
contribute to the current and the noise when the perturbative
calculation is stopped at second order. The reason for that is
that the y, vertex is already second order and can only ap-
pear once. Its six legs are connected to at most two current
vertices so that at least two of these legs must connect to
form a closed loop implying a vanishing contribution. In
contrast to these simplifications, JE; , in Eq. (10) remains
generally different from zero due to the energy dependence
of the ¢, vertex in Eq. (9).

On may wonder whether the physical argument of the
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FIG. 2. Diagrammatic construction for the independence of ob-
servables in . Crosses correspond to elastic scattering. Two- and
three-particle interactions are represented by, respectively, black
and gray full circles. Many diagrams in the perturbative expansion
in Hy, Eq. (9) exhibit a dependence in ep. Nevertheless, it is pos-
sible to gather and combine those diagrams to produce &p-invariant
forms. The combination (a) that appears in the irreducible self-
energy does not depend on & as a result of Eq. (11a). Combination
(b) is a second invariant, thanks to Eq. (11b), contributing to the
irreducible self-energy. (a) and (b) together imply the phase-shift
invariance discussed in the text. Finally, the four-particle vertices of
(c) can always be combined to cancel the dependence in & thanks
to Eq. (11b). Apart from (a), (b), and (c), all other diagrammatic
parts involve energy differences in which the reference e naturally
disappears. The combinations (a), (b), and (c) can be understood as
emerging from Ward identities related to the U(1) gauge symmetry.
For example, Eq. (11a) has been shown (Refs. 42 and 43) to derive
from a Ward identity with a vanishing charge susceptibility.

floating of the Kondo resonance, as presented in Ref. 3 and
repeated in this paper, is sufficient to extend the results of
this paper to higher orders Fermi-liquid corrections. Apply-
ing the floating argument to the next (third) order, one ob-
tains an incomplete set of relations between the coefficients
such that some of them remain undetermined. In the lan-
guage of conformal field theory, it means that more than one
operator is involved at each (higher) order. How to relate the
coefficients of those operators is a rather difficult problem. In
the SU(2) case, a solution was given by Lesage and Saleur.**

We finally turn to the discussion of the Fermi-liquid-
model renormalization. Treated naively, the model leads to
divergences in physical quantities. It is regularized®' by in-
troducing an energy cutoff D (different from the original
band width of the model) larger than typical energies of the
problem but smaller than Tk. Energies in Eq. (8) are there-
fore restricted to the window [-D,D]. The dependence of
observables in D is then removed by adding counterterms in
the Hamiltonian. It is strictly equivalent to the introduction
of cutoff D dependence in the coupling constants®* (a;, ¢;,
etc). The corresponding counterterms are discussed in Ap-
pendix A.

III. CURRENT CALCULATION

We now outline the calculation of the current using the
Fermi-liquid theory described in previous sections. Again,
the complete Hamiltonian is H=H,+H,, [cf. Egs. (8) and
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(9)], corresponding, respectively, to elastic and inelastic scat-
tering; the approach will be to treat H,, as a perturbation.
Slightly abusing terminology, we will include all Hartree
contributions arising in perturbation theory in the free
Hamiltonian H; H, will thus correspond to the elastic phase
shift given in Eq. (10). Contributions to the current which
only involve H, (thus defined) will be referred to as the
“elastic current.” H,, is then added perturbatively, without
Hartree diagrams, in order to compute the corrections due to
inelastic scattering.

A. Current operator

The current operator at x is generally given by
2 eh T 1
1) = = 2 [0, () = 9,09, (0)], - (13)

where m is the electron mass. Various expressions can be
obtained for the current depending on which basis it is ex-
panded. It is convenient’* in our case to choose the basis of
scattering states that includes completely elastic (and Hartree
terms) scattering, i.e., the phase shift Eq. (10) and that cor-
respond to eigenstates of the single-particle scattering ma-
trix. Such states will have waves incident from both the left
and right leads. This is in contrast to another standard
choice,? which is to use scattering states which either have
an incident wave from the left lead, or from the right. We
refer to such states as the “left/right” states.

We first discuss our scattering states in first quantization.
Eigenfunctions corresponding to the a;,, variables do not see
the dot or the Kondo effect. Using Eq. (2), they read

sin ekt — itk ¢ <

cos B ks _ grilkithiny 15 (14)

dla,k(x) = {
where 60— /4 measures the asymmetry of the coupling to the
leads, see Eq. (2), and the eigenenergies #ivzk are measured
from the Fermi level e5. The situation is more complicated
for the b, variables. The associated eigenfunctions at small
x, close to the dot, depend on the complex ground-state wave
function of the Kondo problem. They are not known and in
fact it cannot even be reduced to a one-particle problem.
However, we can write the eigenfunctions far from the dot

cos Ok § e~ ikithxy <

sin Qe kY — Sefkrthn) - x> (15)

P i(x) =
where the S matrix is related to the phase shift Eq. (10),
Sy=e?%e) at eigenenergy &,=hvpk. The eigenstates Eqs.
(14) and (15) have the same energy. They can be combined
to give the left and right scattering states with the energy-
dependent transmission T(g)=sin?(26)sin’[8(g)]. In the
SU(2) case (or generally particle-hole symmetric case), &,
=m/2 and the system is closed to unitarity for symmetric
leads coupling.

We come back to second quantization and project the
electron operator i,(x) over the eigenstates Eqs. (14) and

(15). Conservation of the current implies that 1(x) does not
depend on x. We choose an arbitrary x <O far from the dot,
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fL is the current at x and fR at —x. If ] denotes the conserved

current, /=1I; =Ix. The combination sin? 6]; +cos? 6l leads
to the compact expression

=== (sin 26[a} ()b, (x) - a}(- 1)Sb,(~ x) + H.c.]
2vh~

~2 cos 260[al(x)a,(x) - al(- X)a,(- x)]) (16)

with b (x)=2bie™ and Sb,(x)=2,Sibie™. Physically,
operators taken at x(—x) correspond to incoming (outgoing)
states.*® The second line in Eq. (16) turns out not to contrib-
ute to the mean current, the noise or any moment of the
current.

