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Scaling at the Chaos Threshold for Interacting Electrons in a Quantum Dot
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The chaotic mixing by random two-body interactions of many-electron Fock states in a confined

geometry is investigated. Two regimes are distinguished in the dependence of the typical number of
Fock states that are mixed into an eigenstate on the interaction strength V , the excitation energy ´,
and the level spacing D. In both regimes the number is large (indicating delocalization in Fock space).
However, only the large-V regime is described by the golden rule (indicating chaotic mixing). The
crossover region is characterized by a maximum in a scaling function that becomes more pronounced
with increasing excitation energy. The scaling parameter that governs the transition is !´V"D2# ln!D"V #.

PACS numbers: 73.23.–b, 05.45.–a, 71.10.–w

The highly excited atomic nucleus was the first example
of a quantum chaotic system, although the interpretation of
Wigner’s distribution of level spacings [1] as a signature
of quantum chaos came many years later, from the study
of electron billiards [2]. While the spectral statistics of the
nucleus and the billiard are basically the same, the origin of
the chaotic behavior is entirely different [3]: In the billiard
chaos appears in the single-particle spectrum as a result of
boundary scattering, while in the nucleus chaos appears in
the many-particle spectrum as a result of interactions.

The study of the interaction-induced transition to chaos
entered condensed matter physics with the realization that
a semiconductor quantum dot could be seen as an artificial
atom or compound nucleus [4]. A particularly influential
paper by Altshuler, Gefen, Kamenev, and Levitov [5]
studied the interaction-induced decay of a quasiparticle in
a quantum dot and interpreted the broadening of the peaks
in the single-particle density of states as a delocalization
transition in Fock space. Different scenarios leading to a
smooth rather than an abrupt transition from localized to
extended states were considered later [6–8]. Recent com-
puter simulations [9,10] also confirm the smooth crossover
from localized to delocalized regime for quasiparticle
decay.

As emphasized by Altshuler et al. [5], the delocalized
regime in the quasiparticle decay problem is not yet chaotic
because the states do not extend uniformly over the Fock
space. One may study the transition to chaos in the single-
particle density of states, but theoretically it is easier to
consider instead the mixing by interactions of arbitrary
many-particle states. This was the approach taken in Refs.
[6,8,11–14], focusing on two quantities: The distribution
of the energy level spacings and the inverse participation
ratio (IPR) of the wave functions in Fock space. Both
quantities can serve as a signature for chaotic behavior,
the spacing distribution by comparing with Wigner’s dis-
tribution [1] and the IPR by comparing with the golden
rule (according to which the IPR is the mean spacing d
of the many-particle states divided by the mean decay rate
G of a noninteracting many-particle state [12]). Two fun-

damental questions in these investigations are as follows:
(1) What is the scaling parameter that governs the transi-
tion to chaos? (2) How sharp is the transition?

In a recent paper [14] one of us presented analytical ar-
guments for a singular threshold governed by the scaling
parameter x ! !´"gD# lng, where D is the single-particle
level spacing, ´ is the excitation energy, and g is the con-
ductance in units of e2"h. (Both ´"D and g are assumed
to be ¿1.) In contrast, Georgeot and Shepelyansky [12]
argued for a smooth crossover governed by the parame-
ter y ! !´"gD#

p

´"D. (The same scaling parameter was
used in Refs. [6,13].) The parameter y is the ratio of the
strength V $ D"g of the screened Coulomb interaction
[5,15] and the energy spacing D2 $ !´"D#23"2D of states
that are directly coupled by the two-body interaction [6].
The parameter x follows if one considers contributions to
the IPR that involve the effective interaction of 2, 3, 4, . . . ,
particles. Subsequent terms in this series are smaller by
a factor !lng"g#Dn"Dn11, where Dn $ !´"D#2n11"2D is
the spacing of states that are coupled by an effective inter-
action of n particles [14]. (The large logarithm lng appears
in the expansion parameter because of the large contribu-
tion from intermediate states whose energies are close to
the states to be mixed.)

