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Abstract

We exhibit a duality between two perceptrons which allows us to compare the the-
oretical analysis of supervised and unsupervised learning tasks. The first perceptron
has one output and is asked to learn a classification of p patterns. The second (dual)
perceptron has p outputs and is asked to transmit as much information as possible on a
distribution of inputs. We show in particular that the maximum information that can
be stored in the couplings for the supervised learning task is equal to the maximum
information that can be transmitted by the dual perceptron.
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1 Introduction

Supervised and unsupervised learning are the two main research themes in the study of
formal neural networks. In the first case, one is given a set of input-output pairs which have
to be learned by a neural network (usually of a given architecture). One may be interested
in the performance of the network as an associative memory, or one may be interested in the
ability of the network to generalize: a rule is assumed to be hidden behind the examples (the
input-output pairs to be learned), and one asks whether the net will give a correct output
for a new input. In the case of an associative memory, the emphasis is usually put on the
fact that the memory is distributed: the memory is distributed among the synapses, but
also the ouput patterns (or attractors for an auto-associative memory) are made of features
distributed among the neurons (the best studied case is the one of random patterns)[1] [2].
It is generally considered that such encoding should facilitate associative recall with a high
noise tolerance.

In the second case, no desired output is given, and one is asking the network to classify
the data (input patterns). Typically one would like two patterns to be put in the same class if
they are nearby in input space. Such a constraint is either implicit in the heuristic chosen for
modifying the couplings, or explicit in the choice of a cost function. One of the most famous
algorithms is the Kohonen maps algorithm [3], where a topology is introduced in the output
space. In some approaches one puts the emphasis on discriminating between patterns rather
than on clustering. For example, it has been shown that unsupervised Hebbian learning with
a single linear output neuron leads to a principal component analysis [4]. For a Gaussian
input distribution this is equivalent to maximizing the amount of information that the
output gives on the input. In fact, a particular strategy is to define a cost function based
on information theoretic criteria [5] [6] [7] [8], the justification being general considerations
of what type of neural representations (or ”codes”) of the environment should be useful for
the brain.

Unsupervised learning often leads to ”grand-mother” type cells: each neuron tends to
respond specifically to a given type of stimuli, or one particular feature. For exemple,
with some unsupervised algorithms based on Hebbian learning [4] each output unit become
specific to one principal component; in clustering algorithms one gets cluster specific cells.
One is thus confronted by two completely opposite approaches, differing not only in the type
of issues that they address but also in the type of neural codes that they use or construct.
What we propose in this paper is a framework which might allow a better understanding
of the differences between a supervised and an unsupervised learning task. We will show
that one can establish a relationship between the questions which are relevant for each task.
This will be done via a duality between two neural architectures. Moreover this duality is
interesting in itself: in the context of supervised learning, the Bayesian approach tells one
how to derive the parameters from the data by relating the probability of the parameters
(the model) knowing the data to the probability of the data knowing the parameters. The
duality that we introduce is nothing but an explicit implementation of this exchange between
model and data.

The paper is organized as follows. In section 2 we present the duality between two
perceptrons, and show how this allows us to relate the study of a supervised learning
task to that of an unsupervised learning task. In particular we show the identity between
various capacities which have been defined in each context. In section 3 we put emphasis on
the differences between the two tasks, showing however the deep relationship between the
two problems. We show in particular how the statistical mechanics approach to learning



is related to the study of the quantity of information that is relevant in the context of
unsupervised learning. We show also that the first perceptron can be thought of as a
decoder if one considers the second one as a neural encoder. Perspectives are given in
the Conclusion, and a generalization to other learning machines (other than the simple
perceptron) is given in the Appendix.