Before proceeding with the calculation, it is worth noting
that in the SU(2) case, the proximity to the unitary situation

allows a simpler treatment.*’ The current is written i:Iu
A 2
—Igg with quzfv. All quantum or thermal fluctuations are

included in the backscattering current iBS which can be writ-
ten in terms of a;, and b, operators.*'*® However, the range
of application of this approach is restricted to the SU(2) case
with a completely symmetric leads coupling. In any other
situations neglecting fluctuations in 7, is incorrect?*? and
Eq. (16) becomes necessary.

B. Elastic contribution to the current

We are now in a position to compute the mean value of
the current in an out-of-equilibrium situation. A dc bias is
applied between the two electrodes imposing u;—ur=eV.
Left and right scattering states, corresponding to ¢y 4, and
CR ko Operators, are in thermal equilibrium with chemical po-
tentials w; and ug. Hence, using Eq. (2), we obtain the popu-
lations

(Db = Biioleos® Ofi(eg) +sin® Ofp(en)],  (17a)

(ajag)= 8 lsin® Ofy (e) +cos? Ofg(er)],  (17b)

. 5/{,/(/ sin 26
<611'(bk'> = <bZakr> = TUL(SJJ _fR(sk)]’ (17¢)

fur(e) = fle = puur) (17d)

for all spins ¢. Equation (12), that implies a vanishing Har-
tree diagram, is satisfied with u;=sin’> 6 eV and ug
=—cos’ 6 eV. f(g)=(1+eP?)7" is the Fermi distribution.

The average current is obtained from Eq. (16) and repro-
duces the Landauer-Biittiker formula*®

Iy = %f deT(e)[f1(e) - fr(e)] (18)

with the transmission
T(g) = sin> 26 sin’[ 8(g)] (19)

and the phase shift
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T)> (eV)’sin> 26
8e) = o+ Mo 22| 2 (TIN_ [eV)sin
TK T[( 3 4

)

(20)

where we have used the identity (11b), a,=(N-1)¢,/4.
Here, the phase shift 8(e) has an extra (V,T) dependence due
to mean-field (Hartree) interaction contributions [cf. Eg.
(10)]. Within the heuristic resonant-level picture, we can in-
terpret this as the voltage inducing a quasiparticle popula-
tion, whose interactions in turn yield a mean-field upward
energy shift of the Kondo resonance. Note that the relevant
interactions here are not the leading-order Fermi-liquid inter-
actions described by ¢; but rather the next-leading-order in-
teraction described by ¢,.

At zero temperature, the current can be expanded to sec-
ond order in eV/Tg. The asymmetry and the zero-energy

transmission are characterized by
C=cos 26, T,=sin’§, (21)

with C=0 in the symmetric case. The current takes the form

Iel . eV eV 2
ﬁ=TO—CS1n250a'1—+ p—
2
o
X 26,(1+3CH)—
{cos o ( )12
sin 28y(1 - 3c2)%} . (22)

C. Inelastic contribution to the current

The Keldysh framework® is well suited to estimate inter-
action corrections Eq. (9) to the current. The mean current
takes the form

1= (7, 0(t)e et ) (23)

where the Keldysh contour C runs along the forward time
direction on the branch 7=+ followed by a backward evolu-
tion on the branch n=-. T. is the corresponding time-

ordering operator. Time evolution of 1(f) and H;, () is in the
interaction representation with the unperturbed Hamitonian
H, (8). Mean values (...) are also taken with respect to H,,
Eq. (8) with bias voltage, see Egs. (17). Note that the time ¢
in Eq. (23) is arbitrary for our steady-state situation. Finally,

in order to maintain the original order of operators in I (1), we
take left (creation) operators on the 7=- branch and right
(annihilation) one on the 7=+ branch.

A perturbative study of Eq. (23) is possible by expansion
in H;,, and use of Wick’s theorem. This leads to usual dia-
grammatics where one should keep track of the Keldysh
branch index. The lowest order recovers the results of Sec.
IIT B describing elastic scattering. The next first order gives
only Hartree terms already included in Eq. (22). H;, gives
rise in general to three vertices with coefficients ¢, ¢,, and
x> Where the last two are already second order in 1/T. Thus
it is consistent to keep only ¢, in the second-order expansion
in H;,. A typical Green’s function is defined by G
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o

Q

FIG. 3. Second-order diagram describing the interaction correc-
tion to the current from Hamiltonian (9). The open circle represents
a current vertex while filled black dots correspond to interaction
vertices. «, 3 are spin degrees of freedom. The self-energy term is
formed by the three lines connecting the two interaction vertices.

(x=x",t=t")=—i(T.a(x,t,m)b"(x",t', 1,)). For clarity, spin
indices are omitted here and below since all noninteracting
Green’s functions are spin diagonal. Noninteracting Green’s
functions are 2X?2 matrices in Keldysh space given in
momentum-energy space by

k _ . ( F() F0+ 1 )5
G ’8)_8—skTZ+”T Fol Fy (e — &),
(24a)
. ( Fy f0+ 1)
Gaalk,e) = T+ im| T | se =gy,
&= 8 Fo—-1 F,
(24b)
_ 11
gab(k’s) = gba(k, 8) = 2l7T<akbk> 11 &8 - 8]()’
(24c¢)

with the Pauli matrix 7,=(, ")), Fo(e)=2(bjb;)—1, and

Fo(e)=2(aja)—1, as given Egs. (17). We wish to compute
the second-order correction from Eq. (23). It involves the
self-energy contribution shown Fig. 3 and defined by

STm(t —t,) = E Gl (ky,t — 1)) X G2 (ko 1y

ey sk
—1)Gh kst = 1) (25)
The causality identity, for t#0
SO+ =2 () +27() (26)

is derived by writing the explicit time dependence in Eq.
(25). Tt leads to various cancellations, in particular, for terms
where the lines external to the self-energy Eq. (25) bear no
11> dependence. The lines that join the current vertex to the
self-energy in Fig. 3 travels from x (or —x) to 0 (the dot) and
the opposite. Thus, using the Green’s function (24a) in real
space (with o= * 1)

+n a=1 ]

