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We consider the hydrodynamic modes for dense trapped ultracold gases, where the interparticle
distance is comparable to the scattering length. We show that the experimental determination of the
hydrodynamic mode frequencies allows one to obtain quite directly the equation of state of a dense gas.
As an example, we investigate the case of two equal fermionic populations in different hyperfine states
with attractive interaction.

DOI: 10.1103/PhysRevLett.89.190405 PACS numbers: 03.75.Fi, 32.80.Pj, 47.35.+i, 67.40.Hf

Most of the fascinating recent work on ultracold
gases [1] has been dealing with dilute situations.
Naturally, even in this regime interactions play an im-
portant role, as in the case of Bose-Einstein condensation
(BEC) where they strongly increase the size of the con-
densate compared to the free boson case. In this dilute
regime the scattering length is small compared to the
interparticle distance and the mean field approximation
is valid. However, it is of great interest to explore the
dense gas regime where scattering length and interpar-
ticle distance are comparable and mean field is no longer
valid. This would lead to physical systems which are very
simple examples of strongly interacting systems. These
have much more complicated counterparts in condensed
matter physics, such as liquid 4He or 3He, or the electron
gas in metals. This regime is also of major experimental
interest in the search for a BCS superfluid in fermion
gases [2], since this is the range where the higher
critical temperatures [3,4] will be found, which should
make the transition more accessible. This dense regime
corresponds to large scattering lengths, which can be
reached in the vicinity of Feshbach resonances, as it has
already been seen in optical traps [5]. Naturally, we
assume that inelastic collisions, such as three-body re-
combination, will be small enough to be negligible.

In this paper we show that the experimental deter-
mination of the mode frequencies in the hydrody-
namic regime allows one to obtain quite efficiently and
directly the equation of state of a dense gas. Hydro-
dynamic equations are valid in the limit of low frequency
(compared to elastic scattering time) and long wave-
length, and have already been used to study the dilute
Bose gas [1,6] (with very good experimental agreement)
and the free Fermi gas [7]. In these cases the equation of
state is known. We show that, rather surprisingly, the
analysis of the equation giving the mode frequencies is
not much more complicated when the equation of state is
unknown and that one can conveniently invert the prob-
lem and get the equation of state from the mode spectrum.
As an example, we apply our treatment to the case of two
equal fermionic populations in different hyperfine states
with attractive interaction; in particular, we investigate

the vicinity of the collapse, a very interesting physical
situation analogous to 7Li BEC collapse.

Although one might consider the extension to higher
temperature, we work in the low temperature range where
thermal effects are small and we neglect dissipation, so
we deal with a perfect fluid. This should be valid for a
strongly degenerate Fermi gas in its normal state (residual
collisions would lead to a damping of the modes).
Naturally, our results apply also to a superfluid when
normal liquid effects (which would, in particular, pro-
duce damping) are negligible, such as low temperature
Bose condensates or low temperature simple scalar BCS
superfluids. We consider, for simplicity, an isotropic trap-
ping potential V!r" (mostly the harmonic case) but, some-
what surprisingly, most of our procedures can be
generalized to the case of anisotropic harmonic traps.
Also, we treat the 3D case, but lower dimensions can be
handled in the same way.

With our hypotheses hydrodynamics reduces to the
Euler equation mndv=dt # $ rP $ nrV!r" supple-
mented by particle conservation @n=@t% r!nv" # 0 for
density n!r; t" and thermodynamics. Since @P=@n0 #
n0@!=@n0, the equilibrium particle density n0!r" satisfies
!!n0!r""% V!r" # ~!!, where ~!! is the overall chemical
potential. Below, we refer for short to !!n" as the equa-
tion of state. Linearizing these equations around equili-
brium, one finds that the density fluctuation n1!r; t" #
n!r; t" $ n0!r" oscillating at frequency ! satisfies
r2!n1@P=@n0" % r!n1rV" %m!2n1 # 0 . Of particular
interest is the ‘‘neutral mode’’ solution n01!r", correspond-
ing to the density fluctuation produced by a small shift
" ~!! of the overall chemical potential, that is n01!r" #
!@!=@n0"$1" ~!!. Since the result is still an equilibrium
situation, this mode corresponds to ! # 0 but is not
physical since it does not conserve particle number.

