
Superfluid Equation of State of Dilute Composite Bosons

X. Leyronas and R. Combescot
Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

(Received 28 June 2007; published 23 October 2007)

We present an exact theory of the BEC-BCS crossover in the Bose-Einstein-condensate (BEC) regime,
which treats explicitly dimers as made of two fermions. We apply our framework, at zero temperature, to
the calculation of the equation of state. We find that, when expanding the chemical potential in powers of
the density n up to the Lee-Huang-Yang order, proportional to n3=2, the result is identical to the one of
elementary bosons in terms of the dimer-dimer scattering length aM, the composite nature of the dimers
appearing only in the next order term proportional to n2.
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The BEC-BCS crossover first considered by Leggett [1],
and the recent experimental realization of Bose-Einstein
condensates (BEC) of molecules made of fermionic atoms
[2–5] have motivated a number of theoretical works.
Indeed, thanks to Feshbach resonances, it is experimentally
possible, with two fermions of mass m (6Li or 40K) in
different hyperfine states (we denote them as ‘‘spin’’ " and
# ), with scattering length a, to realize weakly bound
molecules, or dimers, with binding energy Eb ! 1=ma2

(we take @ ! 1 in this Letter). In particular one can obtain a
dilute condensate of molecules. A crucial quantity control-
ling the physics of the condensate is the dimer-dimer
scattering length aM. This is, however, a highly nontrivial
quantity to calculate, since one has to solve a four-body
problem to find it. In the case of a broad resonance, one
finds aM ! 0:6a by solving the Schrödinger equation [6]
or resumming the diagrammatic series [7]. The study of a
Bose-Einstein condensate of composite bosons, where all
the theory is formulated in terms of fermions only, was
started a long time ago [8,9]. Quite recently, Pieri and
Strinati [10] derived the Gross-Pitaevskii equation from
the Bogoliubov–de Gennes equations. However, because
of their approximate scheme, they ended up with the Born
approximation 2a for the dimer scattering length aM in-
stead of the exact result.

In this Letter, we present an exact fermionic theory of a
BEC superfluid of composite bosons in the low density
range. Our framework is completely general. Our present
work is a first step toward going to higher orders, which
will be clearly more complex to handle. Here we restrict
ourselves to the T ! 0 thermodynamics. We obtain for the
expansion of the chemical potential ! of our fermions of
single spin density n in the BEC regime:

 ! ! "Eb

2
# "aM

m
n
!
1# 32

3
""""
"

p $na3M%1=2
#
: (1)

Except for the obvious first term (which implies !< 0),
this is exactly the result found, for !Bose ! 2!, by Lee,
Huang, and Yang (LHY) [11] for elementary bosons with
density n, mass mB ! 2m, and scattering length aB ! aM.
The identity of the mean field term is somewhat expected.

However, even if it is reasonable to expect in our case a
correction of the LHY type, it is not at all obvious that the
coefficient is the same. We will see that our derivation is
quite involved and has no systematic mapping on a purely
bosonic formulation. In other terms one expects the com-
posite nature of our bosons to enter at some stage in the
theory. We find indeed that this happens, but only at the
level of the n2 term in Eq. (1). Hence we prove that, for our
composite bosons, the LHY term is unchanged with re-
spect to elementary bosons [12]. In calculations of col-
lective mode frequencies, this result has been previously
assumed to be correct [13], in agreement with Monte Carlo
calculations, and this has been supported by recent experi-
ments [14].

In order to perform a low density expansion, we need a
‘‘small parameter’’ in our theory. The most convenient one
turns out to be the anomalous self-energy !$k% which,
together with the anomalous (or off-diagonal) Green’s
function F$k%, is the hallmark of the superfluid state in
the diagrammatic technique [15]. We will indeed see that at
low density !$k% is of order n1=2, which could be antici-
pated from the standard BCS calculation [1,8]. Hence by
performing an expansion in powers of !$k% in Feynman
diagrams, we actually perform a low density expansion.
The full Green’s function G$k% and self-energies are related
by the completely general standard equations:

 G$k% ! G0$k% " F$k%!&$k%G0$k%; (2)

