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Abstract

Natural images are complex but very structured objects and, in spite of its com-
plexity, the sensory areas in the neocortex in mammals are able to devise learned
strategies to encode them efficiently. How is this goal achieved? In this paper, we
will discuss the multiscaling approach, which has been recently used to derive a
redundancy reducing wavelet basis. This kind of representation can be statistically
learned from the data and is optimally adapted for image coding; besides, it presents
some remarkable features found in the visual pathway. We will show that the intro-
duction of oriented wavelets is necessary to provide a complete description, which
stresses the role of the wavelets as edge detectors.

Key words: Wavelet, multiscale, edge detection, learning

Preprint submitted to Elsevier Science 29 October 2002



1 Introduction

In recent years there has been much work at the boundary between the modeling of visual
systems in mammals and computer vision. On the one hand a better knowledge of natural
systems may lead to new image processing algorithms, and on the other hand analysis
and modelling of images may help to understand the primary layers in visual systems.

Based on early papers by Barlow (Barlow, 1961), many works have focussed on the use
of information theoretic concepts in order to address the question of efficiency of neural
coding. Information Theory allows to quantify the statistical regularity of a signal - hence
the minimal number of bits necessary to encode an image -, the likeliness of an event, and
the statistical dependency between signal (stimulus) and neural code (representation). It
has been suggested that epigenetic development of the visual system of mammals would
aim at optimizing the neural architecture so that the visual system becomes optimally
adapted to the statistical regularities of the environment. One criterion for this adaptation
is the minimization of the redundancy (Barlow, 1961): each output unit should be as much
as possible statistically independent from any other unit. Another plausible criterion is the
maximization of information transfer from the retina to the next cortical layers (Linsker,
1988). Such optimization occurs under constraints, in particular under limited resources
(e.g. a given set of neurons and neural connectivity). In fact both criteria are related, as
it was shown in (Nadal and Parga, 1994) the code which maximizes information transfer
minimizes redundancy, that is, it extracts the independent components of the signal.

Several theoretical studies of the primary visual system have been done, based on the
ideas of information transfer and redundancy reduction (see e.g. (Atick and Redlich,
1990, 1992) (Atick, 1992), (van Hateren, 1992), (Bell and Sejnowski, 1997), (Olshausen
and Field, 1996, 1997)). When modeling the visual inputs as generated by a Gaussian
process, it has been shown that the additional hypothesis of scale invariance leads to
a scale invariant, wavevet-like, representation (Li and Atick, 1994). This results from a
compromise between scale and translational invariances, which cannot be exactly fulfilled
at the same time. Direct statistical analysis of natural images leads also naturally to a
multiscale description, see (Field, 1987), (Ruderman, 1994), (Turiel et al., 1997, 1998),
(Buccigrossi and Simoncelli, 1999), (Huang and Mumford, 1999).

As images consist of objects, which are two-dimensional regions with regular border, the
ratio of the length of the border to the surface that it contains increases with scale. So,
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the statistics of the illumination is dominated by the smooth changes taking place inside
objects. This part is however somewhat predictable and thus scarcely informative. The
statistical regularity of illumination is evidenced by the behaviour of the power spectrum
(which corresponds to the Fourier transform of the two-point correlation of illumination).
It is well known that it behaves like a power-law in the modulus of the frequency vec-
tor, with a power exponent close to —2 (Field, 1987). This is the typical scale-invariant
behaviour for piece-wise regular functions.

In the search for an independent representation, a first step is to perform whitening (Atick,
1992): a linear transformation on the input signal which leads to a flat power spectrum
(decorrelation of the two-point statistics). Experiments on mammal cortices have shown
that in fact some withening-like process takes place as the image is transmitted to the
visual cortex (see e.g. (Dan et al., 1996)).

However images are not Gaussian. Indeed contours are still recognizable features of
whitened images (B.Barlow, 1994), the variation of the illumination along them being
still very regular. Contours, more generally edges, carry the most important information
about the image, although they are very scarce. This means that the statistics of images is
in fact controlled by those rare events. This far-from-gaussianity character of images has
been reported for instance as exponential decays of several probability distributions (Ru-
derman, 1994). Since linear addition of independently distributed features would typically
give rise to a Gaussian behaviour, one also expects that the extraction of independent
features will require non-linear processing.

In previous studies, a multifractal analysis of natural images has been performed (Turiel
et al., 1997, 1998), (Turiel and Parga, 2000a) and tested on a wide variety of ensembles
of natural images (Nevado et al., 2000), (Turiel et al., 2000). It has been shown that an
optimal wavelet (Turiel and Parga, 2000b) can be constructed (learned) from a set of
images. The resulting wavelet representation achieves both whitening and edge detection.
More importantly, the dyadic expansion on this wavelet splits the image in statistically
independent components, one per level of resolution. This representation has thus several
important features shared by the neural representation in mammals. However the wavelet
basis is not complete, which implies some information loss.

In this work we propose a generalization of the wavelet representation introduced in
(Turiel and Parga, 2000b): we show that a complete basis can be obtained once orientation
detectors are introduced. By means of the generalized oriented multifractal wavelet basis,
it is then possible to reconstruct correctly visual signals from their wavelet coefficients.

The paper is organized as follows: in the following Section we review very briefly our
previous work. We first describe how a generative model of images containing second order
as well higher order scale invariance can be constructed. In the same section we compare



our work with other approaches to the problem. In Section 3 the concept of optimal
wavelet, which allows to split the image in independent levels of resolution, is explained
and its properties are shown and discussed. In Section 4 the experimental performance of
the optimal wavelet is shown, and its lack of completeness is discussed. Section 5 is devoted
to illustrate for a simple basis (the Haar basis) how introducing new orientations gives a
complete description of the image. Then, in Section 6 the generalization of the optimal
wavelet formula to include the role of the orientation is presented and its connection
with the previous scheme is shown. Section 7 presents the theory for computing the
orientational basis from the data. The experimental facts concerning oriented wavelets
are then presented in Section 8. Finally, in Section 9 we discuss the results from the point
of view of the empirical performance of the method and of its biological relevance, and
we propose future directions of research.

2 Scale invariance in natural scenes

One of the most prominent properties of natural images is scale invariance. Let P[{¢(%)}z]
be the joint probability distribution for the values of a function ¢(Z) of the image at all
the points Z. For images with intensity I(Z) (i.e., graylevel in digitized images) ¢(Z) is the
contrast at the pixel Z which we take as ¢(Z) = I(&) — Iy. The constant Iy is chosen such
that the average of ¢ over the image vanishes. Scale invariance means that ¢() is equally
distributed as its dilation by a factor r, ¢(rZ) (see e.g. (Ruderman, 1994)), that is,
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Scale invariance shows up in the second order statistics as an algebraic behavior of the
power spectrum (Field, 1987). However the scale-invariant properties of images are much
richer than that. As it was shown in, e.g., (Ruderman, 1994; Turiel et al., 1997, 1998)
a complete description of scale invariance requires the analysis of the higher order, non-
gaussian statistics.