We make the change n1!r" # n01!r"w!r"Ylm (i.e., the
local fluctuation of the chemical potential is a convenient
variable) and obtain

rw00 % &2% rL0!r"'w0 $
!

l!l%1"
r

%m!2r
V0!r" L

0!r"
"

w# 0; (1)

where we have set L!r" # ln!n0!r"" with L0!r" # dL=dr,
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and V 0!r" # dV!r"=dr. This equation for the mode fre-
quencies has a quite simple form. In particular, as soon as
V!r" is known, the properties of the fluid appear only
through L!r", which is itself simply related to the equa-
tion of state. Therefore it appears much more convenient
to model L!r", rather than!!n". Indeed Eq. (1) lends itself
to a very large number of specific models with analytical
solutions or quasianalytical solutions, as we will see
below in the case of the harmonic trap. Before proceeding
to this case, it is also interesting to note that Eq. (1)
may be written with the form of a one-dimensional
Schrödinger equation (with energy equal to zero) by mak-
ing the further change w!r" #  !r"=!r

###########

n0!r"
p

". The corre-
sponding potential is found to be !1=r%m!2=V 0"L0 %
!1=4"L02 % !1=2"L00 % l!l% 1"=r2 and is simply related to
L!r". This form is of particular interest when one has an
explicit analytical solution for an approximate model, as
we find below. One can then easily correct the results by a
first order perturbation calculation.

Let us now specialize to the case of the harmonic trap
V!r" # 1

2m!
2r2. It is then convenient to make the further

change w!r" # rlv!r" which leads to

rv00 % &2!l% 1" % rL0!r"'v0 $ !#2 $ l"L0!r"v # 0; (2)

where #2 # !2=!2.We check on this equation that, what-
ever the equation of state !!n" of the fluid, we have
as expected the dipole mode (l # 1) corresponding to
the gas oscillating in the trap as a whole, at frequency
! # !. It corresponds [6] to v # 1 with #2 # 1.
Furthermore v # 1 gives also ! # !

##

l
p

whatever L!r",
i.e., independent of the equation of state of the fluid (and,
in particular, whether it is a Bose or Fermi gas) [8]. This
generalizes for an interacting fluid, at low temperature,
results obtained by Griffin et al. and Stringari [6,9] for a
Bose gas and by Bruun and Clark [7] for a free Fermi gas.

Note that Eq. (2) is invariant under the change of scale
r! Kr, provided we make the same change of scale for
L!r". So we take in the following the gas radius R as unity
(consistently with hydrodynamics we use the Thomas-
Fermi approximation). Next notice that Eq. (2) is only
slightly modified by the change y # r$ provided again
that the same change is made for L!r". This gives

y
d2v
dy2

%
$

1% 2l% 1

$
% y

dL
dy

%

dv
dy

$ #2 $ l
$

dL
dy
v # 0: (3)

A convenient feature of Eq. (3) is also that the absolute
scale in density disappears in L0 and only "nn!r" (
n!r"=n!0" enters. We introduce similarly a normalized
local chemical potential "!!!r" ( !!n!r""=!!n!0"", where
!!n!0"" is simply obtained from the gas radius R by
!!n!0"" # 1

2m!
2R2, leading to "!! # 1$ r2.