G (ax,e) = iwvei“‘s"/”F{Fo(s) + (
-7 a=-1

27

and the identity (26), one shows that the terms with operators
taken at x in Eq. (16) give a vanishing contribution to the
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current. This is merely a consequence of causality: interac-
tion, which takes place at x=0, can only affect outgoing
current and not the incoming part. We are left with the cur-
rent correction

N(N - 1)e sin 20< b

Ol =
e 2vh Ty

)22 m

7N
d
X f Z_S[i‘ggzbvl(_ x,8)2"M ()G (x,e) + c.c.].
T

(28)

The summation over 7; and 7, gives two terms: (i) one
includes the combination %**—%7". It gives a contribution
proportional to D exactly cancelled by a counterterm. Details
are given in Appendix A. (ii) The second term involves the
combination %*"=3"* and remains finite in the limit D—
+co. It reads

N(N—l)(l—Cz)eTr( & )2
5Iint=
2h ATy

. de
X (S+ SV)f ;(2“’ -3 )(e)imvAf(e) (29)

with C given by Eq. (21) and Af(e)=f1.(g)—fr(e).

We proceed further and restrict ourselves to the zero-
temperature case. The left and right Fermi-step functions are
introduced by going to frequency space for Eq. (25) and then
by using Egs. (24a) and (17). The result involves a sum of
terms with products of cos?> § and sin? §. Two distinct inte-
grals

s
J, = f dsf ds’f de"fi(e+e' —¢&"), (30a)
ML MR

ML
Jzzf dsf ds'J de'"fi(e+e' —€")  (30b)
MR MR

corresponding, respectively, to one- and two-particles trans-
fer, appear with the following combination:

J(1-CH+2J,(1+C?
7 .

cos® @sin® 6(J, —2J,) +J, =

(31)

With J;=(eV)3/6 and J,=4(eV)?/3, we obtain the current
correction

5Iint ¢1€V 2 5 C2
o5 =cos 286(N-D| —— | | = -— |
(1= C})Ne*Vih T« ) \127 4

(32)

This result can be given a quite simple physical interpre-
tation along the line of Ref. 23. The ¢, term in the interac-
tion part of the Hamiltonian (9) can be decomposed on the
left/right operators basis using Eq. (2). It then describes pro-
cesses where 0, 1, or 2 electrons are transferred from one
scattering state to the other. Using Fermi’s golden rule and
cos® 0 sin? G+cos? 0 sin® 6=(1-C*)/8, the total rate of one-
electron transfer is evaluated to be 2I";(1-C*) where
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2 2
T, = N(V- 1)ﬂﬁ<ﬂ/) . (33)
h 24\ Tk
From cos* 6sin* 6=(1-C?)?/16, the total rate for two-
electron transfer is I',(1-C?)?/2 where I',=8T";. For one-
and two-electron transfers, e cos 28, and 2e cos &, are inter-
preted as the corresponding charge transferred between
leads.”> Writing the current correction as

r
ST, = (e cos 28,21, (1 = C*) + (2e cos 50)?2(1 — Y2

we recover Eq. (32).

D. Current for SU(2) and SU(4)

The results of Secs. III B and III C can be extended to
finite temperature as explained in Appendix B. We detail
results for the total current I=1I,+ &l in the (N=2,m=1)
case and (N=4,m=1,2) cases.

For SU(2), a single electron is trapped on the dot, a,
=¢; and a,=0. The current takes the form

_ a )l (eV)? 2]
I_Im{l_(TK){ 5 +(7) } (34)

where I,,=(2¢?V/h)(1-C?). In the particle-hole SU(4) sym-
metric case with two electrons, «;=3¢; and a,=0. The cur-
rent reads

[ (a]>2<2(eV)2 C2(eV)? 5(77T)2)}
I=1,|1-|— + + ,

(35)

where I,,=(4€>V/h)(1-C?).

Turning now to the SU(4) case with one electron on the
dot, one finds that the inelastic contribution to the current
vanishes identically [cf. Eq. (32)], as the “effective charges”
associated with interaction-induced scattering events are pro-
portional to cos 28, and hence identically zero.”> The only
contribution is thus from the elastic channel [cf. Eq. (22)],
yielding

2
alTﬂ/— %(ﬂ/) (1 —3C2)}, (36)
K

I=1I,[1-
m{ Tk

where 1,,=(2¢?V/h)(1-C?). There is no temperature correc-
tion up to this order of the low-energy expansion. The case
with three electrons (m=3) and SU(4) symmetry is related to
the one-electron case by particle-hole symmetry. The Kondo
resonance is thus changed from above to below the Fermi
energy. The result for the current is then the same as Eq. (36)
but with an opposite sign for the asymmetry (60— /2
-0,C—=C), i.e., the roles of left (L) and right (R) leads are
exchanged for hole transport.

The differential conductance G(V)z%(V) obtained from
Eq. (36) gives an asymmetric curve whenever C# 0. Con-
sider the first the strongly asymmetric case, where |C| be-
comes sizeable. In this case, the asymmetric linear eV/Ty
correction in Eq. (36) dominates even at low bias voltage.
For strong asymmetry |C|— 1, the conductance measures the
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density of states of the Kondo resonance®® at *+eV. The
asymmetric linear term thus follows the side of the Kondo
resonance and reveals that the resonance peak is located
away from the Fermi level.!> This behavior is in fact generic
to the SU(N) case when the occupation of the dot is away
from half filling. In the SU(2) case or generally for a half-
filled dot (m=N/2), the resonance peak is located at the
Fermi level which suppresses the asymmetric linear term, see
Egs. (34) and (35).