2 From Supervised To Unsupervised Learning

2.1 The Dual Perceptrons

Let us consider a simple perceptron, with one binary output (whose state o takes, say, the
values 0 or 1), N inputs neurons and couplings J = {Ji, ..., Jy }. We consider continuous
inputs unless otherwise specified. In a supervised learning task, one is given a set = of p
input patterns,

(1]

= {gﬂap’ =1, "'1p} (1)

and the set of the desired outputs,
T=("=0,1, u=1,...,p)

which have to be learned by the perceptron. For a given choice of the couplings, the output
o when the uth pattern is presented is given by:

N
ot = A(T,E") = O(3 Jje) @)
7j=1

where ©(h) is 1 for h > 0 and 0 otherwise. For simplicity we assume zero threshold, and
we will consider only the above deterministic rule (no synaptic noise).

Now one can interpret this formula (2) in two ways. One is, as above, that we have p
input-ouput pairs realized by a perceptron with a single output unit, whose couplings are
the J’s.

input ¢ ot = @(E;-V:l J]{;-‘ —6) input J

Figure 1: The dual perceptrons



But one can as well say that we have a perceptron with p output units, where J is
now an input pattern, and the 5_7‘, u = 1,...,p are the p coupling vectors (figure [1]). Let
us call our initial perceptron with a unique output A, and the dual perceptron, with p
output units as just explained, A*. In the following we show how useful this duality can be,
in particular for the comparison between supervised and unsupervised learning. To avoid
confusions when considering one of the dual perceptrons, we will append a ”*” to each
ambiguous word whenever we are considering A*: in particular we will write ”pattern*”
and ”couplings*”, the * being a reminder that for A* these denominations refer to J and
to the g“, respectively.

2.2 The number of domains

Let us recall some important results concerning the supervised learning task for A. Of
particular interest for what follows is the geometrical approach [9] to the computation of
the maximal storage capacity: one considers the space of couplings (f ={J;,j=1,..,N}
being considered as a point in an N dimensional space). Then each pattern p defines a
hyperplane, and the output ¢* is 1 or 0 depending on which side of the hyperplane the
point J lies. Hence the p hyperplanes divide the space of couplings into domains (figure
[2]), each domain being associated with one specific set @ = {c!,...,0P} of outputs. Let us
call A(E) the number of domains

A(E) = number of domains (3)
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Figure 2: Partition of J space in domains

Since each o* is either 0 or 1, there are at most 2P different output configurations &,
that is
AE) <2 ()
If the patterns are ”in a general position”, then A(E) is in fact independent of = and a
function only of p and N. One has the basic result [9]:

min N,p

AE)=AN,p = > CF (5)
k=0



where C’;f = #ik)!. In particular

[ ifp<N
A(N’p)_{<2pifp>N ©)

This means that N is the ”Vapnik-Chervonenkis dimension” [10] [11] of the perceptron
(that is N + 1 is the first value of p for which A is smaller than 2P):

dyvc =N (7)

If the task is to learn a rule from examples, the VC dimension plays a crucial role: gen-
eralization will occur if the number of examples p is large compared to dy¢ [10]. Another
important parameter is the asymptotic capacity. In the large N limit, for a fixed ratio

o= = (8)

the fraction of output configurations which are not realized remains vanishingly small for o
greater than 1, up to the ”critical storage capacity” ([9], [12]) ac,

o, =2. 9)

2.3 The number of domains: the dual point of view

Now let us reconsider the geometrical argument from the point of view of the dual perceptron
A* as defined in 2.1. What we have just said is that, for a given choice of the couplings™*,
=, one explores all the possible different output states & that can be obtained when the
input pattern* J varies. If J represents, say, the light intensities on a retina, & is the first
neural representation of a visual scene in the visual pathway. Since all visual scenes falling
into a same domain are encoded with the same neural representation, A(Z) is the maximal
number of visual scenes that can be distinguished. This can be said in term of coding
of information: to specify one domain out of A(Z) represents In A(E) bits of information.
Hence the maximum amount of information, or ”information capacity” C, that & can convey
on the inputs* is

C(E) =InA(E). (10)

In what sense is C(E) the mazimal amount of information that can be gained? Let us
consider again the retina analogy. Each visual scene is a vector in a N dimensional space,
but not every vector of that space may correspond to a possible visual scene. Hence some
of the domains might be empty (no stimulus ever falls inside these domains), so that some
of the output codes may not be used. More generally, the statistics of visual scenes will
typically be such that the input* domains are not visited with equal frequency. The amount
of information I actually transmitted is thus smaller (and at best equal to) C' (we will come
back to the study of I in section 3).