Looking now for simple situations where we can solve
Eq. (3), we consider first the case of the noninteracting
Fermi gas [7]. This gives "!! # "nn1=p with p # 3=2.
Similarly, we can consider an interacting dilute Bose
gas [6] where ! # gn (g being the coupling constant)
leading again to "!! # "nn1=p with now p # 1. These two

cases imply L!r" # p ln!1$ r$" with $ # 2 in Eq. (3).
Hence, we are led to consider for any $ and p the model
dL=dy # $p=!1$ y" for which Eq. (3) becomes

y!1$ y" d
2v
dy2

% &c$ y!p% c"' dv
dy

% p
#2 $ l
$

v # 0; (4)

with c # 1% 2l%1
$ . The general solution [10] of this equa-

tion, giving a nondivergent density fluctuation for r # 0,
is the hypergeometric function F!a; b; c; y", with a% b #
p% c$ 1 and ab # $p&!#2 $ l"=$'. We have further-
more to require that the solutions satisfy the boundary
condition that the outgoing particle current is zero every-
where on the sphere r # 1. This is not verified by the
general solution, except if a # $n where n is a nonnega-
tive integer, in which case the solution is a polynomial [6].
This leads to the normal mode frequencies:

!2

!2 # l% $
p
n
$

n% p% 2l% 1

$

%

; (5)

which agrees with Stringari [6] for $ # 2 and p # 1, and
with Bruun and Clark [7] for $ # 2 and p # 3=2.

One may naturally wonder about the interest of these
results for other values of our parameters $ and p. These
cases correspond to the density "nn!r" # !1$ r$"p and the
equation of state "!! # 1$ !1$ "nn1=p"2=$. Our point is that
these corresponding models can be used to represent
closely the equation of state !!n" for a general fluid
[with a given maximum density n!0"]. We show explicitly
below that the flexibility offered by the two parameters $
and p makes it a very convenient and efficient procedure.
However, these general models do not seem very physical
since, although their density properly vanishes at the gas
radius, they give near this border "!! ) "nn1=p, whereas one
should get the dilute gas behavior p # 1 (bosons) or p #
3=2 (fermions). However, just because the gas is dilute
near r # 1, we do not expect this part of the gas to play a
significant role. Similarly, these models give "nn )
1$ pr$ for small r, whereas one expects only the case
$ # 2 to occur for a regular equation of state. Never-
theless if "nn0!r" is closely approximated over the whole
range, one may expect this modeling to be already quite
good, as we see explicitly below. Before going into this,
let us consider the possibility of more refined models.

Indeed, it is clearly of interest to consider more com-
plicated models which could display proper behavior near
the center and the border of the cloud. Although we have
not obtained such models with completely analytical
solutions, we have found a large class of models with
quasianalytical solutions which are in practice not differ-
ent from fully analytical solutions. These are the models
dL=dy # $PK

k#0 pky
k=!1$ y" (where we could take

$ # 2 and p ( PK
k#0 pk # 1 or 3=2 in order to have the

proper center and border behavior). To be simple and
specific, let us take the case K # 1, giving $dL=dy #
!p0 % p1y"=!1$ y". This corresponds to the equation of
state "nn # "!!p exp&p1!1$ "!!"' when $ # 2. In this case
Eq. (3) becomes
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y!1$ y" d
2v
dy2

% !q2y2 % q1y% q0"
dv
dy

% !r1y% r0"v # 0;

(6)

with q2 # $p1, q1 # $!c% p0", q0 # c, r1 # p1
#2$l
$ ,

and r0 # p0&!#2 $ l"=$'. When we look for a series
expansion of the solution v # P1

n#0 any
n, we find

the following recursion relation (with a$1 # 0):
&!n % 1"!n % q0"'an%1 % &$n!n $ 1" % nq1 % r0'an %
&!n $ 1"q2 % r1'an$1 # 0 which does not allow in gen-
eral for a polynomial solution. For large n, this relation
becomes asymptotically an%1 $ an # $!q2=n"an$1.
This leads to the standard behavior an%1 ) an giving a
convergence radius equal to 1. This is the same situation
as for the hypergeometric function in Eq. (4) and leads in
the same way to a singular behavior for y # 1 which
disagrees with boundary conditions. But the above
asymptotic relation may also have solutions an%1 * an
implying an ) !q2=n"an$1 which gives an + 1=n!. This
very rapidly convergent series has an infinite convergence
radius and no singularity for y # 1. It corresponds to the
physically acceptable solutions. Since we have only y 2
&0; 1', this solution is a quasipolynomial since the higher
order terms in the series are very rapidly negligible. This
is quite analogous to the polynomial solution of the hy-
pergeometric differential equation. Naturally, these solu-
tions arise only for special values of our parameters,
which gives finally the mode frequencies. In practice,
these parameters are found very easily in the following
way.We solve iteratively the recursion relation for an with
0 , n , N, and we require aN%1 # 0 (as if we had a
polynomial solution). Since r0 and r1 are linear in
#2 $ l, this is equivalent to find the roots of an equation
of order N for #2 $ l. We then increase the value of N #
1;2; . . . until the roots have converged. For the lowest
root, this is usually a very fast convergence, so one could
obtain approximate analytical expressions. But the nu-
merics is so easy that this seems unnecessary. All this
analysis and procedure can be extended to the case
of K > 1.