Turning now to the case of a symmetric dot-lead coupling
(C=0), we see that as expected, the differential conductance
G(V) is symmetric in V at all dot fillings; hence, it exhibits a
quadratic behavior at low bias. In the SU(4) case, the con-
ductance obtained from Eq. (36) is predicted to be maximum
at V=0, in agreement with results obtained from slave-boson
mean-field theory.?” Within the Fermi-liquid approach, and
for one electron on the dot, this behavior is at first glance
rather puzzling. As we have already indicated, in the SU(4)
case, the conductance is completely due to the elastic trans-
port channel. Using the heuristic picture provide by the
resonant-level picture (i.e., elastic scattering due to a Lorent-
zian Kondo resonance sitting above the Fermi energy), one
would expect that the differential conductance should in-
crease with increasing voltage, due to the positive curvature
of the expected (Lorentzian) transmission coefficient. This
picture is in fact incorrect as it neglects the important Hartree
contributions discussed in Sec. III B. Heuristically, as the
voltage is increased, quasiparticle interactions lead to a
mean-field upward energy shift of the position of the Kondo
resonance. Because of the relation ¢,=(4/3)a,, this energy-
shift effect dominates and causes the conductance to de-
crease; without this mean-field energy shift, the conductance
would indeed exhibit a quadratic increase at small voltages.
Note that an incorrect upturn in the conductance was re-
ported in previous works: Ref. 25 neglected the higher-order
Fermi-liquid interaction parameter ¢, and the resulting
mean-field energy shift while Ref. 24 treated it incorrectly
(corrected in Ref. 28). Note also that the results for the con-
ductance presented in Ref. 12 only apply to a system with a
strongly asymmetric dot-lead coupling.

IV. CURRENT NOISE

Fluctuations in the current are almost as important as the
current itself. In particular, the shot noise (at zero tempera-
ture) carries information about charge transfer in the mesos-
copic system. The purpose of this section is to detail the
calculation of the zero-frequency current noise

§=2 f dt(AI(1)AT(0)) (37)

with the current fluctuation Ai(t)=f(t)—(i(t)>, see Eq. (16)
for the current operator expression.

Insight can be gained by first examining the strong-
coupling fixed point at zero temperature with eV << Ty so that
8(g) = &. Quantum expectations in Eq. (37) are evaluated
with the free Hamiltonian (8). The shot noise
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" h

To(1 - CH[1 = Ty(1 - C?)] (38)

is pure partition noise like a coherent scatterer.*® This result
implies a vanishing noise in the particle-hole symmetric
case, such as standard SU(2), with symmetric leads coupling
(To=1 and C=0). In this specific case, the shot noise is only
determined by the vicinity of the Kondo strong-coupling
fixed point, that is, by the inelastic Hamiltonian (9) and the
corrections to &, in the elastic phase shift Eq. (6). The shot
noise is therefore highly nonlinear with S~ V? at low bias
voltage. Since the corresponding current is close to unitarity,
an effective charge ¢*=(5/3)e has been extracted from the
ratio of the noise to the backscattering current.?® e*+#e
should however not be confused with a fractional charge. It
emerges as an average charge during additional and indepen-
dent Poissonian processes involving one and two charges
transfer as shown by the calculation of the full counting
statistics.*® Nevertheless, this charge e*=(5/3)e is universal
and characterizes the vicinity of the Kondo strong-coupling
fixed point. It can be seen as an out-of-equilibrium equiva-
lent of the Wilson ratio.

In asymmetric situations (T, # 1 or C# 0), the linear part
Eq. (38) of the noise does not vanish and even dominates at
low bias voltage. For instance in the SU(4) case, Ty=1/2 so
that Ty(1-T,)=1/4. This property is quite relevant for ex-
periments and may be used to discriminate SU(2) and SU(4)
symmetries for which the current gives essentially the same
answer.?’ In a way similar to the symmetric SU(2) case, we
can define an effective charge from the ratio of the nonlinear
parts (~V?) in the noise and the current.?*? This is however
less straightforward to measure experimentally since it re-
quires a proper subtraction of the linear terms.

A. Elastic contribution to the noise

Inserting the current operator Eq. (16) in Eq. (37), the
elastic Hamiltonian (8) gives a Gaussian measure which al-
lows to use Wick’s theorem, and thus Egs. (17). Like for the
current, we obtain a Landauer-Biittiker formula*® for the
noise with the same transmission Eq. (19) and phase shift
Eq. (20). At zero temperature, it reads

2Ne?

S= f " deT(e)[1-T(g)]. (39)

MR

An expansion to second order in eV/Ty yields the elastic
(nonlinear) correction to the noise Eq. (38)

35S, 1% V\?
2 " 3 = 552})6_ + ‘()Eg)(e_) (40)
(1-C*)2Ne’|V|ih Ty Ty
with coefficients
Cay sin 26
) = — ITO[I —2Ty(1-C%)], (41a)
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FIG. 4. Diagrams for the noise appearing in the first- and
second-order expansions in the inelastic Hamiltonian (9). Diagrams
(c) and (d) give identical contributions. For diagram (f), the three-
lines bubble can alternatively dress the bottom Green’s function.
a, B,y denote spins with a# 8 and B# vy. Open dots represent
current vertices while filled black dots correspond to interaction
vertices.

p
52 = %(1 +3C?)(cos 468, + 2 sin &, sin 35,C?)

- %(1 —3C)sin 281 = 2To(1 - C2)]  (41b)

and the total elastic noise reads S, =S+ 8S,. The first-order
correction Eq. (41a) gives an asymmetric part to the noise for
C#0. In a way similar to the current case, particle-hole
transformation (8,— 7—&,, a,——a,) reverts the sign of
the asymmetry Eq. (41a) which indicates that the Kondo
resonance is centered off the Fermi level.

B. Inelastic contribution to the noise

We follow the same procedure as for the interaction cor-
rection to the current established in Sec. III C. The mean
value in Eq. (37) is taken within the Keldysh framework,

similar to Eq. (23). The correct ordering of I operators is
maintained by choosing time 0 on the 7=+ branch and time
t on the n=— branch. The perturbative study of the noise
involves diagrams with two current vertices instead of one in
Sec. III C. The resulting calculations are therefore similar to
those for the current but are much more involved on the
technical side. The diagrams relevant for the noise at first
and second order in 1/Ty are shown Fig. 4. Noninteracting
Green’s functions are still given by Egs. (24).