In the language of information theory, C is the channel capacity of the perceptron A*
if used as a memoryless channel in a communication system [13]. In that case the input
alphabet is the set of all possible J’s, and the output alphabet the 2P possible output
configurations.

If the E are in general position, the capacity is only a function of p and N, and is given
by (5) - note that otherwise the capacity is smaller than (or equal to) In A(N,p). From (5)
one sees that up to p = N each output neuron gives one bit of information (C' = p), and for



p > N one gains less and less information by adding new units*. More precisely, one has
the asymptotic behavior

lim C/N =c¢(a) =

N—oxo

« ifa<2=a,
{ aS(1/a) ifa>2 (11)

Here (and throughout this paper) logarithms are expressed in base 2, and S(z) is the entropy
function (measured in bits):

S(z) =—[zlnz+ (1 —z)In(1 — z))]. (12)

The information capacity c¢(a) is shown on figure [3].
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Figure 3: The asymptotic information capacity/content c of the perceptron A*/A (in bits
per input* neuron/coupling) as a function of @ = p/N.

We are thus led to consider the dual perceptron as what we will call a ”neural encoder”,
a device which associates a neural representation (or codeword) with each input* signal,
for which the performance is evaluated with tools coming from information theory. This
point of view corresponds to an approach developed recently in particular for modeling the
sensory pathways in the brain ([7] [8]). In that context one wants the system to perform an
efficient coding, according to some cost function derived from information theory concepts
and general considerations on what type of coding might be useful for the brain [5] [6]. The
algorithmic counterpart, that is the modification of the couplings® in order to minimize
such a cost function, results in unsupervised learning schemes: the cost function specifies
an average quality of the code, but not a desired output for a given input* (we will come
back to this later on). The duality between the two perceptrons is thus a bridge between
the study of supervised and unsupervised learning tasks.



2.4 The information content

We have seen that In A (c(a) in the large N limit) is an information quantity relevant for
A*. What is its meaning for A? Since it is the number of bits needed for specifying one
domain out of A, it is the amount of information stored in the couplings when learning
an association (Z,7) whenever this particular configuration 7 corresponds to an existing
domain. This gives the obvious result that below a, the amount of information stored (in
bits per synapse) is equal to a. But for @ > «, with probability one (in the large N limit)
no domain exists for a configuration 7 chosen at random, and errors will result. However, it
has been shown by G. Toulouse [14] that even above «., c¢(a), as given by (11), remains the
maximal amount of information that can be stored in the synapse. Hence we can use the
term ”information capacity” with its dual meaning of information content or of capacity
for transmitting information. The rest of this paper will detail the comparison between the
study of A for a supervised learning task and of A* as a neural encoder (as defined above).

3 Statistical Mechanics and the Mutual Information

Although the information capacity of the perceptron* is equal to the information storage
capacity of the perceptron as an associative memory, there are important differences between
the analysis of the two tasks. To see this, we have to be more specific about the relevant
questions for each perceptron.

3.1 Supervised Learning

We start with the supervised learning task for A. The statistical physics (or Bayesian)
approach to supervised learning ([12], [15], [16]) forces us to study a statistical ensemble
of machines, the couplings being taken from some prior distribution p(J). For example,
if one looks for discrete couplings, p(j) may give equal weight to every possible choice of

couplings. Another example, the best studied case, is the one of spherical couplings:
N
2
Y JP=N (13)
j=1

with p(j) being the uniform measure on the sphere. One is interested in the probability
that a given set of outputs &, chosen at random, is realizable. According to the deterministic
rule (2), the probability for having & has the expression

g:/ﬂmﬂﬂewiy) (14)