As an example, we turn now to the specific case of two
equal populations of fermions in different hyperfine
states. This may be the case of 6Li or 40K near a
Feshbach resonance [11]. We assume an attractive inter-
action between unlike atoms with an interaction g, re-
lated to the (negative) diffusion length by g # 4% "h2a=m,
and we take the Hartree approximation to describe this
system. For total atomic density n, !!n" # "h2k2F=2m$
jgjn=2 with 3%2n # k3F. To solve directly this case, it is
more convenient to rewrite Eq. (2) (taking $ # 2) with
the variable u ( kF=kF!0", where kF!0" is the equilibrium
Fermi wave vector at r # 0. This leads to

PP0v00 %
!$

l% 3

2

%

P02 % 3

u
PP0 $ PP00

"

v0$

3!#2 $ l"
2

P02

u
v # 0; (7)

with P0 #dP=du and P00 # d2P=du2. We have set P!u" #
1$u2 $ 2

3&!1$ u3" with the coupling constant &#
2kF!0"jaj=%. This coupling constant goes from 0, for
the very dilute regime corresponding to free fermions,
to 1 when we reach at the center the instability where the
gas is going to collapse.

We have solved Eq. (7) numerically, as a function of &,
for the first three monopole mode frequencies (l # 0).
Results are given in Fig. 1. As expected, the frequencies
decrease for increasing attractive interaction, since the
gas gets more compressible when near the instability.
However, we do not find the lowest mode frequency going
to zero at the instability. This can be understood because
the instability density is reached only at the center, and
the rest of the gas still provides a restoring force account-
ing for the nonzero frequency (actually this instability
limit cannot be reached experimentally since the modes
correspond to infinitesimal density oscillations; finite
oscillations will induce nonlinear effects and produce a
collapse of the gas). This result for a Fermi gas is in sharp
contrast with the one found for a Bose gas with attractive
interaction [1]. In this last case, the gas cloud size is
always of order of the extension lho of the harmonic
potential ground state wave function. For hydrodynamics,
this is a microscopic scale, so hydrodynamics is never
valid and a full quantum calculation is required. On the
other hand, the Fermi pressure makes the gas much larger
than lho, which justifies the use of hydrodynamic. Indeed,
at the collapse the typical Fermi wavelength &F is com-
parable to the scattering length jaj while the radius of the
cloud Rc is comparable to the size of a free fermion gas.
This gives Rc=lho + lho=jaj - 1 in typical experiments.
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FIG. 1. Reduced mode frequency #2 # !!=!"2 for a Fermi
gas within the Hartree approximation as a function of the
coupling constant &. Solid line: exact result from the numerical
solution of Eq. (7). Dashed line: approximate analytical solu-
tion. Inset: normalized Hartree chemical potential "!! as a
function of the normalized density "nn (solid lines) for & #
0:6; 0:8; 1 ( "!! increases with &) and the corresponding model-
ing (dashed lines) by "!! # 1$ !1$ "nn1=p"2=$.
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Actually, we believe that improving the hydrodynamic
description by including quantum effects (hydrodynamic
is not correct at the scale of the Fermi wavelength) will
lead to modifications very near the instability and to a
zero frequency mode at the instability & # 1 (prelimi-
nary calculations support this view).