Three vertices can be built from the interaction Hamil-
tonian H;,, (9) with coefficients ¢, ¢,, and y,. The y, vertex
has six legs and appears at most once at order 1/T%(. Topol-
ogy therefore imposes that two legs among the six must con-
nect to form a closed loop. The corresponding energy inte-
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gral vanishes thanks to Eq. (12). Apart from Hartree terms
already included in the elastic part, see Sec. IV A, the expan-
sion to first order in H;, gives the single Fig. 4(a). Involving
both ¢, and ¢,, the interaction vertex in Fig. 4(a) is charac-
terized by the energy-dependent coefficient ¢(e,e’)=¢,
+py(e+€')/2Tk. The corresponding noise correction is
given by

., —i?(1-CHN(N-1)
Oim = 47V hTy

dede’
X > nf (277)2A””(8)¢(8,8’)A”’7(8'), (42)
7

where A7 is the building block defined in Appendix C and
shown in Fig. 6. We replace A7 by its expression (C9)
[with sin’[ 8(g)] instead of T,,] and perform the 7 summation
to get

OS5, (N=-1) J
= dede' A
(1 - C?)?2Ne’/h Ty ede’Af(z)

X Fy(e)sin[8(g)]d(e,e")Af(e")sin 28(e").

(43)

This general expression can finally be expanded order by
order in eV/Ty. After energy integration, we obtain at zero
temperature a first and a second-order noise term

5S?nl _ 5—(a l) 5—((12 ( )2 (44)
(l _ C2)22N€%|V|/h Sint Sint K

with coefficients

55 = Cehy (N - 1)sin 26, sin® &,

mt

(45a)

5—(a 2)=

lﬂt

CH(N = 1)[ T, sin 28, + 6a; ¢, Ty(1 — 4T/3)]/2.
(45b)

Note that these two terms vanish identically for symmetric
leads coupling (C=0). It can be checked again that the first-
order correction is odd with respect to particle-hole symme-
try while the second order is even.

The expansion to second order in H,, yields the Figs.
4(b)—4(f) with two interaction vertices. To be consistent with
the rest of the perturbative calculation, only ¢, is kept in
each interaction vertex. The contributions corresponding to
Figs. 4(b)-4(f) are all calculated in Appendix C. Finally, the
total noise reads

S=So+ O, + OS% + 8S0 + 285 + OS¢ + O,

mnt nt nt mnt nt?

(46)

where the different terms are respectively given by Egs. (38),
(40), (44), (C19), (C12), (C16), and (C6).

C. Noise for SU(2) and SU4)

We have also extended the noise calculation to finite tem-
perature along the lines of Appendix B. In the asymmetric
case, the results are too cumbersome to be written here. In
the symmetric case, the noise was calculated in Ref. 24
where it was emphasized that corrections are rapidly sizeable
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at finite temperature. Hence the shot-noise regime is ex-
pected only at very low temperature. Keeping a zero tem-
perature, we specialize here to the experimentally relevant
SU(2) and SU(4) cases with one electron on the dot, m=1.

In the SU(2) case, the noise correction to Eq. (38) reads

55 eV\® (5 4
> 3 =\ — _C N (47)
(1-CH2N|\V/h ~ \ Ty 6 3

where the C* terms cancel each other unexpectedly.
In the SU(4) case, the noise correction has linear and
quadratic contributions

58 eV\Ca . [ev)?
> 3 == |—0-2C%)+|—
(1-CH2Ne’|\Vih \Tg/) 2 Ty

2
a 2 4H_ X 2
X| —(1-8C*+7C")——(1-3C")|.
LS( +7C") 6( )]

(48)

V. RESULTS AND CONCLUSION
A. Main Results

Following Refs 24 and 25, we define a generalized Fano
factor F which describes the relation between the nonlinear
current and current noise

F= 13 (49)
“2e 8l
It is defined as the ratio between the nonlinear parts of the
noise 8S=S-S, [cf. Eq. (38)] and of the current SI=1-1,,
where

NT 2V
I=(1-c)—%~ Oe

(50)
is the linear current (for eV <<Tx). We focus on the nonlinear
noise and current as it is these quantities which are sensitive
to the contribution of Fermi-liquid interactions.

Consider first the strong asymmetric case |C|—1 (i.e., 0
—0 or 86— /2), where the dot is strongly coupled to one
lead and only weakly to the other [cf. Eq. (2)]. Transport in
this limit corresponds to an incoherent tunneling regime
where the hopping from the weakly coupled lead to the dot is
the limiting process. It can be checked from the Egs. (40),
(44), (C19), (C12), (C16), and (C6) for the noise, and Egs.
(22) and (32) for the current, that the Fano factor F=1 to
leading order in 1—|C|. This is of course expected since the
tunneling regime gives Poissonian statistics for charge trans-
fer. Note that this unity ratio holds order by order for the
eVITy and (eV/Tg)? correction separately. In addition, we
also have Sy/2ely=1 to leading order in 1-|C|.

In the opposite limit of a symmetric dot-lead couping (i.e.,
C=0), coherent effects are important to transport, and charge
transport is generally not Poissonian.*® Note also that in the
symmetric case, the nonlinear parts of both the current and
current noise are «V3. We find that the generalized Fano
factor Eq. (49) is given by
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TABLE 1. Fano factor F, Eq. (49), for various N and m.

N
m 2 3 4 5 6 7 8 9
1 -5/3 -0.672 -0.300 -0.156 0.003 0.156 0.287 0.393
2 -0.672 -3/2 -1.256 -1.031 -0.855 -0.679 -0.503
3 -0.300 -1.256 -7/5 -1.326 —-1.254 -1.173
4 -0.156 -1.031 -1.326 -4/3 -1.313
1 +5in%(268,) +9 — 13 sin%(28))/N = 1 — a,,/@” sin 4, 5 8
F= ( O) ( 0) — 2/ ¢ 0' F=__+_C2 (53)
N+4/N -1 cos 26y —2a,/aj sin 29, 33

(51)

This Fano factor includes the effect of interactions; we have
used the important equalities in Egs. (11). Note that this re-
sult has no explicit dependence on V/Ty: it is thus a univer-
sal quantity characterizing the Fermi-liquid properties of the
strong-coupling fixed point; also note that F' is invariant un-
der a particle-hole transformation, where m —N-m. We
stress that the fact F# 1 in general is due both to the exis-
tence of two-particle scattering at the fixed point as well as to
the partition noise associated with single-particle scattering.
We give in Table I values of F for different N and m.
For N— +%, Eq. (51) leads to

_3cos4)+4 cos 26— 1
- 4 +2 cos 26,

(52)

Note that in the large N limit, two-particle scattering pro-
cesses become insignificant’! for the current (since ¢; and
¢, scale as ~1/N) and the result is consistent with the non-
interacting resonant level. In this limit, the Wilson ratio is in
fact just one.'3® However, the effect of two-particle scatter-
ing processes seems to survive in the current noise through
the diagram of Fig. 4(b). Heuristically, this diagram repre-
sents an enhancement of the coherent partition noise already
present in the absence of Fermi-liquid interactions. The small
interaction parameter ¢%~ 1/N? is compensated by the spin
summation with ~N? equivalent diagrams. The effect is
therefore linear in N, at the same level as elastic terms.