In natural scenes scale invariance takes the form of multiscaling (or multifractality). Multi-
scaling happens when images are composed of scale-invariant objects, however transform-
ing differently under changes in scale. Multiscaling can be assessed from the calculation
of the order ¢ moments of a random variable e,(Z) defined at a scale r. Due to scale
invariance, those moments can only depend on the scale r as a power law:
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The dependence of the self-similarity exponents v(q) on the order ¢ provides knowledge
about the underlying multiscaling hierarchy. The simplest manifestation of this symmetry
occurs when 7y(gq) depens linearly in the order of the moments (monoscaling). This form
of self-similarity is related to the existence of a single underlying scale-invariant object of
fractal nature. When the exponents adopt a non-linear dependence, that is, when actual
multiscaling occurs, more than one exponent is needed to describe the way the variable
changes with the scale; equivalently, images are composed by more than one scale-invariant
fractal object. Such images are multifractals. In fact, images have been shown to be always
multiscaling (Turiel et al., 1997, 1998; Nevado et al., 2000; Turiel et al., 2000).

There are many reasons why the statistics of edges should be studied carefully. Edges are
good candidates for one of the scale-invariant fractal sets in the multiscaling hierarchy,
actually it is the most singular of these sets. Edges are also very relevant in vision. A
variable e,.(Z) capable to provide multiscaling self-similarity exponents should be devised
in such a way that it integrates edges and other potentially scale-invariant features over
a scale r. For this reason, a variable (the ‘local edge variance”) taking account all the
changes in contrast over a local area of size r was studied in (Turiel et al., 1997, 1998).
Such a variable proved to be multiscaling in experiments performed over several different
ensembles of images (Nevado et al., 2000; Turiel et al., 2000).

Some of the main results of that first work have been that: (1) the local edge variances
are in fact wavelet coefficients (Turiel and Parga, 2000a), (2) their behavior with the
scale does not depend of the particular wavelet chosen and (3) the statistics of these
wavelet coefficients can be explained in terms of an infinitely divisible process (Feller,
1966). Another remarkable property found in (Turiel et al., 1997, 1998) is that although
the wavelet coefficients at different scales are correlated (Mallat and Zhong, 1992), the
marginals of two of these variables at different scales are related through the following
statistical relation:

€r = Nr.L €L, (3>
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where “=” means that both sides have the same distribution. The stochastic variable 7, r,
is a multiplicative process. This means that: a) it is independent from ey and b) it is
an infinitely divisible process: given three scales L > r' > r, it satisfies 1, = 0,1 1,
(Novikov, 1994). Besides, because of scale invariance, its distribution only depends on the
ratio of scales %

As was just said, the local edge variance can be easily generalized to wavelet projections,
which are experimentally shown to be also multiscaling and give rise to the same hierarchy
as the local edge variance (provided the wavelet belongs to an appropriate class; see (Turiel
and Parga, 2000a)). This implies, in particular, that the multiplicative process eq. (3)



still holds taking the variables e, and e, as the wavelet projections at the scales r and L,
respectively. Even more, the multiplicative process is of the same type, that is, it has the
same distribution as that of the local edge variance.

Multiscaling, through eq. (3), places strong constrains on what a natural scene is. When
it is combined with other two symmetries of natural images -scale and translational
invariances- a powerful generative model is obtained (Nevado et al., 2000; Turiel and
Parga, 2000b). The resulting model contains both second order scaling (the power spec-
trum follows a power law) and higher order scaling (multiscaling). The model is defined
as a discrete (dyadic) wavelet expansion with wavelet coefficients oz (playing the role
of the previous e,) which follow a multiscale stochastic process. More precisely, given a
function (wavelet) W the contrast is expressed as

() =Y Y agU. 0
J=0 ke

where ¥ (%) = U(2/7 — k). The largest scale is fixed as one, and the j-th scale is then
277, Assuming that the dispersion of the wavelet is of the same order as the scale, it is
possible to distinguish up to 27 different blocks along each dimension (2% block in our
case, as images are bi-dimensional). The osz’s are put in correspondence with the nodes
of a tree in such a way that the resolution becomes better as one proceeds from the root
to the leaves of the tree. As an extension of eq. (3), the four wavelet coefficients at the
scale j are obtained from the one at the previous scale as:
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Also here the variables n 5 are independent from the o

j—1]%

[:} and have the same distribu-

tion for all the resolution levels 5 and spatial locations k. This distribution is determined
from the analysis of multiscaling properties in the image dataset; see (Turiel et al., 1997;
Nevado et al., 2000) for further details. Notice that in the generative model the equality
of both sides holds exactly, and not only in a distributional sense. The generative model
succeeds to incorporate multiscaling behavior and the correct power spectrum.

Not every function ¥ can be used to represent arbitrary signals ¢(Z) but it should meet
some requirements; these imply that the function must reach a compromise between lo-
calization and detail detection (i.e., the spatial and frequency dispersions are kept small
enough) (for technical details, the reader is encouraged to read the excellent book from I.
Daubechies (Daubechies, 1992)). For some particular wavelets W, there exists an associ-



ated dual function ¥ expanding a wavelet basis {W¥ j,;} such that the coeflicients oz can

be retrieved by simple wavelet projection on ¥, namely:

ap = 29(0 le) (6)

Here, the symbol (f;|f2) means the inner product of the functions f; and fs,

ilf) = [ d7 fi(@) £(@) (7)

and the constant 2% in eq. (6) appears as a consequence of the normalization chosen in
the definition of W

A coding scheme based on wavelet expansions can be proposed under the requirement of
efficient coding. If efficiency is interpreted as a minimum redundancy principle (Barlow,
1961) the wavelet coefficients (obtained under wavelet projection of images) should be
as independent as possible. Independency is a stronger requirement than eq. (3) (which
holds for a large class of appropriate wavelets). We will require eq. (5) to hold, which
is not true for a generic wavelet. The following efficiency criterion was then proposed in
(Turiel and Parga, 2000b,c): the redundancy between wavelet coefficients at different scales
should be minimized. This defines our optimal encoder. Notice that nothing is said about
spatial correlations at the same scale, these should be estimated once the optimal wavelet
is known and if they are large a minimum redundancy criterion should be applied again.

2.1 Related work

Our approach to natural image modeling differs in many respects from other previous and
later approaches to this problem.