The purpose of this paper is to investigate the
interaction-induced transition to chaos by exact diago-
nalization of a model Hamiltonian. We concentrate on
the IPR because for that quantity an analytical prediction
exists [14] for the ´ and g dependence. (There is no such
prediction for the spacing distribution.) The numerical
data are consistent with a chaos threshold at a value of
x of order unity. Our model is the same as that used
by Georgeot and Shepelyansky [12]. The difference in
scaling parameter with Ref. [12] may be due in part to
the fact that no analytical theory to compare with was
available at that time, and in part to the fact that most of
the numerics in that paper was done for nondegenerate
systems (number of accessible single-particle states much
greater than the number of particles)—instead of the
highly degenerate system considered here.
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The model for interacting spinless fermions that we
study is the layer model introduced in Ref. [12] and used
for the quasiparticle decay problem in Ref. [10]. The Ham-
iltonian is H ! H0 1 H1, with

H0 !
X

j
´jc

y
j cj , H1 !

X

i,j,k,l
Vij,klc

y
l cy

k cicj .

(1)

The single-particle levels ´j are uniformly distributed in
the interval %! j 2

1
2 #D, ! j 1

1
2 #D&. The interaction matrix

elements Vij,kl are zero unless i, j, k, l are four distinct in-
dices with i 1 j ! k 1 l. The (real) nonzero matrix ele-
ments have a Gaussian distribution with zero mean and
variance V 2 ! !D"g#2. (This relationship between inter-
action strength and dimensionless conductance for a dif-
fusive quantum dot has been derived in Refs. [5,15].) The
Fock states are eigenstates of H0, given by Slater deter-
minants of the occupied levels k1, k2, k3, . . . . The inter-
action mixes Fock states for which

P

p kp equals a given
integer. (Without this restriction the model is the same
as the two-body random-interaction model introduced in
nuclear physics [16,17].) The excitation energies of the
states with given k1, k2, k3, . . . , lie in a relatively narrow
layer (width of order j1"4D) around the mean excitation
energy jD. The number of states in the jth layer is the
number of partitions P ! j# of j. For our largest j ! 26
this number is P !26# ! 2436, which is still tractable for
an exact diagonalization. Without the decoupling of the
entire Fock space into distinct layers, such large excitation
energies would not be accessible numerically. The layer
approximation becomes more reasonable for larger g, be-
cause then V ø D so that states from different layers may
be regarded as uncoupled.

The inverse participation ratio

I !
X

m
j'ajm(j4 (2)

of the eigenstate ja( of H is the inverse of the number
of eigenstates jm( of H0 that have significant overlap with
ja(. We calculate I as a function of g for different layers j,
corresponding to a mean excitation energy ´ ! jD. The
IPR fluctuates strongly from state to state and for different
realizations of the random matrix H. We calculate the
averages I , 1"I , and lnI where the overline “· · ·” indicates
an average both over the P ! j# states ja( in the jth layer
and over some 103 realizations of H. We first consider
the logarithmic average lnI , for which the fluctuations are
smallest.

In Fig. 1 we have plotted the numerical data for
the g dependence of lnI , for different values of ´"D.
In order to compare with the analytical prediction of
Ref. [14], we have rescaled the variables such that
Fig. 1 becomes a plot of 2y21 lnI versus x. The pre-
diction is that, in the thermodynamic limit [18], the
scaling function F!x# ! 2y21 lnI depends only on x
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FIG. 1. Average logarithm of the inverse participation ratio I
as a function of the dimensionless conductance g, in rescaled
variables. The different sets of data points follow from the layer
model for different excitation energies j ! ´"D. Statistical er-
rors are smaller than the size of the markers. The straight solid
lines are the analytical prediction (6) of the scaling theory, with-
out any adjustable parameters. (Only the lines for ´"D ! 15,
20, and 26 are shown for clarity.) The dashed curves are the
golden-rule prediction (7), with a single adjustable parameter
(the same for all curves, but the data for ´"D ! 15 were left
out of the fit).

for x & 1. This scaling behavior cannot be checked
directly because finite-size effects introduce an additional
´ dependence into the function F!x#. This is why we
cannot directly test whether x or y is the correct scaling
parameter. Fortunately, it is possible to include finite-
size effects in the scaling function and test the theory in
this way.