In other words P, is the fractional volume of the couplings which implement the particular
set of associations (=,d). After A(E), P, is the most important quantity relevant to our
discussion. The typical probability that a random & is learnable has been computed [12]
for patterns drawn from a statistical ensemble. In principle one has to compute P, for a

given choice of the patterns. However, in the large N limit the log-probability L,

L(c)=IP, (15)



is "self-averaging”: the limit [ = L/N when N goes to infinity exists and is only a function
of the distribution p*. It is then also given by the limit of the averaged value of L:

l=limyooL/N =limy_ 00 <<InP, >> /N (16)

where << . >> means the average over the patterns:
P —_
<< f>>= [ 1 d& ' @1E) (17)
pu=1

Statistical mechanics tools such as the ”replica technique” or the ”cavity method” [17]
have made possible the computation of [ for various choices of the patterns distributions
(uncorrelated, with and without bias, and very recently correlated patterns[18]), and of the
space of couplings (continuous or discrete). For each case one gets in particular the critical
asymptotic capacity a..

3.2 Unsupervised Learning

We turn now to the dual perceptron. Having specified the distribution p(j) for A, we
have thus to consider that at each instant the dual perceptron receives a new input* f, a
particular pattern*® J occurring with probabilty p(f) To be more concrete we will talk of
J asan” image”, for which the neural encoder has to give a neural representation, or code,
. As much as possible different images should have different neural representations: as
already mentioned, one is interested in having the largest variety of available outputs. This
variety is measured by the entropy of the output:

H(P;) =—) P,InP,. (18)

Since we are considering a deterministic system, this entropy is equal to the mutual infor-
mation I(o,J) between the input* and the output:

(o, J) = H(F,) (19)

Indeed, when a configuration & is observed, the gain of information is equal to —In P, =
—L(0), and I(0,J) = H(P,) is the average gain of information. The mutual information
is the main quantity of interest for the study of A*. Its study, that is of the entropy (18),
is to be contrasted with that of L for a randomly chosen &. Note that I is a function of
the distribution p and of the couplings® =: I = I(p,E). What is its relationship with the
capacity C 7 If p gives the same weight to every domain (in J space), then for any & which
corresponds to a domain, P, = ﬁ, and the entropy is at its maximal possible value,
In A(E). Hence one has

I(U,J)SC’:m[z;a.xI(a,J) (20)

and C — I(o, J) is the redundancy of the code &. Now for a given distribution p, one would
like to optimize the performance of the network by a proper choice of the parameters* Z.
A simple idea is that the network should extract as much information as possible from the
environment, which means maximizing the mutual information:

Optimization principle: find £* which realizes max I(o, J) (21)



This strategy has been used by Linsker [7] for modeling the first stages in the visual pathway,
and is related to other strategies such as the minimization of redundancy ([8], [5]). In this
framework most of the analytical studies have been done for networks with linear neurons.
Here we limit our study to the extreme opposite case of binary neurons. We will not detail
here the various proposed strategies (for a general discussion see [5], [6], [8], and for the
case of the perceptron see [19] [20] [21]), and consider here only the above optimization
principle.

What would be the meaning of this principle in the context of A 7 Given that the
couplings would be taken from some prior distribution, the optimal patterns Z* are those
which are the easiest to learn in the following sense: in the ideal case, that is if I = C, all
the learnable set of associations Z*,7 are equiprobable. This might be useful if we are free to
choose the patterns as "random” addresses, the perceptron being used as a random access
memory for storing p-bit strings (the 7). In the context of learning a rule by example, the
network is fully unbiased for this particular choice of input patterns, every learnable rule
has the same weight. Conversely, is there any typical quantity of interest in the vein of (16)
? In fact it is indeed interesting to consider the typical mutual information 7 that results if
the couplings* are taken from some statistical ensemble p*(E):