The emergence of oriented edge detectors from the statistics of images has been considered
before by many authors. We refer in particular to two approaches: one based on the
independendent components analysis of natural scences (Bell and Sejnowski, 1997) and
the other based on the requirement of the sparseness of the representation (Olshausen
and Field, 1996, 1997). In the first of these works the independent components have been
found by using the infomax principle for redundancy reduction (Nadal and Parga, 1994)
assuming a linear generative model of images. This approach does not consider the role
of symmetries of natural scences and much of the insight that can be gained from them is
lost. In particular it does not take into account the constraints that multicaling imposes
on algorithms to reduce redundancy. A consequence of these constraints is that a factorial



code cannot be obtained by a linear transformation (Turiel and Parga, 2000b). In fact, a
comparison of the edge detectors found in this way with the properties of V1 cells (van
Hateren and van der Schaaf, 1998) shows that the predicted filters do not reproduce well
the scaling properties of cells. Our work differs from (Olshausen and Field, 1996, 1997)
in that in our approach sparseness is not imposed but it appears as a consequence of the
sparseness of edges in natural scenes, as it is clear from the kurtotic distributions in (Turiel
et al., 1997, 1998). It seems to us that the theoretical analysis done for the moment is
still far from being complete, natural images still have basic regularities and more subtle
symmetries that have to be discovered and used correctly before the predictions of the
model could be trusted.

Following the observation that although the wavelet transform gives an approximately
decorrelated signal (Wornell, 1993) the wavelet coefficients are still correlated, the authors
of (Buccigrossi and Simoncelli, 1999; Wainwright and Simoncelli, 2000) noticed that the
dependencies between pairs of adjacent coefficients could be reduced by taking appropriate
ratios of neighboring coefficients. This is in agreement with our finding (Turiel et al., 1997,
1998) of an independent multiplicative process, egs. (3) and (5), although their empirical
observation does not lead to the actual formal structure behind it.

The scale mixtures of gaussians used in a recent paper (Wainwright et al., 2001) are
stochastic processes similar to those in eq. (3). There are however substantial differences
in both the approach to the problem and the nature of the stochastic processes them-
selves. Our basic guidelines for understanding non-gaussian image statistics have been the
analysis of their scaling properties. According to this, we have started in (Turiel et al.,
1997) by studying in which way these properties manifest themselves in natural scences.
After noticing that they take the form of multiscaling (eq. (2)), we have made extensive
analyses to verify that multiscaling is a consequence of the presence of an infinitely divis-
ible process that acts multiplicatively between different scales (as it was briefly reviewed
in the previous section). In fact one can argue that multiscaling necessarily implies the
existence of such a multiplicative process, so any realistic description of image statis-
tics should be implemented on the basis of an infinitely divisible multiplicative process.
Among those processes, the log-Poisson is the simplest one that fits well the data (Turiel
et al., 1997, 1998; Turiel and Parga, 2000b). Instead, in (Wainwright et al., 2001) the au-
thors start by proposing a rather wide class of models which however are not compatible
with the actual multiscaling properties in images. The most appropriate model would be
that of the lognormal family (lognormal distributions are infinitely divisible multiplica-
tive processes), but lognormal statistics introduces uncontrolled, unrealistic divergences
to infinity. It could be argued that, according to the Central Limit Theorem, any infinitely
divisible process approaches a lognormal distribution when the change in scale is large
enough; however the convergence is only guaranteed for the most probable events, the
tails being always ill-described. As tails are related to the edges (the kurtotic character



of log-Poisson statistics being at the origin of their sparseness), a lognormal description
is far from appropriate for images.

3 The optimal wavelet

The optimal wavelet is determined by requiring the statistical equality in eq. (5) to hold
point-by-point, that is, the equality is true for any image, resolution and location. This is
a very strong statement and in fact it completely determines an unique wavelet ¥, the
optimal wavelet ! . One can obtain the coefficients 7 % from the exact relation,

Mk = R/ (8)

These variables Nk provide a representation in which each level of resolution is indepen-
dent of the other - 1,z and 7,7, are statistically independent for j # j' (Turiel and Parga,
2000b). For this reason, we will refer to this wavelet representation as the optimal one.

Using the representation provided by the optimal wavelet W, it is possible to design a
multilayer network architecture to extract the independent components of the signal.
An example architecture is shown in Figure 1. It consists of three layers, two of them
with linear transfer functions and the other with a non-linear, e.g. logarithmic transfer.
Such non-linearity has been suggested to fit the response of simple cells (Maffei and
Fiorentini, 1973). As we will see, this representation has other remarkable features, as
learning capability and independence of the power spectrum. It is somewhat ideal and
maybe the visual system does not exactly mimic this type of architecture (it could, for
instance, introduce the nonlinearity predicted by multiscaling in differente ways such as
divisive normalization (Heeger, 1992; Carandini et al., 1997)), but as this representation
is determined by the statistical features of images it is by itself a property of images, so it
constitutes the ideal goal for independent feature extraction (hence for optimal coding).

Let us first review the main results in (Turiel and Parga, 2000b). The optimal wavelet is
completely defined under the assumption of independency for the coefficients n;z- It can
be obtained from an ensemble of images by means of the average of the contrast, C(Z),
according to the following relation between the Fourier transforms of the functions ¥ and

C:
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Fig. 1. A possible neural architecture to extract independent features as predicted by scale
invariance of natural scenes. The image first stimulates the photoreceptor layer and it is then
projected forward by the optimal wavelet to activate the “layer o” cells. However their activity
is not necessarily given by this linear transformation since inhibitory interactions between the
cells can implement the non-linearity predicted by multiscaling. This can be done, e.g., in the
form of divisive normalization (Heeger, 1992; Carandini et al., 1997). Alternatively, a logarithmic
transfer could give independent responses of cells coding for features at different scales on a third
layer. Only this latter case is shown here.

—

where A(f) = (1—e 2™/1)(1—e~27/2) and |n| is the average of |n|, which in our context is
fixed to % for any multifractal structure due to traslational invariance (Turiel and Parga,
2000a).

This expression completely determines the wavelet up to a constant; it is evident that if ¥
is a valid wavelet for performing a dyadic expansion, aW¥ can also be used (for any a € R,
a # 0), the coefficients a; being resized by 1/a (which leaves unaltered the coeffcients
n jE>' The undetermination in the constant is resolved by requiring ¥ to be normalized in
norm 2, that is,

(U]0) = /dﬂ?(f) ~ 1 (10)

There is still an undetermination in the sign, which we fix conventionally so that the
wavelet is always decreasing along the vertical axis (see Figure 2).

In (Turiel and Parga, 2000b) the optimal wavelet was evaluated from an ensemble of
200 images. Once it is obtained, the hypothesis of independence between scales for the
variables n’s must be self-consistently verified. In (Turiel and Parga, 2000b) the correlation
coefficients between |n|’s at consecutive scales were computed; the values obtained (smaller
than 1072 for scales j > 2) confirmed the weak dependency between those variables. Better
tests of independence are given by the mutual information (Cover and Thomas, 1991).
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In (Turiel and Parga, 2000c) it was shown that the mutual information between |n|’s at
consecutive scales is negligible (smaller than 10~* bits for scales beyond j = 3, compared
to a maximum of 10 bits).

