The self-similarity properties of natural images resemble those of turbulent flows
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We show that the statistics of an edge type variable in natural images exhibits self-similarity
properties which resemble those of local energy dissipation in turbulent flows. Our results show that
extended self-similarity remarkably holds for the statistics of the local edge variance, and that the
very same models can be used to predict all the associated exponents. These results suggest to use
natural images as a laboratory for testing scaling models of interest for the statistical description of
turbulent flows. The properties we have exhibited are relevant for the modeling of the early visual
system : they should be included in models designed for the prediction of receptive fields.
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The existence of self-similarity (SS) is well known in
both natural images [1] and fully developed turbulence
[2]. Quite recently, there has been an increase of inter-
est in both fields. In turbulent flows, the notion of “ex-
tended self-similarity” (ESS) [3-5] has been introduced,
and several models proposed predicting correctly the rele-
vant SS exponents from only one or two parameters [6,7].
Our main motivation for studying the statistics of natu-
ral images is its relevance for the modeling of the early
visual system. In particular, the epigenetic development
could lead to the adaptation of visual processing to the
statistical regularities in the visual scenes [8-13]. Most of
these predictions on the development of receptive fields
have been obtained using a gaussian description of the
environment contrast statistics. However non Gaussian
properties like the ones found by [14,15] could be impor-
tant. To gain further insight into non Gaussian aspects
of natural scenes we investigate whether they exhibit the
rich structure found in turbulent flows.

Scaling properties of natural images have been studied
by several authors. They have found [16,17,1] that the
power spectrum of luminosity contrast follows a power
law of the form S(f) o Ifl%"’ although the value of
n can have rather large fluctuations [18]. The magni-
tude of these fluctuations depends on the diversity of
the images in the data set. A more detailed - although
different - analysis of the scaling properties of image con-
trast was done by [14,15] who also noted analogies with
the statistics of turbulent flows. Additional luminosity
analysis was also done by D. Ruderman [19], providing
some evidence of multiscaling behaviour. There is how-
ever no model to explain the intriguing scaling behavior
observed.

On the contrary in turbulent fluids the unpredictable
character of signals has led to a large amount of effort in
order to develop statistical models (see e.g. [20]). Quali-
tative and quantitative theories of the statistical proper-
ties of fully developed turbulence elaborate on the origi-
nal argument of Kolmogorov [2]. The cascade of energy
from one scale to another is described in terms of local
energy dissipation per unit mass within a box of linear
size r. This quantity, €,, is given by:
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where v;(x) is the ith component of the velocity at point
x. Self-Similarity (SS) will hold, if for some range of
scales r one finds the scaling relation:
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where < € > denotes the pth moment of the energy
dissipation, that is the average of [e,.(x)]P over all possible
values of x. In fluid dynamics this property holds in the
so-called “inertial range” [20]. A more general scaling

relation, called Extended Self-Similarity (ESS) has been
found to be valid in a much larger scale domain, even if
the inertial range does not exist [3,4]. This scaling can
be defined by:
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where p(p, q) is the ESS exponent of the pth moment with
respect to the gth moment. Let us notice that if SS holds
then 7, = 7,p(p, ¢). In the following we will refer all the
moments to < €2 >.

The basic field in turbulence is the velocity from which
one defines the local energy dissipation. The largest con-
tributions to €, come from abrupt changes in velocities.
For images, the basic field is the contrast ¢(x), that we
define as the difference between the luminosity and its
average. A natural candidate for a variable analog to
the local energy dissipation is a quantity which takes its
largest contributions from the places where large changes
in contrast occur. This is precisely a measure of the exis-
tence of edges below the scale under consideration. Edges
are indeed well known to be very important in character-
izing images [21]. A recent numerical analysis suggests
that natural images are composed of statistically inde-
pendent edges [22].

We choose to study two variables, defined at position
x = (x1,22) and at scale r. The variable € .(x) takes
contributions from edges transverse to a horizontal seg-
ment of size r, that is from the derivative of the contrast
along the horizontal direction:
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A vertical variable €, ,(x) is defined similarly from an
integration over the vertical direction. From here we see
that € (x) (I = h,v ) is the local linear edge variance
along the direction [ at scale r.

We have analyzed the scaling properties of the local
linear edge variances in a set of 45 images taken in the
wood, of 256 x 256 pixels each (the images have been
kindly provided to us by D. Ruderman; see [15] for tech-
nical details concerning these images). On these data one
can explore scales up to r ~ 64 pixels.