 F$k% ! G$k%!$k%G0$"k%; (3)

where we have set 'G0$k%("1 ! G"1
0 $k% ""$k%, with "$k%

the normal self-energy, G"1
0 $k% ! !" k2=2m#! and

k ) fk; !g.
We proceed in a natural way by finding the expansion of

the Green’s function G and F in powers of ! at fixed !.
The single spin density gives the ‘‘number equation’’:

 n ! "
X

k

ei!0#G$k% (4)
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2" . At zeroth order in !$k% the

result is obviously n ! 0 since, without condensate, there
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are no fermions at T ! 0, !< 0. From particle conserva-
tion, the lowest order is given by the second order term:

 n2 ! "j!j2
X

k

ei!0#T3$k; k; k%'G0$k%(2 (5)

where T3, depicted in Fig. 1(a), has been discussed in
Ref. [7,16] and contains all the normal state diagrams
describing the scattering of a single atom by a dimer
(actually in the involved vacuum Green’s functions we
have to shift the frequencies by the chemical potential
!). This includes, in particular, a term "G0$"k% which
is just the Born approximation for T3. In writing Eq. (5) we
have made use of the fact that, at this order, the k depen-
dence of !$k% can be neglected as will be shown below, and
we have just denoted the resulting constant by !. The
frequency integral in Eq. (5) can be calculated by closing
the contour in the upper-half complex plane Im!> 0,
where G0$k% is analytic. It can be proved that, except for
the Born term, T3$k; k; k% is also analytic in this half-plane.
Hence the only contribution in Eq. (5) comes from the
Born term. However, this term is the only one considered
in the standard BCS theory on this BEC side. We end up
with the very surprising conclusion that, at this order,
all the detailed physics involved in the atom-dimer scat-
tering is irrelevant and that the result is merely given by
the standard BCS calculation, namely n2 !
m2j!j2=$8"'2mj!j(1=2%. This shows that ! is indeed of
order n1=2.

We consider now the anomalous self-energy !$k%, in
order to obtain our equivalent of the ‘‘gap equation’’ [12].
!$k% describes two atoms (k " , "k # ) which go in the
condensate. Quite generally the contributions to !$k% are
divided in two classes, so we have !$k% ! #1$k% # #2$k%.
The first class, the only one found in BCS theory, gathers
diagrams where these two fermions first interact through
the bare two-body potential, with Fourier transform V$q%,
the second class containing all the other possibilities. In
full generality the contribution of the first class, shown
diagrammatically in Fig. 1(b), can be written:

 #1$k% !
X

k1

V$k" k1%F$k1% (6)

from the very definition of the full Green’s function F.
Note that #1$k% is independent of ! and, since the potential
is very short-ranged, it depends on k only for very high
momenta.

In the second class, where the two incoming fermions
(k " , "k # ) do not first interact, we proceed to a ! expan-
sion. The first order term is already included in #1 and
particle conservation implies that the next order contains
!!&!, the rest of the diagrams being made only of any
number of normal state propagators G0$k% with any num-
ber of interactions, as shown schematically in Fig. 1(c).
Moreover these diagrams cannot contain loops of normal
state propagators, since this would correspond, in time
representation, to the creation of particle-hole pairs. Such
processes are impossible in the normal state at T ! 0 and
!< 0, where the free particle propagator is retarded.

When these constraints are taken into account, including
the ‘‘no first interaction’’ condition, one ends up with the
conclusion that these normal state diagrams have exactly
been considered in Ref. [7] [with again a trivial shift of all
the frequencies by !, as for G0$k%], and denoted by #,
except for a subtle point which we discuss below and is
accounted for by the slightly different notation #0. Hence,

 #2$k% !
1

2
j!j2!#0$k;"k; 0; 0%: (7)

In writing Eq. (7) we have taken advantage of the idea that,
to lowest order [see Eq. (6)], !$k% is a constant independent
of k. Hence in this third order term, we can take !$k% as
constant. On the other hand, it is clear from Eq. (7) itself
that !$k% depends in general on k. The factor 1=2 is
required to avoid double counting which arises from the
presence of two factors !.

The difference between # and #0 stems from the fact
that # is reducible, while #0 is not since it is a contribution
to the anomalous self-energy. Specifically # contains the
contribution "G0$k%G0$"k% (this is the Born term) and
also a term arising from the normal self-energy "$k%.
Hence, in order to obtain #0, one has to subtract from #
these reducible diagrams. However, exactly these same
reducible diagrams appear automatically if we write from
Eq. (2) and (3) the series expansion for G"1

0 $k%F$k%*
G"1

0 $"k% in terms of the (irreducible) self-energies !$k%
and "$k%. Hence it is more convenient to add these reduc-
ible contributions on both sides of the equation for !$k%, in
which case we have "G0$k%"1F$k%G"1

0 $"k% in the left-
hand side and # appears in the right-hand side, instead of
#0 (note that this manipulation is actually valid to any
order in our expansion). This leads to