1= limNool /N = limyooo << H(P;) >> /N (22)

where << . >> denotes the average over the distribution p*(Z) as in (17). The motivation
is the following. One considers a given input* distribution p(.J). First, one would like
to know what is the information that is transmitted in the absence of any optimization:
this can be obtained by considering couplings* taken at random, with each component
being an independent unbiased random variable. This tells us how much can be gained
by optimization. Furthermore, instead of trying to find the optimal couplings*, one may
consider a statistical ensemble of coupling® vectors characterized by the correlations I' in
their components. Then one looks for the correlations which maximize 7. We have carried
out this program for the perceptron, and we present the details in a separate paper [20]
[21]. The main result is that, for Gaussian inputs* with correlation matrix G, the optimal
correlation matrix I' is equal to the inverse of G. This result is very similar to the one
obtained for linear units by Linsker, but with two main differences. First as explained
above we are computing the optimal statistical properties of the couplings* instead of the
exact optimal couplings*. Second we are not considering translational invariant couplings™®,
that is

€ = £(ay — o) (23)
where z, and z; are the locations of the output* neuron y and of the input* unit j, as
is the case in the works of Linsker and Atick et al. In fact the study of binary units with
the restriction (23) is much more difficult (see Bialek and Zee [19] for the study of a binary
perceptron® used for a discrimination task under the condition (23)). In particular, one
does not know the capacity in that case (all we can say is that it is smaller than the one we
computed without restricting the couplings* by (23)). However, in our statistical approach
we have a statistical invariance under translation : the correlations within the couplings™*
do not depend on the index u.

3.3 Decoding and Learning

When considering the perceptron as an neural encoder, it is natural to ask for the possibility
of decoding, that is of reconstructing the input image that generated a particular codeword.



This aspect may not be of any biological relevance at all, first because it is likely that the
system does not need to perform such a reconstruction, and second because the way we
consider the decoding process as explained below has no reason to be biologically plausible.
However it is a legitimate question from the information processing point of view. Of
course one cannot obtain exactly the input image, since many different inputs give the
same output configuration - and indeed we have at our disposal only a finite amount of
information about J knowing the codeword &, this information being precisely equal to
—In P;. However one can produce one input configuration among those which produce this
same codeword: a prototype of all the images considered as identical by the coding system.
This can be done by considering precisely the perceptron A as we explain it now. From
the knowledge of the codeword & and of the couplings* =, we want to generate a pattern*
J that satisfies the p equations (2). Hence one can conveniently come back to the first
interpretation of these equations, by saying that we are looking for couplings realizing the
p associations (5", ot), i = 1,...,p. This problem can be solved algorithmically by the
use of perceptron type algorithms [22]. Such algorithms are known to converge whenever a
solution exists, which is the case here since the true input pattern is of course one particular
solution. One may look for the coupling vector (that is the input pattern*®) the most likely
to have produced the codeword. This is the standard strategy in the task of learning a rule
by example ([15],[16]). Hence, one sees that maximum likelihood decoding for A* (with
p(f ) as input* distribution) is equivalent to Bayesian learning for A (with p(f ) as prior
distribution).

3.4 Source Entropy and Storage Resources

The last point of comparison that we will make now bears on another aspect of the efficiency
of the perceptrons. In the context of supervised learning, one is interested in comparing
the amount of information stored to the number of bits used for storing the couplings. It
is thus convenient to assume here a finite (possibly very large) number of bits per synapse,
K. There are thus NK bits available, but since the couplings are taken from the prior
distribution p, the total number of bits that is effectively available may be smaller, being
given by .