The expression of Eq. (52) can be checked in two limiting
cases. For 8,—0, it gives F'=1. Again it corresponds to the
tunneling regime since a small phase shift &, implies a weak
electronic transmission 7j)=sin®> &, When particle-hole sym-
metry is recovered, 8y=1/2, we find F=-1. In this limit, the
conductance is close to unitarity and interactions play no role
since the diagram of Fig. 4(b) gives a vanishing contribution
for 8y=r/2. The situation is therefore similar to the ordinary
SU(2) case®*8 where one has Poissonian weak backscatter-
ing events. In our case though, backscattering events are
elastic and imply the transfer of only one electron so that
F=-1.

We finally turn to the general asymmetric case, C #0,
where we focus on the SU(2) and SU(4) symmetries with
m=1. For SU(2), the generalized Fano factor

is obtained from the ratio of the noise Eq. (47) and current
Eq. (34) corrections at zero temperature. We stress that this
simple result Eq. (53) is exact and is not restricted to small
values of the asymmetry C. Equation (53) indeed bridges the
symmetric result F=-5/3 (Ref. 23) to the tunneling regime,
F=1 in the strong asymmetry limit C— 1. A different asym-
metry correction was predicted in Ref. 23. This discrepancy
may come from the fact that the current expression used in
Ref. 23 is not valid outside the symmetric case C=0 (see
discussion at the end of Sec. IIT A).

The SU(4) case for arbitrary asymmetry is more compli-
cated since the generalized Fano factor Eq. (49) bears a
eV/ Ty dependence. This is because the nonlinear current and
noise have both linear and quadratic corrections in eV/Tg
(respectively, quadratic and cubic terms in V) and no simpli-
fication occurs when the ratio is computed (universality is
however recovered in the symmetric case where the linear
corrections vanish). We therefore prefer to compute directly
the ratio of the quadratic corrections with the result

165? o 1-8C*+7C*
F(2>=—W=——‘—2+C2, (54)
2e Ol 3, 1-3C
where 85 (8I¥) denotes the noise (current) correction to
second order in eV/T. Again the ratio Eq. (54) connects the
112
symmetric case (N=4 and m=1 in Table I), F (2)=—3—0;2
=—0.300 (Ref. 28) to the tunnel or strongly asymmetric re-
gime where F*®=1. Expanding Eq. (54) in C, we obtain
F®=_-0.300(1-8.33C?) which indicates an important cor-
rection due to the asymmetry of the coupling to the leads.

B. Conclusion

To summarize, we have provided a thorough analysis of
the nonequilibrium transport in the SU(N) Kondo regime
using an elaborate Fermi-liquid approach. We have particu-
larly focused on the case N=4 relevant to carbon nanotube
quantum dots. One important characteristics of the emergent
SU(4) symmetry is the sign change in the leading current
corrections (i.e., linear in eV/T) as a function of the bias
voltage when progressively tuning the asymmetry between
the dot-lead couplings. More precisely, for a strong asymme-
try, we have recovered a positive linear correction which
traduces the fact that the Kondo resonance is peaked away
from the Fermi level; in this case, the conductance measures
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the density of states of the Kondo resonance at =eV where
the sign changes with the weakly coupled lead. For symmet-
ric couplings, we have demonstrated that the linear correc-
tion now becomes exactly zero and that the current becomes
maximum at V=0 due to interactions via the Hartree contri-
butions. In addition, the noise exhibits a nontrivial form due
to the interplay between coherent shot noise and noise aris-
ing from interaction-induced scattering events. In the sym-
metric case, interactions result in a universal Fano factor F'
~—0.300 at zero temperature. For a finite asymmetry be-
tween dot-lead couplings, the current and the noise have both
linear and quadratic corrections in eV/Ty. Focusing exclu-
sively on the quadratic corrections, we have derived a for-
mula for the Fano factor which extrapolates between the
symmetric result and the strongly asymmetric result F=1,
perfectly reproducing the Poissonian statistics for charge
transfer in the tunneling limit.

In the context of the standard SU(2) Kondo effect, we
have obtained a generalized Fano factor F=-5/3+8C?/3 at
zero temperature which is not restricted to small values of
the asymmetry. Finally, in the limit of large N, it is certainly
relevant to observe that the effect of interactions tends to
subsist in the current noise.
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APPENDIX A: COUNTERTERMS AND MODEL
RENORMALIZATION

The improper self-energy can be calculated to second or-
der in &/ Ty following Refs. 12 and 31. The result is that the
dependence on the cutoff D can be removed by adding the
counterterm

1 .
E 5al(sk+8k’):b}<o-bk’o':’
27TVTKkk, "

H. ,=-

c,l1

(A1)

to the Hamiltonian Hy+ H;,;, Eqs. (8) and (9). It corresponds
to a renormalization of a; — a;+ d«;.

We will now show that the second contribution that arises
from Eq. (28), and that we have discarded in Sec. III C,
produces a term linear in D exactly cancelled by the coun-
terterm Eq. (Al). Using the identity X% (£)-37(¢)
=sgn()[Z7*(r)-2*(¢)], it takes the form
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OV Q=

FIG. 5. ¢7 corrections to the four-particle vertex.

) _ _ e &)2
S = N(N - 1)(1 c)2h< S

t
b ATy

X f dr sgn(t) (S~ =27)(@)imvAf(-1) +c.c.,

(A2)
where Af(¢) is the time Fourier transform of Af(e)=f;(e)
—fr(e). Inserting the Fourier transform of Fy= 1

(2 cos? Geire!