Applying the method of Ref. [14] for the calculation of
lnI one finds that the function F!x# in the thermodynamic
limit has the Taylor series

F!x# ! 2y21lnI !
X̀

n!0
cnxn, (3)

with corrections of order 1" lng. All coefficients cn are
positive. The scaling behavior (3) is expected to be uni-
versal (valid for any model with random two-body interac-
tions), but the coefficients cn are model specific. The first
two coefficients for the layer model are

c0 !
8!2 2

p
2#p

3p
! 1.53, c1 !

81
25

s

2
p

c0 ! 3.95 .

(4)

In the thermodynamic limit the n-particle level spacing
Dn equals !´"D#2n11"2D times a numerical coefficient of
order unity. Finite-size effects introduce an ´ dependence
into this coefficient. To quantify the finite-size effects, it
is convenient to define the ratio
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Kn )
µ

D

´

∂n21"2 D

Dn
. (5)

The series expansion of F!x# in terms of the Kn’s is

F!x# ! 4!
p

2 2 1#
p

p K2 1 36!2 2
p

2#K3x 1 O !x2# .

(6)

For ´"D ! ` we have K2 ! !2"p#
p

2"3 ! 0.5198,
K3 ! 6

p
6"25p ! 0.1871, and we recover the thermo-

dynamic limit (3). For the excitation energies ´"D ! 15,
20, 22, 24, and 26 of the simulation, after explicit calcu-
lation of D2 and D3, one finds K2 ! 0.419, 0.436, 0.439,
0.444, and 0.447 and K3 ! 0.0414, 0.0536, 0.0577,
0.0615, and 0.0648. The resulting small-x behavior of
the scaling function is plotted in Fig. 1 (solid lines) and
agrees quite well with the numerical data.

Analytically, the scaling function F!x# is known only
for x ø 1. In the simulation, we observe a maximum of
2y21 lnI at x * 1. The maximum becomes more pro-
nounced with increasing excitation energy. We argue that
it is a signature of the transition to chaos, because beyond
the maximum, for x * 1, the IPR is observed to follow
the golden-rule prediction (see discussion below)

Igolden-rule ! C% j5"4P ! j#&21g2. (7)

This golden-rule prediction is shown dashed in Fig. 1, with
the coefficient C + 0.51 as the single fit parameter. (The
smallest ´"D ! 15 was left out of the fit.) Note that
2y21 lnIgolden-rule has a maximum for an IPR of order
unity, hence in the regime of localized states. In contrast,
the maximum in 2y21 lnI occurs when the IPR is ø1,
hence in the regime of extended states. We now discuss
the small and large-x regimes in some more detail.

The large-x regime is described by the golden rule
Igolden-rule ! d"G, according to which all basis states
within the decay width G of a noninteracting state are
equally mixed into the exact eigenstate. This complete
mixing amounts to fully developed chaos. For our model
the level spacing of the many-particle states in the jth
layer is d $ j1"4D"P ! j# and the Breit-Wigner width
is G $ V 2"D2 $ j3"2g22D, which leads to Eq. (7).
One notices in Fig. 1 that for the largest x the data
points fall somewhat below the golden-rule prediction.
This is due to the finite bandwidth of the layer model.
The IPR saturates at 3"P ! j# [9] when the decay width
G becomes comparable to the bandwidth j1"4D. The
corresponding upper bound on x for the validity of the
golden rule is x & j3"8 lng. The finite bandwidth of
the layer model becomes less significant for large j, which
is why the agreement with the golden rule improves with
increasing j.