 F$k% ! G0$k%#1$k%G0$"k%

# 1

2
j!j2!G0$k%G0$"k%#$k;"k; 0; 0%: (8)

We then eliminate F$k% in favor of #1 by making use of
Eq. (6). The summation of the last term over k introduces
[7] the dimer-dimer scattering vertex T4$0; 0; 0% !P

kG0$k%G0$"k%#$k;"k; 0; 0% evaluated at zero dimer en-
ergy. It is directly related [7] to the dimer scattering length
by $8"=am2%2T4$0; 0; 0% ! 4"aM=m. The last step in our
procedure is the standard elimination of the interaction

FIG. 1. (a) Structure of the lowest order normal self-energy
(b) BCS-like contribution #1$k% (c) The diagram for #2$k%.
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potential in favor of the scattering amplitude [17]. In our
case this quantity has to be evaluated at the energy !,
because of our shift in frequency. After this step, #1$k% can
be taken as a constant #1, since all the momentum integrals
are rapidly convergent. We end up with

 a"1 "
""""""""""""""
2mj!j

q
! m2a2

8
aMj!j2 (9)

where we have simplified by #1 and made #1 ’ ! in the
right-hand side. When we substitute for j!j2 its lowest
order expression found above in terms of n2, we find for
! the mean field part of Eq. (1), with the appropriate dimer
scattering length aM.

The above is only the first step in our derivation. The
natural continuation would be to go to next order in !, i.e.,
to order !4 in Eq. (4) and order !5 in Eq. (8). This would
lead to a contribution of order n2 in Eq. (1). However, this
expansion is not regular, as it would be the case if we had a
gap between the ground state and the first excited state.
Indeed there is, in our neutral superfluid, a branch of the
excitation spectrum which goes to zero energy when mo-
mentum is zero. This is the collective mode, physically
identical to sound waves in the low energy range, which is
known as the Bogoliubov mode for Bose-Einstein conden-
sates of elementary bosons. Naturally its existence is a
fundamental property of the condensate [18]. In the fol-
lowing we include only the contributions coming from this
low energy collective mode.

The propagator of this collective mode is a two-particle
vertex and it is the generalization to the superfluid state of
T2$P%. It enters our formalism in the following way. In
Figs. 1(a) and 1(c), the terms !& and ! act as ‘‘source’’ and
‘‘sink’’ of fermions. They are required since, at T ! 0,
!< 0, no fermions are present except coming from the
superfluid. However, we can in general well think of hav-
ing a dimer propagator going from ! to !& (and replacing
them) as shown in Fig. 3. This plays the same role for
source and sink, and gives diagrams which must be con-
sidered. It is easy to see that, in the normal state, they give a
zero contribution (since there are no dimers in the normal
state). But in the superfluid state, this dimer propagator has
to be replaced by the collective mode and the result is
nonzero. The terms we have to retain are just the modifi-
cations, with respect to the previous results, coming from
this substitution. Actually we do not proceed immediately
to a ! expansion and our procedure is equivalent to series
resummation to avoid singularities.

To proceed we have to find in our framework the col-
lective mode propagator, more specifically in the low
energy, low momentum range. It has a normal part $$P%
and an anomalous part $a$P%, which depend only on the
total energy-momentum P ) fP;%g. We write for them the
equivalent of Eq. (2) and (3), i.e., the Bethe-Salpeter
equations:

 $ ! T2 # T2$irr$# T2$
a
irr$

a; (10)

 $a ! T2"$irr"$
a # T2" &$a

irr$; (11)

where we did not write explicitly the arguments which are
P or "P: for instance T2 stands for T2$P% and T2" for
T2$"P%. The normal ($irr) and anomalous ($a

irr and &$a
irr)

irreducible vertices are analogous to self-energies.
Then we expand these irreducible vertices in powers of

!. Again from particle conservation the lowest order terms
are second order. The result for Eq. (10) is depicted in
Fig. 2. The ‘‘normal part’’ (i.e., without the ! factors) of
the irreducible vertices involves clearly the normal state
dimer-dimer scattering vertex T4 considered above, since
all ‘‘in’’ and ‘‘out’’ lines are dimer lines. Again, at this
lowest order, ! can be taken as constant. In this way
Eqs. (10) and (11) become

 $ ! T2 # T2j!j2 ~T4$# T2!
2 &T4$

a; (12)

 $a ! T2"j!j2 ~T4"$
a # T2"!