D
f dTS(FO(s) + 1)eiel =

D sinh(7Tt)

*iDt

+2 sin® fe Hr") —
(A3)

in Eq. (25) with Eq. (24a), it can be checked that intermedi-
ate values of t~1/7,1/V give a vanishing result for Eq.
(A2) (integrand is odd in 7). Equation (A2) is therefore domi-
nated by small ¢t~1/D. In that limit, 2* ()=’
(1-eP9)3/13 and 27() =[O ]". Af(1) =AF(0)+tAf(0) is
expanded to first order in ¢ since the zeroth order gives an
odd integrand and a vanishing integral. After some straight-
forward algebraic manipulations, we eventually find the re-
sult

511(3) i oa e
m =—sin 25of de Tl [fL(e) = fr(e)],
- K

(A4)

where we have used that

+00
Im J (dulu®)(1 - e™)*> =3 In(3/4).
0

When higher orders in ¢ are included in the expansion, cor-
rections to Eq. (A4) are of order O(1/D) and completely
vanish in the universal limit D — +oco. In particular, the O(1)
contribution vanishes by symmetry. Finally, the counterterm
Eq. (A1) gives an elastic contribution to the current that can
be computed along the lines of Sec. III B. The result com-
pensates exactly Eq. (A4).

A second counterterm is generated by vertex corrections.
In the spirit of the self-energy calculation, the singular con-
tributions (i.e., depending on the cutoff D) to the four-
particle vertex are determined from the standard second-
order diagrams shown in Fig. 5 and proportional to dﬁ. This
strong dependence on D is removed by the counterterm

I
H.,= i > b

— i .
2 7TV2T O',klbo—,kzbg’!k,;bo",k4"
Ko’<o",{kl-} i
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S, = (N - 2)¢%2iln 2. (A5)
TK T

To summarize, the perturbative calculation of observables to

second order in &/ T (e is a typical energy, ugB, kT, or eV)

from the full Hamiltonian Hy+H;,+H, +H, ,, leads to finite

and well-defined results in the universal limit D — +o0.

APPENDIX B: FINITE TEMPERATURE CURRENT

We briefly outline how the current is calculated at finite
temperature. For the elastic part Eq. (18) detailed in Sec.
I B, we merely need the Fourier transform of Af(e)

=fi(e)—fr(e)

. . ] T
A1) = (e7ia! = eminat) T

2arsinh(7Tt) (B1)

The derivatives of Af(r), taken at t=0, give access to the
integrals with the corresponding powers of ¢ in Eq. (18).

The inelastic part of the current is detailed in Sec. III C
and given by Eq. (29). Equation (29) is evaluated at finite
temperature by Fourier transform to real time ¢. The time
contour is then shifted by i#n in the complex plane with
nD>1 (but T, eV<<1/ 5) such as to suppress the dependence
on the cutoff D in Green’s functions. From Eq. (A3), the
result is (for x=0)

T

(1) = — v(cos® e ML + sin? G MR ————
G (1) 4 ¢ ¢ )sinh(ﬂ'Tt)

with a similar expression for G, (~1). The intermediate inte-
gral result

+o0+in
f af Gy ()G (= DGy (1) = Gy

—o+in

X(0)Gyp (= Gy, (D liTvAf(= 1)

5 ¢ 2(7T)?
=7TV4|:(E—Z>(€V)2+T] (B2)

is used to derive the current interaction correction

5Iint _ ﬁ .
(- v~ s 20N - 1)( TK>
5 C\ 2w
X[(12_4>(8V)+ 3 }

(B3)

The 1 integral in Eq. (B2) is obtained by first expanding the
numerator in powers of e*/#LR_Each term gives an integral.
The standard method to evaluate such integrals is to shift the
integration contour by —i/T in the complex plane which en-
closes the pole at x=0.

APPENDIX C: DETAILS ON THE INTERACTION
CORRECTION TO THE NOISE

We discuss in this Appendix the interaction corrections to
the noise with two interaction vertices, i.e., Figs. 4(b)—4(f).

PHYSICAL REVIEW B 80, 155322 (2009)

Terms < ¢,, X, in the interaction Hamiltonian (9) are already
second order in 1/Tk. Therefore only the term ¢, is kept
for Figs. 4(b)-4(f) since the whole calculation goes up to
second order in 1/Tk.

In order to simplify the forthcoming expressions, let us
define the following prefactor

hN(N—l)sin220< e )2< &

S, =
r 2vh

2
P e
™
We start by considering Fig. 4(f) where the self-energy
bubble is inserted in the top Green’s function. Going to en-
ergy space and integrating over time ¢ in Eq. (37), the corre-
sponding contribution takes the form

d
8SLi=8p 2 mm f 2—82’71”72(8>7>’7v"2(s), (C2)
ar

m-m

where 37:"(¢) is the self-energy part Eq. (25) that already
appeared in the calculation of the current. P71*"2 is a notation
for the product of the three Green’s functions (of the form
G~MG™*G*") that enclose the self-energy in Fig. 4(f). Since
the current operator Eq. (16) has four different terms, this
gives a sum of 16 terms for P72, Yet nine of these terms
have no 7,, dependence and vanish when summed over
71,2- This is a consequence of the causality identity (26).
Finally P72 reads

PN (g) = (= S)G,) (x,€)G7 (x,8) Gy (= 2x,8)
+ (= 82G 1 (~ x,8)G 3" (x,€) Gy (0,8)
+(=8)G,) (= x,€)G2 (- x,8) G}, (2x,8)
+ (= 8GN~ x.)G2 (x.£) G, (0.) + (- S7)
X(=8)G, /M= x.€)G 7 (x,8)G,(0,8)
+ (- 89G,(x,8)G2 " (x,e)G (- 2x,€)
+(=8)G,) (= x,€)G7 (- x,8)G,,(2x,8).  (C3)

The noise contribution with a bottom self-energy insertion
gives a similar expression. Green’s functions are replaced by
their expression (24) and the summation over 7, is per-
formed together with the causality identity (26). In analogy
with the current calculation, two sorts of terms are obtained:
(i) those including the combination 2**—~2"" and (ii) those
with 3*~ or 7", Type (i) terms are dominated by energies on
the order of the model cutoff D. They are exactly cancelled
by the counterterm Eq. (A1). We therefore only keep type (ii)
terms. Combining top and bottom self-energy insertion dia-
grams, o = 5SP1+ 8512 we find the contribution

int™ int int?