The small-x regime is described by the scaling func-
tion F!x#. The term of order xn in the Taylor series (3)
contains the (n 1 1)th order effective interaction V eff

n11 be-
tween n 1 2 particles and holes. A Fock state in the jth
layer contains about

p
j excited particles and holes [19].

Because this is a large number for j ¿ 1, the IPR fac-
torizes into a product of independent contributions from
2, 3, 4, . . . , interacting particles,

lnI $
X̀

n!0
jV eff

n11j"Dn12 . (8)

A calculation of jV eff
n11j leads to Eq. (3). The appearance

of the modulus of the matrix element in Eq. (8) is easily
understood for the case of only two unperturbed many-
particle states interacting via the matrix element V eff.
The IPR changes by order unity if two Fock states come
energetically within a separation jV effj of each other. The
probability of such a near degeneracy is small like
jV effj"D. (There is no level repulsion for the many-
particle solutions of the noninteracting Hamiltonian.)
Because for weak interaction the IPR can change signifi-
cantly but only with a small probability, the IPR fluctuates
strongly. Indeed, in our simulations much larger statistics
was necessary in order to reach good accuracy in the
small-x regime. (The remaining statistical error in Fig. 1
is smaller than the size of the markers.)

In Fig. 2 we compare the logarithmic average lnI with
the two other averages lnI and 2 ln1"I . Within the small-
x regime of validity of Eq. (3) the three averages are re-
lated by

lnI ! 2!2 2
p

2# lnI ! 22!
p

2 2 1# ln1"I . (9)
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FIG. 2. Averages 2lnI , 2 lnI , and ln1"I as a function of g,
rescaled in the same way as in Fig. 1, for ´"D ! 20. For small
x, the three averages follow the scaling theory (9) (solid lines).
For large x the averages 2lnI and ln1"I follow the golden rule
(dashed line).
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These numerical coefficients do not depend on the num-
ber of particles involved in the interaction (cf. the explicit
calculation of I in Ref. [14]). As one can see in Fig. 2,
for ´"D ! 20, the relation (9) agrees well with the simu-
lation. In the chaotic regime, for large x, Eq. (9) is no
longer valid. The average 2 ln1"I , which is dominated
by the majority of states having a large number of compo-
nents, is close to lnI at large x. The average lnI is domi-
nated by rare states with an anomalously small number of
components and falls below the two other averages. This
indicates an asymmetric distribution of lnI in the chaotic
regime for the layer model.

So far we have addressed only the question of the scal-
ing variable that governs the transition to chaos. What
remains is the question: How sharp is the transition? The
singular threshold predicted in Ref. [14] develops only in
the thermodynamic limit and would be smoothed by finite-
size effects in any simulation. The corresponding nonan-
alyticity of lnI is related to the high-order behavior of the
series (3). Since our numerics allows us to distinguish
only the first two coefficients c0 and c1, it leaves open the
question about the nonanalyticity. Still, even if the series
(3) would be absolutely convergent, the resulting smooth
function of the single variable x could not describe the IPR
for large x because it is incompatible with the golden rule
2y21 lnIgolden-rule $ x21 lng. This different scaling be-
havior for small and large values of x suggests that the peak
observed in Fig. 2 would evolve into a singular threshold
in the thermodynamic limit. The only way to maintain a
smooth crossover would be to introduce a parametrically
large interpolating region between the two different scal-
ing regimes. We cannot exclude this interpolating region
on the basis of the numerical data; however, theoretically
[14] there is no indication for such a region.

In summary, by exact diagonalization of a model Hamil-
tonian we have presented evidence for an interaction-
induced transition to chaos in a quantum dot. Upon
inclusion of finite-size effects, a good agreement is
obtained with the scaling theory of Ref. [14], supporting
the assertion that x ! !´"gD# lng is the scaling parameter
for the transition. The different behavior of the scaling
function for small and large x suggests that the transition
would become a singular threshold in the thermodynamic
limit.
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