Iy=""— p(J)Inp(J). (24)

-

J
Clearly the amount of information I that can be stored in the couplings cannot be larger:

I<1I (25)

In the language of the dual perceptron, (25) states that the mutual information cannot
be larger than the information content of the source, Iy. How does this relates to the
information capacity 7 The information capacity that we have computed was for continuous
couplings (K infinite). If one limits the number of bits to K, then there are only 2VK
different coupling vectors. In the partition of the J space induced by the patterns, some
of the domains may be empty. If we call Ag(Z) the number of non empty domains, the
capacity is now

Ck(E) =ImAg(E) < C (26)

and this capacity is clearly bounded above by NK (more generally Ij is the upper bound
of the capacity if restricted to distributions of maximum entropy Iy). Few analytical results
are known for the case of discrete couplings, apart from the critical storage capacities «, for

10



various choices of discrete couplings ([23], [24]). For example, if one takes binary couplings
(J; =4/ — 1) (which corresponds to binary inputs*), the asymptotic information capacity
¢ is equal to a up to a, ~ 0.83[23] (hence for binary inputs* the capacity is equal to « only
up to a, ~ 0.83).

4 Conclusion

We have shown that the existence of a duality property between two perceptrons allows
comparison of the theoretical analysis of supervised and unsupervised learning tasks. The
questions that are relevant in one case are intimately related to those relevant for the other
perceptron. In particular the information capacity has a nice dual meaning. But there are
important differences, expressed mainly in the fact that in a supervised learning task one is
interested in the performance of one given choice of outputs, whereas in the unsupervised
task it is the average properties over all possible outputs that matter. We have shown also
that statistical physics tools can be used for studying the typical properties of the dual
perceptron A*. We present elsewhere[20][21] the detailed analysis.

We have considered the simplest neural architecture. However we stress that the duality
can be extended to a general learning machine as shown in details in the Appendix. In the
introduction we mentioned that the duality can be viewed as an implementation of the
exchange between model and data that appears in the Bayesian approach to learning: this
is made explicit in the Appendix. Considering the extension to a general learning machine
is useful in particular in order to identify the specific role of the number of couplings, the
VC dimension and the number of inputs, which are all equal in the case of the perceptron.
The main result is that essentially all that we have said for the perceptron remains valid in
the general case, provided one interpretes « as the ratio of p to the VC dimension (instead
of the ratio of p to the number of couplings). This result is based on an upper bound for
the number of domains which is given by Vapnik in his book[10], and we point out in the
Appendix that this bound is optimal. In fact it appears that the perceptron plays a special
role: among all learning machines having the same VC dimension, dy ¢ = d, the perceptron
(with N = d) is the one which has the largest information capacity C = In A(E) for p larger
than d.

Finally we note that we have restricted our study to a deterministic perceptron. We
are presently working on noisy systems: most of what we have said remains valid, although
noise introduces additional (and interesting) differences between the two types of learning
tasks.
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A Appendix: Dual Learning Machines

A.1 Statement of the problem

Results obtained for the perceptron may be misleading: the number of couplings, the num-
ber of inputs and the VC dimension are all equal. Moreover, the number of domains is
independent of the choice of the patterns (if they are in general position or if chosen at
random). It is thus useful to consider the case of a general learning machine. We will see
that all that is valid for the perceptron remains nearly valid in the general case, provided
one identifies the specific role of the various parameters.

Let us thus consider a machine defined by a given architecture A, with a set of N
adjustable parameters (couplings) J = {Jj,7 = 1,...,N}. If M is the dimension of the
input space, the machine A associates with each input E = {&,1 = 1,..., M} a binary
output o (figure [4]). One wants to study the hetero-associative task, where for p input
patterns

E={&pu=1,.,p} (27)

one is given the set of the desired outputs,
T = (T“ =0,1, p=1, 7p) (28)

For a given choice of couplings the outputs are & = {o!,...,0P} with o# = A, E“) The
input patterns are chosen from some distribution p*, and the desired ouputs are chosen at
random.

— = - —

p'(E)— & - A(J,.) - ot =A(J,¢H)

— e

E={&,..&} p(
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Figure 4: The learning machine A

The main questions that one asks are: What is the storage capacity (the maximal num-
ber of input-ouput pairs that can be learned)? What is the maximal amount of information
that can be stored in the couplings ? And if the task is to learn a rule by example, what is
the probability of making an error on a new pattern as a function of the fraction of errors
done on the training set (2, 7)?