581 i(N=1)y f d

&
- —({a-c 46
(1-CHNeh 2 »T2 277({( )(cos 46,

— cos 28)[Af(e) P + 2To[Fy(e) Foe) — 17}
X [S*(e) =27 (e)] - [Fo(e) — 113 (e)
—[Fo(e) + 1137 (e)). (C4)

At zero temperature, Fo(g)Fo(e)—1=—(1+C2?)Af(¢) and
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T

T2

FIG. 6. Building block appearing in Figs. 4(a)-4(e) defined as
AM-™(g), see Eq. (C9). It is formed by one current vertex on the
branch 7=+ or — with two lines. The incoming line connects the
branch 7, to = while the outgoing connects = to 7;.

5

Cc? 3
o )(eV) (CS)

j —[2+ () =27"(e)]=iv (

MR

as we have shown in Sec. III C for the current. The last two
terms in Eq. (C4) involve the combination 4J,(1+C?
+J,(1-C* with J,, given Egs. (30). Finally, we obtain for
the noise correction Eq. (C4)

R T
(1—02)2Ne*|v|/h N1e/ 4 12 \24 38

X[(1 = C?(cos 48, — cos 28,)

—2T,(1 + CZ)]} . (C6)

Next we turn to the Fig. 4(c) with the particle-hole pair po-
larization bubble

T17072(f) = 2 Gk DG (ko= 1). (7

kyoky

Another causality identity, similar to Eq. (26), also applies
here. For 1 # 0

IO+ () =11 (1) + IT7* (7). (C8)

An elementary building block that appears in Figs. 4(a)-4(e)
is shown in Fig. 6. It consists in one current vertex on the
branch 7=+ or — supplemented by one incoming and one
outgoing lines. In energy space, it reads

A (g) = (imrv)?sin 20Af(e)[4T Fo(e) + Suy — S ],

(C9)
where the four terms of the current operator Eq. (16) are

included. Using the definitions Egs. (C1), (C7), and (C9), the
noise term due to Fig. 4(c) can be written

d d
A —SPZ 771’72] Slf SzAmm(El)

"

X H771’772(£l _82)A772’771(82)_ (CIO)

Following a now familiar pattern, there are terms with IT**
—II"" and others with II**. The former ones depend lin-
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early on the cutoff D and are exactly cancelled by counter-
terms. This will be discussed at the end of this Appendix.
We are left with

5, _m(N-1D(1-C) ¢ f de;
(1-C»)2Ne*/h 207

de
x| S2apepasear;,,
a
+ H;T_Ez)cos 48, + 2(1‘[;‘_%72
-0, )T cos 28 Fo(e1) = Folex) ]}
(C11)

At zero temperature, the second term in the brackets gives a
vanishing contribution. Developing in terms of Fermi step
functions, the integrals over energies can be performed lead-
ing to

5S1Cm 2

(1- CO2N3|VIih =W 1)¢1< ) (1-c9
X 46, (l QZ) C12
cos 48, PR (C12)

corresponding to the combination J,(1—C?)+4J,C>.

Figure 4(d) gives exactly the same contribution, 85¢
=655, The calculation for Fig. 4(e) is quite similar with the
introduction of the particle-particle bubble

2 gm ’72(k1,t)g’71 ko, 1)

ky.ky

7m(f) = (C13)

that satisfies the same causality identity (C8). The noise term
reads

d d
5Sfm—SPE 771772f ﬂf ﬂAm’nz(Sl)
" 2m) 27

XTI (g) + £,) A" 2(g,) (C14)
leading to
8 mN-D(- cz)dﬁf de,
(1-C?»2Ne¥h 20°T% 27

f _Af(sl)Af(SZ){(Hg 1+&2 + ﬁ;;—gz)

+ 2(1_[.9 +&, 8 +e )TO cos 250[F0(81)
+ Fo(e)]}, (C15)
and
S 2
(1- CO2NE3|Viih ~ =W 1)¢1< ) (1-c

1 c? 5
X E+E+TOCOS25OC

(C16)

corresponding to the combination J,(1+C?)—4J,C?
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+8T, cos 26,C*(J,—2J,). We finally consider Fig. 4(b) that
also involves the particle-hole bubble I1

de
8Sh ==Sp(N-1) > 7]1772f —

-2 2m
d82
X 2_A771,771(81)]‘[771,772(0)147/2,712(82) (C17)
™

with the definitions Egs. (C1), (C7), and (C9). Keeping only
the terms with [I™*, we obtain

oSt m(N—1)>¢?
Tt @ 1= C2 ) 28) ——1
(= canezn - 1= OPin @050

de 2
X[j ;TAf(S)} (IIg™ + II57).
(C18)

At zero temperature, [T~ =1I;*=(m1%/2)(eV)(1-C?) so that
the noise correction for Fig. 4(b) finally reads
Y _(N=1)7¢7 sin*(2&) (Q/

(1 - CH2Ne3|V|ih 4 Tx

2
) (1-C>»>.

(C19)
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Before concluding this long Appendix, we briefly discuss
the remaining terms resulting from the IT**—II"~ and IT**

—II~ combinations. They lead to contributions that are lin-
ear in the cutoff D with corrections scaling as O(1/D) and
therefore vanishing in the universal limit. The calculation is
straightforward and uses the same ingredients as in the Ap-
pendix A, i.e., small r dominate time integrals. Therefore we

can use I ()=-13(1-¢P)2/2, M ()=-II*""(f) and
O+()=[IT* (1) T*, TI7*(z)=[TT*()]* in those integrals. The
final result reads

i =—6¢(N-1)C sin 28 '2511
(=N~ % Si =00 S Qo

(C20)

where we recall that 5¢p,=(N-2) %T%iln 2. This contribu-

tion is exactly cancelled by the counterterm Eq. (A5) in-

cluded in the diagram of Fig. 4(a).
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