First we show that SS holds in a range of scales r with
exponents 7y, and T, . This is illustrated in Fig. (1)
where the logarithm of the moments of the vertical and
horizontal edge variances (as defined in eq. (4) for the
horizontal case) are plotted as a function of Inr. Next
we test ESS. The results are shown in Fig. (2) where
a linear behaviour of In < ¢/, > vs In < €, > is ob-
served in both the horizontal (I = h) and the vertical
(I = v) directions. One can see that ESS is valid in a
wider range than SS. This is similar to what is found in
turbulence, where this property has been used to obtain
a more accurate estimation of the exponents of the struc-
ture functions (see e.g. [23] and references therein). The
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horizontal and vertical exponents pp,(p,2) and p,(p,2),
estimated with a least squares regression, are shown on
Fig. (3) as a function of p. From figs. (1-3) one sees that
the horizontal and vertical directions have similar statis-
tical properties, which was not expected (e.g. trees tend
to increase luminosity correlations in the vertical direc-
tion). The SS exponents differ, as can be seen in Fig(1).
What is even more surprising is that ESS not only holds
for the statistics in both directions, but it does it with
the same ESS exponents, i.e. pp(p,2) ~ py(p,2), within
our numerical accuracy.

Let us now consider scaling models to predict the p-
dependence of the ESS exponents p;(p,2). Since ESS
holds, the SS exponents 7;, can be obtained from the
p1(p,2)'s by measuring 7;2. The simplest scaling hy-
pothesis is that, for a random variable €.(x) observed
at the scale r (such as ¢ .(x)), its probability distribu-
tion P,(e.(x) = €) can be obtained from any other scale
L by
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From this one derives that a(r, L) = [%,Z%]l/” for any
p, and that p(p,2) x p. If SS holds, then 7, x p: for
turbulent flows this corresponds to the Kolmogorov pre-
diction for the SS exponents [2]. The nonlinear behaviour
observed on Fig (3) shows that this naive scaling is vio-
lated (This is similar to what was observed in turbulence
[24] where the nonlinear behaviour was interpreted as ev-
idence of the multifractal character of the turbulent flows
[25]). This discrepancy becomes more dramatic if eq. (5)
is expressed in terms of a normalized variable. Taking
€ = limp ,0o < €' > / < € > the new variable is
defined as f, = ¢, /eX. If P.(f) is the distribution of f,
the scaling relation, eq.(5), reads P,.(f) = Pr(f). That
this identity does not hold can be observed in Fig. (4).
A way to generalize this scaling hypothesis is to say that,
instead of having one value of « as in (5), every value of
a contributes with a given weight. One then has:
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This scaling relation has been first introduced in the con-
text of turbulent flows [26,6,27,7]. One can see that eq.
(6) is an integral representation of ESS with general (not
necessarily linear) exponents. Once a kernel G, is cho-
sen the p(p,2)’s can be predicted.

The difference between eqs. (5) and (6) can also be
phrased in terms of multiplicative processes [28,29]. In-
stead of f, ~ fr we now have f. ~ afr where the factor
« itself becomes a stochastic variable determined by the
kernel G,r(In ). Since the scale L is arbitrary (scale r
can be reached from any other scale ') the kernel must
obey a composition law. This stochastic variable at scale

r can then be obtained through a cascade of infinitesimal
processes G5 = Gy r46r-

Specific choices of G define different models of ESS.
The She-Leveque (SL) [6] model corresponds to a simple
process such that « is 1 with some probability 1 — s and

is a constant 8 with probability s. One can see that s =

2
ﬁ ln(<irf+35;>) and that this stochastic process yields

a log-Poisson distribution for a [30]. It also gives ESS
with exponents p(p, q) that can be expressed in terms of
a single parameter () as follows [6]:

P = 1t ™)

We have tested the model with the ESS exponents ob-
tained with the image data set. The resulting fit for the
SL model is shown in Fig. (3). Both the vertical and hor-
izontal ESS exponents can be fitted with 3 = 0.50+0.03.
Other, more complex processes than log-Poisson, involv-
ing more than one parameter have also been studied. We
have also tested the model proposed in [7]. For our data,
the best fit appears to be with the SL model, which is
the simplest non trivial one.

The integral representation of ESS, eq. (6), can also
be directly tested on the probability distributions P, (f)
and Pr(f) evaluated from the data. In Fig. (4) we show
the prediction for the distribution at the scale r obtained
from the distribution at the scale L. No new parameter
is needed for this.