The statistical physics (or Bayesian) approach to learning ([12], [15], [16]) forces us to
study a statistical ensemble of machines, the couplings being taken from some prior distri-
bution p(f ). For example, if one looks for discrete couplings, p(j) may give equal weight
to every possible choice of couplings. Having specified the machine A, the distributions p*
and p, we can now introduce the dual statistical ensemble of learning machines as shown on
figure [5].

The inputs to A* are N dimensional patterns* J, occurring with probability p(J). We
want to study .A* as a neural encoder, or as a module in a communication system, as briefly
explained above. Here the main questions are: for a given distribution p(f ), what is the
information that the output conveys about the input* (the mutual information between &

12



Figure 5: The dual machine A*

and j) ? What is the maximal amount of information that can be conveyed (irrespective of
p(J)) [or what is the channel capacity of A* if used as a channel] 7 What is the choice of the
parameters®* E (or the choice of p*(E)) which optimizes the performance of A* (according

to some cost function to be specified)?

A.2 The number of domains

One can relate the questions listed for the study of A to those for A* exactly as for the
case of the perceptron. The first step is made by considering the number of domains A(E).
For a general machine, this number will depend on the data =Z. Note also that one domain,
which is the set of points in J space associated with one given configuration &, need not be
connected. The information capacity for a given = is thus

C(E) = In A(E) (29)

For a large system, we may expect C(E) to be a self averaging quantity, so that one is
interested in the average value
C =<InA(E) > (30)

where < . > means the average with respect to p*(Z). C is thus the typical amount of
information that can be stored in the couplings, or the typical information capacity of the
neural encoder. In the context of learning a rule by example, it has been shown by Vapnik
[10] that generalization is guaranteed (that is the probability of making an error on a new
input pattern will tend towards the fraction of errors made on the training set) if

< Q)

limpyo— =0 (31)
One may define a "typical” VC dimension d; as the first value of p for which C is smaller
than p, and the critical storage capacity as the maximal value of oy = p/d; for which
limdt_,oo% = 1. This storage capacity should correspond to what is computed by statistical
mechanics tools. A sufficient condition for (31) to be true is that the VC dimension is finite.
The VC dimension is defined relative to the worst case (or the best case, it depends on the
point of view): one considers the maximal value of the number of domains:

Apm = max A(E) (32)

In [10] [11] A, is called the growth function. It depends on the number of patterns, p, and
on the architecture A. Again A,, is at most equal to 2P, and the VC dimension dy¢ is
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equal to the first value of p for which A,, < 2P. In 1968 Vapnik and Chervonenkis [10] [11]
showed the remarkable result that when dy ¢ is finite,

Am < Aldye,p) (33)

where A(dyc,p) is the number of domains for a perceptron with N = dy¢ inputs and p
patterns in general position, that is (see (5)):

dyc

A(dye,p) =Y Cy forp>dyc (34)
k=0

where C;f = ﬁik)!. We have thus an upper bound C(dy¢,p) = InA(dye,p) for the

information capacity C. Note that this bound is optimal: the bound is valid for all learning
machines having a same value d of the VC dimension, and the bound is saturated for at
least one of these machines, the perceptron for which N = d.

For a large network, dy ¢ is large. It is then convenient to define a by

a= -2 (35)

dyvc

and the curve shown on figure [3] appears as a universal curve. One has in the large size
limit (dy ¢ — oo for a given ratio «):

lim C/dyc=¢la) < lim C(dyc,p)/dve = c(a) (36)
dvc—>00 dvc—)oo
«a fa<a.=2
cla) =< aS(l/a) ifa>2 (37)
~Ina for a large

It is also interesting to note the meaning of C as an information content in the context
of learning a rule: generalization occurs when adding a new pattern does not bring much
new information. To conclude this section, one sees that one can extrapolate the results
obtained for the perceptron to more general learning machines, provided one interpretes « as
the ratio of the number of patterns to the VC dimension, and one interprets C' = In A(N, p)
as an upper bound for the information capacity if NV is replaced by dy¢.
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