3.1 Properties of the optimal wavelet

As it was just discussed, the wavelet obtained by means of eq. (9) has been empirically
shown to lead to Nk which are independently distributed at each resolution level j (Turiel
and Parga, 2000b), self-consistently validating the derivation. It is also remarkable that
the wavelet is obtained by on-line learning, as it varies linearly with the average of the
contrast over the recorded images (C'). Besides, according to eq. (9) the learning capability
is cumulative, as the average of the wavelets learnt over two subensembles equals to the
wavelet which would be learnt from the joint ensemble. This fact increases the biological
plausibility, as it is an indication that the wavelet can be learnt, and its knowledge can
be improved in time.

In addition to those two properties, which are consequences of the theoretical scheme, the
optimal wavelet we have experimentally obtained possesses other relevant features, which
are not necessary for theoretical consistency but which reveal deep properties of natural
images. For details on the experimental procedure, see Section 4.

e The wavelet VU is orthogonal:
With a small error, the wavelet basis {\P]E} verifies the orthogonality condition,

(Wil Wp) = 279800 (11)

This property is very useful from the computational point of view, as it allows to
retrieve the coefficients by a simple projection of the signal over the wavelet:

o = 27( z|c) (12)

Also, the basis {\Ifﬂ;}jg is an orthogonal basis, so the energy of the image equals the
energy of its coefficients

The observed empirical discrepancy between the two sides of this equation (see Sec-
tion 4) is an evidence of the necessity for orientational wavelets (Section 6).
e The wavelet ¥ acts like an edge detector:
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As it can be observed in Figure 2, the wavelet undergoes a strong transition along
the central horizontal line. The coefficients « i obtained by projecting over this wavelet
will be greater over the areas of the image where a strong change takes place. On the
contrary, due to the opposite signs of the wavelet above and below the horizontal line,
the projection will tend to vanish over areas of smooth variation.

This edge-like behaviour of the wavelet is made more evident when the image is re-
generated from the coefficients in application of eq. (4), as can be observed in Figures 5,
9 and 10. The image is progressively rebuilt by the addition of edge-like contributions.
The modulus of the Fourier transform of ¥ is 1/f:

This fact is strongly connected with very well-known properties of the power spec-
trum. The power spectrum S(f) is defined as the Fourier transform of the two-point
correlation of ¢, which for translational invariant fields coincides with the average (over
the ensemble of images) of the square of the modulus of the Fourier transform of c¢;
namely:

—

S(f) = (el*(f) (13)

where ¢( f) stands for the Fourier transform of ¢ at the spatial frequency f Introducing
the dyadic representation of ¢, eq. (4), in the definition of the power spectrum, eq. (13),
we obtain:

— —

S(f) = i 22 Py TP (29 f) (14)

The behaviour of the power spectrum is known since the early days of the television;
it exhibis a power law of the type (Field, 1987):

S(f) ~ 79 (15)

where (3 is a small exponent depending on the ensemble of images considered; frequently
there is also a weak deviation from isotropy. It is immediate from eq. (14) that a wavelet
U such that [¥|(f) ~ f~! leads to the correct power spectrum (the correction expo-
nent § and the weak anisotropy come out from the uneven weighting for the different
orientations in the orientational wavelet expansion, see Section 6). On the contrary, for
any wavelet such that |¥| is different from a power law it follows from eq. (14) that

S(2f) =~ 272" S(f) (16)

According to (Turiel and Parga, 2000a), (n?) = 273 and —1 < 7 < 0. We thus
obtain S(2f) ~ 27*"™S(f) and in general S(af) ~ a~*"S5(f), that is, S(f) ~ f~*.
Hence any wavelet such that [¥] # f~! would give rise to an incorrect exponent for the

power spectrum (a similar derivation to the one presented here can be found in (Field,
1994)).
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The scaling property of ]\il\ also allows us to establish a link between the dyadic rep-
resentation and the reconstruction algorithm proposed in (Turiel and del Pozo, 2002).
In that paper, the authors show that images can be reconstructed from the values of
contrast changes over the borders (which are identified with the Most Singular Manifold
in the multifractal structure (Turiel and Parga, 2000a)). The reconstruction formula is
essentially a diffusion of the values of the contrast along the edges according to a kernel
which behaves, again, as 1/f in Fourier space. As it can be seen in figures 5 , 9 and 10,
the wavelet expansion works much in the same way: each resized, translated wavelet
appearing in the sum eq. (4) is equivalent to a light-spreading edge element of that size
and location, weighted with the appropriated coefficient -

4 Experimental results
4.1 Determination of the wavelet

The wavelet was evaluated from eq. (9). The normalized average C(Z) was computed over
an ensemble of 1000 images taken from Hans van Hateren’s web database (see (van Hateren
and van der Schaaf, 1998) for details on the images). We took the central 1024 x 1024 patch
of the images labelled imk0000/.imc, imk00008.imc, imk00012.imc,..., imk04000.imc to
obtain ¥ with a resolution of 1024 x 1024 pixels. As in (Turiel and Parga, 2000b), we
observed a rough left-right symmetry and top-bottom antisymmetry. Accepting those two
properties to hold, we have stressed them, replacing () by the following average:

Uy, ) = U (21, 29) + V(=21 72) —;1/(1:1, — o) — U(—x1, — )

(17)

were x is the horizontal coordinate and x5 is the vertical one. In this way \I/(—ml, T9) =
U(zy,29) and V(zy, —29) = —V (21, 22). The resulting function is represented in Figure 2.

The orientationally averaged modulus of the Fourier transform of the wavelet is repre-
sented in Figure 3; the correspondence with a 1/f law is almost perfect.

We have checked the orthogonality of the wavelet, eq. (11). As we have just a finite matrix
of points, we need to provide a numerical algorithm to compute ¥ (2/%). We have devised
a method which keeps the 1/f dependence in Fourier space at every scale, what we think
is an essential property of the wavelet. So, we proceed as follows:

e We apply a whitening filter to the wavelet, that is, we multiply it by the modulus of

13



5.5

5L

45 -

4L

35

3t

25 -

2 L L L L L r L L L L L
-600 -400 -200 0 200 400 600 -600 -400 -200 0 200 400 600

Fig. 2. Top: Gray level representation of the optimal wavelet W
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Fig. 3. Orientational average of |¥|(f) in log-log scale and best fit with k/f curve, k constant.

the frequency vector in Fourier space:

— A —

U — Ty where TyU(f) = fU(f)

e We form a new matrix of (1024/27) x (1024/27) blocks, for which each point is the
average over the corresponding 2/ x 27 block of the values of T;W(Z). We fill the rest of
entries of the matrix up to 1024 x 1024 with zeroes. This is just a way to approximate
T\ (2°7).
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e We apply to this matrix the inverse of T} (denoted as T_), that is, we multiply its
Fourier transform by 1/f.