The parameter § has allowed us to obtain all the ESS
exponents p(p,2). In order to obtain the SS exponents
Tp we need another parameter, e.g. T». Let us first no-
tice that, for large r, € « r=F = r~A. From the
definition of €2° one sees that it is controlled by the tail
of the distribution P,(e). This implies that the most
singular structure is the set of points where €, = €°.
Now a standard argument on multifractal scaling (see e.g.
[20,31]) will relate the exponent A to the dimension Dy,
of this most singular structure. One finds: Do, = d— ﬁ
where d = 2 is the dimensionality of the problem. Since
T, = T» p(p,2), a fit of 7, determines A. This was
done for both the vertical and horizontal variables ob-
taining Ap = 0.4+0.2 and A, = 0.5+ 0.2 and leading
t0 Do, = 1.3 £ 0.3 and D, = 1.1 £0.3. The quoted
errors are purely statistical, but other sources of errors
(e.g. the onset of the SS behavior) reduce the accuracy.
As aresult, we can say that Doy ~ Doo,r, ~ 1: the most
singular structures are almost one-dimensional, this re-
flects the fact that the most singular manifold consists of
sharp edges.

To conclude we insist on the main result of this work,
which is the existence of non trivial scaling properties for
the local edge variances. This property appears very sim-
ilar to the one observed in turbulence for the local energy
dissipation. In fact, we have seen that the SL model pre-
dicts all the relevant exponents and that, in particular, it



describes the scaling behavior of the sharpest edges in the
image ensemble. A similar analysis could be performed
taking into account color or motion (analysing video se-
quences). It would also be interesting to have a simple
generative model of images which - apart from having
the correct power spectrum as in [32] - would reproduce
the self-similar properties found in this work.
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FIG. 1. Test of SS. We plot In < ¢/, > vs. Inr for p = 2,3 and 5 and for r from 8 to 64 pixels. a) horizontal direction,
l = h. b) vertical direction, ! = v. The relative error is uniform and about 8%. The value of the SS exponents 7, extracted
from the large r behavior are: 74,3 = —0.20+£0.01, 7,3 = —0.51+0.02, and 75,5 = —1.1940.06 for the horizontal direction and
Ty,2 = —0.26 £0.04, 7, 3 = —0.62 +0.03 and 7,5 = —1.47 £ 0.06 for the vertical direction. The represented solid lines have the
slope given by these exponents. This linear behavior does not hold at small r. A numerical analysis indicates that it is a finite
resolution effect although it could be masking a different, small r regime. There is also an upper bound that has prevented us
from going beyond r ~ 64.
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FIG. 2. Test of ESS. We plot In < ¢}, > vs. In < €, > for p=3, 5 and 10. Data corresponds to scales from r = 8 to r = 64
pixels. The effect of finite size effects can again be observed for r close to 64 pixels. a) horizontal direction, ! = h. b) vertical
direction, ! = v. The represented solid lines have the slope given by the calculated exponents p(p, 2).
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FIG. 3. ESS exponents p(p, ) for the vertical and horizontal variables. Each value of p;(p,2) was obtained by a linear
regression of In < ¢}, > vsIn < €, > for distances r between 8 and 64 (1 = v, h). a) horizontal direction, px(p,2). b) vertical
direction, p(p, 2). The solid line represents the fit with the SL model. The best fit is obtained with 8, ~ B, ~ 0.50. The error
bars b, have been estimated by dividing the 45 images in 9 groups, evaluating p;(p,2) for each of them and computing the
dispersion of these values. The errors grow as p increases. This is because moments of higher order are sensitive to the tail of the

distribution of the local edge variance. The fit is such that the following average quadratic error: E = E M

is minimized. We have checked that a gaussian dataset of images does exhibit ESS although it can not be explalned by the SL
model.
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FIG. 4. Verification of the validity of the integral representation of ESS, eq.(6) with a log-Poisson kernel, for horizontal local
edge variance. The largest scale is L = 64. Starting from the histogram Pr(f) (crosses), and using a log-Poisson distribution
with parameter 8 = 0.50 for the kernel G, 1, eq.(6) gives a prediction for the distribution at the scale r = 16 (squares). This has
to be compared with the direct evaluation of P.(f) (diamonds). Similar results hold for other pairs of scales. The error bars
have been estimated as follows: The data set was divided in 9 groups as explained in the previous figure and the histograms at
the scales L and r were computed for each group. Then for each group the histogram at scale L was used to obtain a prediction
for the histogram at scale r. The differences between the predicted and the computed values were squared and averaged over
the groups. Its square root gives a measure of the error committed in the prediction, represented by the error bars. The test
for vertical case is as good as for horizontal variable.