It is now of interest to consider an approximate solution
of this same problem with the modeling we have dis-
cussed above. With the Hartree approximation, the rela-
tion between the reduced chemical potential "!! and the
reduced density "nn is "!! # !3 "nn2=3 $ 2& "nn"=!3$ 2&". For
each value of &, we approximate "!!! "nn" by "!! # 1$ !1$
"nn1=p"2=$, where we obtain the parameters p and $ by a
least square fit. Then the mode frequencies are given by
#2 # $

p n!n% p% 1
$" for n # 1; 2; 3. As seen in the inset

of Fig. 1, the model is very close to the Hartree equation
of state. The mean difference is maximum for & ) 0:84
where it reaches 6 10$3. The results for the mode fre-
quencies are given in Fig. 1 and they are surprisingly close
to our exact results from numerical integration.

A major interest of this approximate treatment is that it
is easily inverted and allows to analyze readily experi-
mental data. Let us consider, for example, the case where
we have from experiment only the lowest monopole fre-
quency as a function of particle number N in a trap of
frequency !. It is clear that the information on the
equation of state !!n" is contained in such data. We
show now how to obtain it explicitly. We will obtain
!!n" recursively: Knowing !!n" for n between 0 and
nm, we find the increase d!m corresponding to an in-
crease of n from nm to nm % dnm. Hence, we will find a
kind of first order differential equation which can be
easily integrated numerically. The boundary condition
for low n corresponds to recover the dilute gas results
which are exactly known.

When !!n" is known, the density nm at the trap center
is related to the particle number by N # 4%

R

R
0 drr

2n!r",
where the cloud radius R is linked to nm and to chemical
potential !m at the trap center by 1

2m!
2R2 # !m #

!!nm": n!r" is obtained by inverting 1
2m!

2r2 # !!nm" $
!!n!r"". So, for simplicity, in the argument we assume
that nm is known experimentally (but the procedure is
basically unchanged if we work with N).

Also, for simplicity of the presentation, let us assume
that our model depends only on a single parameter p
instead of two (p and $) or more. Then our least square
fit to the model "!! # "nn1=p ( m! "nn; p" corresponds to make
R

1
0 d "nn&M! "nn; nm" $m! "nn; p"'2 minimal, where M! "nn; nm" (

!! "nnnm"=!!nm" is the normalized chemical potential.
This is equivalent to solve the equation F!p; nm" (
R

1
0 d "nn&M! "nn; nm" $m! "nn; p"'!@m=@p" # 0 which gives the

dependence of p on nm. Now, if we have an increase dnm,
this produces a change dp of our parameter p. They are
linked by !@F=@p"dp% !@F=@nm"dnm # 0. On the other
hand, dp and dnm are also linked because our analytical
result Eq. (5) for the mode frequency (which depends

on p) must be equal to the experimental result (which
depends on nm). This experimental data provides us with
an explicit relation between @F=@p and @F=@nm. Then
@F=@p is just an integral which contains M! "nn; nm" and
can be calculated numerically. On the other hand,
@F=@nm contains @M! "nn; nm"=@nm # "nn!0! "nnnm"=!!nm" $
!! "nnnm"!0!nm"=!2!nm", where !0!n" ( d!=dn. The sec-
ond term introduces precisely the quantity !0!nm" #
d!m=dnm we are looking for while all the other ingre-
dients in @F=@nm can be calculated numerically from
M! "nn; nm". In this way, we obtain for d!m=dnm an ex-
pression which can be explicitly calculated numerically
when we know!!n" for n varying between 0 and nm. This
leads by integration to a determination of !!n" from the
experimental mode frequency !!nm" as a function of the
density nm at the center of the trap or, equivalently, as a
function of the particle numberN in the trap. The general-
ization to more than a single parameter does not make any
problem.

This inversion method is quite convenient since it gives
a univocal answer for !!n" from a given set of experi-
mental data. Moreover, if more than a single mode is
measured, the comparison between the results from the
various modes will provide checks on the resulting !!n".
Finally, we can improve our modeling by making use of
the richer models with quasipolynomial solutions we have
already discussed.
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