The matrix of points so obtained is a discrete, smooth approximation of W(2/%) which
keeps the 1/ f dependence in the modulus. Once the algorithm to compute ¥(2/7) is given,
we check eq. (11). We define the average error €; at the scale j as:

&= ST, (18)

that is, the average of the normalized projections to ¥ over \Ifj,;. The maximum value of
the average error is 1, as ¥ is normalized in norm 2 to that value; for orthogonal wavelets,
€,= 0. Hence, €; gives a measure of the error made by assuming that the wavelet is
orthogonal. In Table 1 the values of €; are given; we see that the errors are very small,
really negligible, in most instances; however, there is still a significative overlap between
scale 0 and scale 1 of about 10%. This deviation from perfect orthoghonality is probably
causing the observed errors when reconstructing the series and the main point to be
improved numerically.

i1 ] 2 3 4 5 6 7
€; | 0.10 | 0.02 | 0.006 | 0.004 | 0.003 | 0.003 | 0.002

Table 1
Average error of the orthogonality condition for the optimal wavelet

4.2 Representation of images with the wavelet basis

In Figure 5 we show the expansion up to different resolution levels for two images (shown
in Figure 4) expanded in the wavelet basis. One of the images belongs to our ensemble
and the other does not, but the performance is similar in both cases.

We define the efficiency of the wavelet representation as the ratio of the norm 2 of the
wavelet coefficients to the norm 2 of the signal, that is, it is the square root of the ratio
of the energy of the representation to the energy of the original signal (see eq. (43) for
the precise definition). The efficiencies €; for those two images are 0.75 (imk03236.imc)
and 0.59 (Lena), which are rather far from 1.0 (perfect retrieval). It is evident that a
significant amount of the information is lost in this kind of representation. It becomes
even more evident for imk03236.imc as it is dominated by a vertical structure (vertical
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edges) which has almost no overlap with the wavelet (which is aligned with the horizontal
axis).

Fig. 4. Sample images imk03236.imc and Lena image
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Fig. 5. ijé aj];\I/jE(a_c’) for j =0,7 <2, j<6and j <8 for imk03236.imc and Lena image.
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5 The necessity for orientation: the example of Haar basis

So far, we have shown that the multifractal mother wavelet is not enough to provide a
complete description of natural scenes. We claim that this lack of completeness is due
to the orientational character of the basis wavelet, which makes necessary to introduce
a sufficient number of rotated versions of the multifractal wavelet to achieve a perfect
representation of images. In fact, the model we propose is quite simple: we will try to
expand the images as the addition of the wavelet series associated to each oriented wavelet.
In order to justify this approach, we present in this section analogous results for the well-
known Haar basis (Daubechies, 1992).

The one-dimensional Haar wavelet H(x) is given by the following, simple mathematical
expression:

1 if 1/2<a2<1

H(z) = { -1 if 0<z<1/2 (19)

0 otherwise

The wavelet projections on the Haar wavelet splits the area of projection in two parts
and returns the difference of the averages over each part. It is easy to verify that, under
dyadic scaling and integer displacement the resulting wavelets are orthonormal, that is,

(Hjp|Hy) = 277 6550 O (20)

It can also be proven that the dyadic Haar wavelet basis is a complete, orthonormal basis
in the space of 1D functions of zero average (see (Daubechies, 1992) for the proof). So,
the straightforward generalization of the Haar basis for 2D could consist in just adding
one additional dimension to the 1D surrogate, keeping the value constant along that line.
We define the horizontal Haar wavelet H'! as:

Hy(z1,29) = H(x1)x0,1)(22) (21)

where x4 is a function valued 1 over the set A and zero outside. The horizontal Haar
wavelet is represented in figure 6
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Fig. 6. Horizontal Haar mother wavelet H;. Black: -1, white: +1

The horizontal Haar basis defines an orthonormal dyadic wavelet basis, but unfortunately
this basis is not complete. As it is shown in figure 8, the horizontal Haar basis acts much
as the multifractal wavelet, mainly describing horizontal features (horizontal edges), but
being almost unconcerned by vertical features. In fact, for the case of Haar function, the
solution to overcome the difficulty is well known: it is necessary to extend the concept
of wavelet representation, including other “voices” or mother wavelets, capable to take
account of different features. For the case of Haar basis, the other two voices are normally
chosen as the vertical Haar wavelet Hy

H2(961,372) = X[o,l](ﬂfl)H(l’z) (22)

and the diagonal Haar wavelet Hj:

Hs(xy,29) = H(x)H(z2) (23)

as represented in Figure 7.

Fig. 7. Complete 2D Haar basis. Black: -1, white: +1

It can be proven (see again (Daubechies, 1992)) that this three-voice dyadic wavelet basis
is an orthonormal, complete basis, that is:

r

i) = 270w 0y O (24)
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and every zero-mean signal ¢(Z) can be represented exactly and uniquely as:

(@) = Y ap (@) (25)

rjk

The examples for the representation on the three-voice dyadic basis are shown in Fig-
ure 8. We have also shown the representation in the two-voice dyadic basis given by
the horizontal and vertical wavelets to stress the fact that for images dominated by the
horizontal-vertical statistics this basis provides a very good approximation; however, in
general the contributions of the diagonal wavelet are still necessary to correctly retrieve
the image, specially if it is more isotropic.
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Fig. 8. >0 Zﬂ; aTjEHTf(ﬂE’) for j =0,7<2,j<6and j < 8 for Lena image and different
number of basis functions n. From left to right: n =1, 2 and 3
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Let us remark that Haar basis is not a good candidate to provide an optimal code. The
wavelet coefficients obtained with this basis have been observed to possess statistical de-
pendencies (Huang and Mumford, 1999). Since these dependencies appear for any wavelet,
they give no evidence about the independence of the coefficients 7. In fact, the coefficients
Nk associated to the Haar basis are not independent levels of resolution. We performed
an experimental verification of this by computing the mutual information (Cover and
Thomas, 1991) between 7, iE and 7, 11,2k Over an subensemble of 100 random images on
the same database used to learn the optimal wavelet. To increase sampling statistics we
assumed traslational and scale invariances. We found that each Haar coefficient tree has
a mutual information of about 0.01 bits between adjacent scales, while for the optimal
basis the value was negligibly small (smaller than 10~ bits (Turiel and Parga, 2000c))? .