&2T̂4$; (13)

where ~T4 ! T4$P=2; P=2;P=2%, &T4 ! $1=2%T4$P; 0; 0%,
and T̂4 ! 1

2T4$0; P; 0%, the factor 1
2 being again topological.

We can now solve for $ and $a. In the low energy limit
jPj + 1=a and j%j + 1=ma2, we find easily $$P% !
"8"$%#!B # P2=4m%=$m2aD% and $a$P% ! 8"!B=
$m2aD%, where D ! $P2=4m%2 # 2!BP2=4m"%2. We
have set !B ) j!j2maaM=4 and evaluated the factor of
! to zeroth order by taking 2j!j ! 1=ma2. The collective
mode frequency is obtained by setting D ! 0 and we
recover as expected the Bogoliubov dispersion relation.

We now consider the additional contributions to the self-
energies coming from the collective mode. For the normal
self-energy we have to add the left diagram in Fig. 3, which
gives an additional contribution ncm to our lowest order
result Eq. (5):

 ncm ! "
X

k;P

ei!0#T3$k; k; k# P%$$P%'G0$k%(2: (14)

Actually we should have subtracted from $$P% its zeroth
and second order terms in the series expansion in powers of
! (this is indicated in Fig. 3 by the slash in the mode
propagator), since they are in principle taken into account
in Eq. (5). However it is easily seen that they are zero since
they contain normal state propagator loops. In Eq. (14) we
can first perform the integration over the frequency vari-
able ! of k, by closing the contour in the upper half-plane.
Just as above in Eq. (4), it can be proved that the only
contribution comes from the Born term of T3$k; k; k# P%.
Then the k integration is easily performed and we are left

FIG. 2. Diagrammatic representation for Eq. (12) for $.
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with ncm ! $m3=2=8"%PP$$P%='2j!j# P2=4m"%(1=2.
The % integration can be transformed over a contour which
encloses all the singularities of $$P% on the real negative
axis. The high energy contributions to ncm coming from
j%j * 1=ma2 (physically linked to breaking dimers) will
give negligible regular terms of order !4, as discussed
above. On the other hand, the contribution of the low
frequency collective mode is easily calculated with the
low energy expression of $$P% given above. We find

 ncm ! 1

3"2 $2m!B%3=2 (15)

where we have used the zeroth order expression Eb=2 for
j!j. When we use for !B its lowest order expression, we
find that ncm coincide with the ‘‘depletion of the conden-
sate,’’ known for elementary boson superfluids.

We proceed now in the same way for the collective mode
contributions to the anomalous self-energy. Corresponding
to the diagram Fig. 1(c), we have to add the two bottom
diagrams in Fig. 3. Just as in Eq. (7) we should take only
irreducible diagrams into account. But handling this prob-
lem in the same way by adding the reducible contributions
on both sides of the equation, we end up with Eq. (8) ex-
cept, in the right-hand side, for the additional contribution
!G0$k%G0$"k%#$k;"k; 0; 0%'PP$$P% # $1=2%PP$

a$P%(.
As in Eq. (7) the factor 1=2 is topological. Then we follow
the same procedure as after Eq. (8). As in the calculation of
ncm, we retain only in the summation over P the low energy
contribution, the other ones giving higher order terms. The
summation

P
P$$P% has already been found in the above

calculation of ncm. The summation
P

P$
a$P% is more in-

volved since, as we mentioned below Eq. (14), we have to
subtract from $a$P% the lower order terms already taken
into account in our lowest order calculation, leading to
Eq. (9). In contrast with the case of $$P%, the term we
subtract is not zero, but acts to regularize the remaining
integral over momentum P, which would otherwise have a
high momentum divergence [19]. We obtain for the slashed
contribution, which takes into account this subtraction,P

P$6 a$P% ! 3
P

P$$P% ! 24"ncm$2mj!j%1=2=m2.
If we gather all the contributions, we have for the single

spin density n ! n2 # ncm while the gap equation [Eq. (9)]
is changed into the simple form:

 a"1 "
""""""""""""""
2mj!j

q
! m2a2

8
aMj!j2 # 5"aaMncm: (16)

When j!j2 is eliminated between the gap and the num-
ber equations, the consistently expanded result for ! is
indeed found to be Eq. (1).

In conclusion, we have shown how an exact purely
fermionic framework can be used in the BEC regime of
the BEC-BCS crossover, and we have demonstrated that
the Lee-Huang-Yang result for the chemical potential re-
mains valid for the corresponding composite bosons.

We are very grateful to M. Yu. Kagan for stimulating
discussions at the beginning of this work.
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