The example of Haar basis just evidences the necessity of introducing new voices in the
wavelet scheme. It is very remarkable that Haar wavelets acts much like horizontal, vertical
and diagonal edge detectors.We present now the generalization of the derivation of the
formula determining the optimal wavelet to the case of a multi-voice, orientational wavelet
expansion.

6 Oriented bases

The optimal wavelet basis introduced in (Turiel and Parga, 2000b) is very appealing from
the point of view of image representation: it provides variables Nk which are organized in
independent levels of resolution. Such a representation could allow separating the relevant
informative structures seen at each scale. However, as it has been shown in Section 4, this
basis is far from being complete: the wavelet expansion, eq. (4), just describes horizontal
features (horizontal edges). This is not so astonishing if we take into account that the
experimental wavelet (Figure 2) has a clear, sharp transition aligned with an horizontal
line. On the other hand, the discussion in the previous Section shows that it is possible
to generalize eq. (4) to include a new degree of freedom; even more, in the case of the
Haar basis, the new degree of freedom labels an orientation-like feature. Our guess is
that the optimal wavelet basis derived so far is undercomplete; trying to extract just
one feature detector, only the most frequent one in the learning set was obtained. The
goal is to obtain a complete basis, using an expansion including a new degree of freedom

2 To improve the assessment of independency of the optimal wavelet in contrast with Haar basis
it would be necessary to study the variable log ]nrj];\, because ik is very concentrated in small
values and gives poor numerical accuracy; however much more statistics is necessary.
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(which would somehow label the orientation of the feature detector) and at the same time
satisfying the requirement of optimality issued in the previous derivation.

We will be forced to make some assumptions in order to solve this problem. In the rest of
this section, we will show that the previously derived optimal wavelet is just a combination
of the new feature detectors. We will also assume that those feature detectors are just
rotated versions of one of them, and that they are mutually orthogonal; those conditions
are not necessary to prove the connection with the former optimal wavelet, but they are
essential to extract the feature detectors from the combination, as explained in Section 7.
Finally, it must be experimentally checked that the new basis is orthogonal, complete and
provides independent levels of resolution (independence among scales, but not necessarily
among positions and/or orientations); we devote Section 8 to the presentation of the
experimental results.

We now extend the previous theoretical analysis to the case in which there is no longer
a single mother wavelet but a discrete collection of different wavelets, {qﬁr}’:;é. Each
wavelet ¢, is tuned to capture features oriented according to a given preferred direction
and to ignore the same features when they are missaligned with respect to the wavelet.
We assume that each ¢, is a rotated version of ¢y = ¢ and that they define an orthogonal
basis. More precisely, let us define the rotation operator R which transforms the vector ¥
into the vector RZ, with the same modulus as & but making an angle of 2% radians with

it. The operator R acts over ¢ in the way:

Ro(7) = ¢(RT)

Hence, we will assume that:

on(7) = R'9(Z) = ¢(R'Z)  and  (¢r]dr) = (Pldr—p) =0 Vr £ (26)

Due to the cyclic character of the operator R (R™ = Id), in what follows we will always
regard any index r as an element of Z,,, which means that expressions such as r + r’ have
to be understood “modulus n”. The reader is specially warned to bear that in mind for
the sums.

Analogously to eq. (4), we expand the contrast ¢(Z) as:

n—

(@) =YY X ayouHd (27)
= €(Zy5)?

1
0 j=0 f
Now we suppose that a relation analogous to eq. (8) holds for each ik for fixed r.
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We suppose that each tree of wavelet coefficients has in general nothing to do with the
others, although independency among the 7, jE’s for different r’s is not required. Besides,

we assume that the ik follow the same distribution for all r, j, k. This assumption is
supported by the evidence presented in (Turiel and Parga, 2000a); in fact, they have the
same distribution as k- Anyway, the condition could be relaxed to the requirement of
equivalence of their first order moments.

In what follows, we will refer to the multifractal wavelet U presented before (which was
obtained under the assumption of isotropy) as the “isotropic wavelet” (even if in practice
the resulting wavelet is not at all isotropic). The new wavelet ¢ expanding the rotational
basis will be referred to as “oriented wavelet”. It can be shown that the isotropic wavelet
can be expressed as a linear combination of the oriented wavelets, namely:

n—1
v = Zpr¢r (28>
r=0

for some unknown weights p,. The details of the proof can be found in Appendix A.
Some remarks are in order:

e Although it will be necessary for the following derivations, we have not made any
assumption about the definition of the ¢,’s nor about their possible orthogonality. So,
this equation would also be the starting point if any of those hypotheses were changed.

e The distributions of the coefficients N,;% are all the same, but the global coefficients
@,o; Which expand the different rotational pyramids are not. Had they all been the
same, then ¥ could have been expressed as a sum of rotated wavelets, each with the
same weight, so in particular RU = V. But as ¥ does not exhibit such property, the
weights p, must be non-uniform. In fact, under more general assumptions they could
even be non-positive. As we have the freedom of choosing the norm of ¢, we fix it by
choosing a convenient normalization for the weights, namely 3, p? = 1 (making use of
orthogonality this means (VW) = (¢|¢) ).

e According to eq. (28) the isotropic wavelet W can be expanded over the linear space
defined by ¢ and its rotated versions. Due to the linearity and cyclic character of the
operator R, we can obtain a n xn matrix relating the vector formed by ¥ and its rotated
versions with the same type of vector expanded by ¢. The inverse of that matrix, if it
exists, will express ¢ as a linear combination of ¥ and its rotated versions.
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7 Linear determination of the orthogonal oriented basis

In eq. (28) everything on the r.h.s. is undetermined: we know neither the oriented mother
wavelet ¢ nor the weights {p, }. We will face this problem by assuming that each rotation
of ¢ is orthogonal to the original wavelet. On the one hand, this represents a physically
more realistic case (misaligned features will not be detected). On the other hand, if there
exists at least one such orthogonal solution, any other linear solution is a linear combina-
tion of that one. The existence or non existence of such a solution is determined by the
invertibility of the matrix given by the scalar products (R"¥|R" ¥).

Let us pose the problem. We define the n-dimensional vectors @ = (a,) and p = (p,), and
the n-dimensional vector functions ¢ = (R"¢) and ¥ = (R"V). Eq. (28) is then expressed
as:

U=7¢ (29)

while we are looking for the vector @ verifying the inverse relation:

¢ =a-v (30)
The action of the operator R over vectors is defined by the relation:

RV = Rj- ¢ (31)

which is obtained by just rewriting eq. (28). When expressed in coordinates, the previous
expression corresponds to:

(RP)r = pr (32)

Using this expression and egs. (29) and (30), the vectors p’and @ must be such that:

Z Qp—p! Ppr = 57“0 (33>

It is convenient to make use of discrete Fourier transforms to simplify the relations. The
Fourier transform of the vector a is another vector @ which is defined by:

. 1 .
&r = (6>r = % Zar’ e—2mrr/n (34)
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and analogously for the inverse Fourier transform, changing the sign in the imaginary
exponential. It can be checked that the latter is the true inverse of the discrete Fourier
transform. So eq. (33) reads:

&rﬁr =1 (35>

that is, the elements of 1% are the inverse of the elements of @. What is needed now is to
determine the vector @. For that, we will make use of the fact that {¢,} is an orthogonal
basis. Let us define the matrix G¥ of scalar products of the vector ¥, given by the matrix
elements:

GY, = (R"U|R"D) (36)

Actually, Gy, = (¥|¥) g, where

and we will also write § = (g,). Analogously, we can define the matrix G? of scalar
products of the vector ¢; but due to the orthogonality G? (@|@) 6ppr. Using eq. (30)

rr! T

and (¢|¢) = (¥|¥) (due to our normalization), we obtain the following equation:

67’7“/ = Z Qp—r Q! —p' G —n! (38)

nn’

which is nothing but a standard decorrelation or orthogonality relation. By means of
discrete Fourier transforms this relation reads:

1 = l|a)? g (39)

The vector g can be calculated from the isotropic wavelet ¥, which we already know.
Hence, the Fourier transform of the vector @ can be computed by means of the formula:

G, = g2 (40)

which also defines ¢ using eq. (30). Finally, combining eqs. (40) and (35) we obtain the
expresion for the Fourier transform of the weight vector p,

pr = 9% (41)
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Remarks:

e The existence of the inverse vector @ depends on the nature of the coefficients g,. By
construction, they are necessarily real numbers, but need not to be positive or non zero.
There will exist an inverse if and only if g, > 0 Vr.

e The existence of well-defined symmetry or antisymmetry axes in the wavelet should
also be reflected in the structure of the weight vector p.

e We have a large degree of freedom in the construction of the inverse vector @, namely the
choice of the phases {®,}, that is, the choice of a unitary transformation. We can limit
somewhat this arbritariness recalling that @ must be a real vector; thus ®,_, = —,.
Anyway we have still to choose n/2 phases.

To solve the undetermination on the phases {®,}, we have made the simplest choice for
them, namely ®, = 0 Vr. This corresponds to the local solution, i.e., the one which is
the most concentrated around r» = 0. This means that the weight py is maximum in
this solution, and thus the corresponding oriented wavelets ¢ will be the most similar to
the isotropic W. What is somewhat surprising is that up ton =8, pg = 1 and p, = 0
for r > 0 with an error of less than 2%, what means that in practice ¥ = ¢. This is
not surprising because the statistics of images is left-right symmetric but not up-down
symmetric (the top of the images is usually clearer because the sky appears usually at
that part of the scene); so, in the sum given in eq. (28) the vertical edge-detectors tend
to cancel (a vertical edge is equally likely to be produced by a transition from a dark left
side to a light right side or by the opposite transition), while the horizontal edge-detector
will survive (because the bottom is darker in average than the top).

So W itself can be used to expand the oriented basis. However, an additional information is
still required: the number of different orientations n. A way to estimate this is to compare
the energy of the image with that of its coefficients; if ¢ can be expanded as in eq. (27) it
follows that:

n—1 oo

() =22 > 27’ (42)

r=0 j=0 EE(ZQJ' )2

This only holds if the wavelet basis {¢, z}, ;7 is an orthogonal, complete basis (eq. (42)
is just Parseval’s relation). Provided that the basis is orthogonal but not complete, the
equality does not longer hold, but it can be used to estimate n. We define the efficiency
of the wavelet representation, €,[c|, as the square root of the ratio of the energy of the
coefficients to the energy of the image (in physical terms these so-called “energies” are in
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fact powers of luminance flux),

el = \erj,;sz(arj,g)z 3)

{c)

The closer €,[c| is to 1 for a given image ¢ the better this image is represented by the
wavelet expansion (the critical assumption here is the orthogonality of the wavelet basis).
If €,[c] is greater than 1 the wavelets are oversampling the image and the representation
is necessarily redundant (which in turn implies that orthogonality cannot longer hold).
Assuming that each one of the different orientations affords a similar quantity of energy,
the efficiency provides a quantitative measure of the redundancy in this case.

8 Experimental results on oriented bases

Figures 9 and 10 show the representation at n = 2 and 3 of the same two images. As a small
modification with respect to the previously presented theory, the elementary angle is 7/n
instead of 27/n because V(—Z) = —VU(Z) is not independent of WU(Z). We are restricting
our attention to the space of antisymmetric functions and this fact implies making several
technical modifications with respect to the derivation presented in Section 7: the operator
R is redefined multiplying the previous definition by a factor ¢™/" to fulfill the condition
R™ = Id (to assure cyclicity on the index r) and the vectors @ and p are now complex
vectors, the normalization on j being expressed as >"_ |p,|> = 1. The derivation is
essentially the same, taking care of introducing complex conjugates when appropriate
(for instance, in the scalar products). Anyway, what is experimentally observed is that
S pe]? < 0.02 up to n = 8, so with great precision ¢ = W.

As the wavelets were obtained assuming orthogonality, we should check this property. It
is unnecessary to check the orthogonality between the different j’s and ks for fixed r: as
¢ = V; it was already verified for ¢y in Section 4 and due to the rotational invariance
of the inner product, it verifies also for the other ¢,’s. It is then only necessary to check
orthogonality between different orientations. Analogously to eq. (18), we define the average
error as:

Cnj = Z |<¢|Rn¢]i£>| (44)

where R, equals to the rotation operator of angle 7/n. The values of the average errors
forn =1, n = 2 and n = 3 are given in Table 2. They should be exactly equal to 0 for
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all 7 and j, except for r = 1 and j = 0 since €10= |(¢|¢)| = 1. We observe that for n = 2
the wavelets are close to orthogonality; however, for n = 3 there is a small coupling for
several scales 7. We will assume that orthogonality holds for n = 2 and that it is just an
approximation for n = 3.

j 0 1 2 3 4 5 6 7
€1; | 1.000 | 0.106 | 0.023 | 0.006 | 0.004 | 0.003 | 0.003 | 0.002
€a; | 0.001 | 0.013 | 0.005 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000

€3; | 0.085 | 0.028 | 0.037 | 0.025 | 0.013 | 0.007 | 0.003 | 0.002

Table 2
Average error of the orthogonality condition for the optimal wavelet at n =1, 2 and 3.

As in (Turiel and Parga, 2000b) and (Turiel and Parga, 2000c), the hypothesis of in-
dependence among scales should be self-consistently validated. Let us notice that the

hypothesis only requires independence between U and Qo at every scale 7, lo-
2 b 2

cation k and orientation r. We have checked this independence measuring the mutual

informations between N, and Qo for a subensemble of 100 images, assuming trans-
WJ T LY

lational invariance to increase sampling. The calculated mutual informations were smaller
than 1073 bits at all scales j and two orientations (n = 2) for a maximum of 11 bits.

A direct consequence of the independence of 7, from « is that eq. (8) is well-

r,j—1,[%]

behaved (that is, dividing «a,;z by will never give rise to an infinity)3 . This

=115
property follows from the fact that, unde[rQ]the requirement of independence, the distri-
bution of 7,z can be identified with that of the multiplicative process in eq. (3). But
multiplicative processes on finite variation signals are bounded (Turiel and Parga, 2000a),
that is, Nk has a maximum, finite value. For that reason, when Q] 3 is very small,
i also and the ratio is kept finite. It could be argued that large amounts of additive
noise could eventually make eq. (8) ill-behaved; however, the existence of additive noise
implies a violation of the multiscaling property, which has been extensively verified (Turiel
et al., 1997, 1998; Turiel and Parga, 2000a; Turiel et al., 2000; Nevado et al., 2000). . We

have experimentally observed that tbe value of NS bounded, reinforcing its validity.

In Table 3 the values of the efficiencies for the two images are provided. The results for
other images are similar. It is clear that one orientation (n = 1) is always insufficient to de-
scribe the images correctly. On the other hand, n = 3 representations always oversamples
by a considerable amount, around 50% of the power of image, and sometimes greater (as

3 This result is in contrast with the case for general, non-optimal wavelets, which can give rise
to relatively large values of Q5 while « 7, are small, making the determination of ik from

TJ*L[%}
eq. (8) ill-behaved.
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for Lena image). The best choice seems to be n = 2. The efficiency is close to 1, but always
a bit above it. The cause for this excess of power in the wavelet representation is probably
the error committed by assuming orthogonality in the wavelet representation. We think
that the error could be disminished by improving the accuracy of the determination of
the mother wavelet (for instance, increasing the learning set).

1 2 3

imk03236.9mc || 0.75 | 1.06 | 1.45

Lena 0.59 | 1.17 | 1.75

Table 3
Efficiencies €,[c] at different orientational representations for images imk03236.imc and Lena

Let us notice that those results have been validated for an ensemble of images with
fixed quantization noise and spatial resolution. However, the multiplicative process has
been extensively verified for very different ensembles at different quantization noises and
resolutions (Turiel et al., 1998; Nevado et al., 2000; Turiel et al., 2000; Turiel and Parga,
2000b). The existence of a multiplicative process (essential for the determination of the
optimal wavelet) is then robust with respect to those effects.

30



Fig. 9. er]; arjE\IjrjI;(f) for j =0,5 <2, j<6and j <8 for imk03236.imc and Lena image
with n = 2 orientations
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Fig. 10. er]; aTjE\I!TjE(:E') for j =0,75 <2, 7 <6and j <8 for imk03236.imc and Lena image
with n = 3 orientations
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9 Discussion

In this paper, we have first reviewed the concept of optimal wavelet and we have discussed
its capabilities for representing natural images. The optimal wavelet can be deduced as
a consequence of the multiscaling properties which have been observed in natural im-
ages (reviewed in Sec. (2)). By construction, the optimal wavelet allows a multiscaling
representation, in which the image is decomposed in independent levels of resolution. In-
dependency had already been checked in previous work, but the completeness of such a
representation had not been assessed. In fact it is rather straightforward to show that
images are incompletely represented by this wavelet basis.

A study of the properties of the wavelet puts in evidence how the representation works
and, more importantly, how it can be generalized to provide a complete representation.
The optimal wavelet acts as an edge detector at each scale, but only along the horizontal
direction. The example of the Haar basis makes it plausible that a complete representa-
tion could be obtained from a finite number of rotated versions of a non-isotropic wavelet.
The derivation we have presented in this work shows that the previously, isotropically
calculated wavelet can be used to expand the oriented basis in a small number of ro-
tated versions with a good aproximation. It is important to notice that with this wavelet
independency of each level of resolution is automatically granted.

The derived optimal wavelet has remarkable properties: edge detection in a finite number
de rotated directions, transparency to the power spectrum, extraction of independent
levels of resolution. All these properties are observed in the first levels of visual processing
in humans and other mammals. The optimal wavelet is thus a good candidate for modelling
visual information processing in the brain.

Research directions to be addressed in future works concern the dependency relations
at a given level of resolution (spatial dependency, dependency among orientations). The
understanding of those relations will allow to extract the independent components of this
coding scheme, i.e., to provide a truly efficient code. A different and somewhat more
important issue is to obtain the minimal number of orientations. One approach is to
proceed along the same line as for the derivation of the isotropic wavelet, working under
a constraint of independency in the representation. Even better, instead of restricting the
wavelets to be rotated versions of the same function, it should be possible to construct a
basis in a number of “voices” (different mother wavelets, necessary to provide a complete
representation). This would allow, on the one hand, to assess if orientation can be deduced
as a necessity for optimal codes; on the other hand, to deal with the finite resolution
(sampling directions by neural cells). Once a complete, optimal code were accesible by
means of these techniques, overcomplete, sparse representations (Olshausen and Field,
1996), (Olshausen and Field, 1997) could be explored, this would be more plausible for
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a real biological coding - in particular some redundancy is required to insure stability of
the representation against noise and small displacements of the image (Simoncelli et al.,
1992).
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A Relation between the isotropic and the oriented wavelet

We repeat somewhat the original derivation for the isotropic wavelet (Turiel and Parga,
2000b). Using eq. (27), we obtain the following expression for the Fourier transform of
the normalized contrast? :

—

Cf) = Y Tapagl 3 (Ine]) 2785 2724, (279 ) (A1)

— —

Defining the dilation operator T, F(f) = F(af) we obtain:

A/ i . = . |7]7‘|
c'(f) = 2) ’%00’ Z 4
r= J

)j T3, (A2)

4 Recall that the normalization is chosen such that the signs of the wavelet coefficientes do not
contribute any longer.

36



where ¢f; = ‘E’—AT, ¢ = % Defining the new variable v = log, @ = (log, uy,log, us) and
1(7) = C'(279), F.(7) = ¢.(27), it follows:
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Introducing the functions . (%)

is reduced further to:

n—1

@) = Y 2o k@ (A4)
r=0

where ® stands for the convolution product. If we assume now that |n,| = || Vr, defining

Pr = |oy5l/|g| the last equation can be rewritten as:

L i@ - %jw—a,n) (A5)

n—1
Z err(U) -
r=0
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Changing the variables ¥ to variables #, and comparing the r.h.s. with eq. (9), we arrive
to the final relation between the rotational and the isotropic bases, eq. 28
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