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Abstract

We consider a linear, one-layer feedforward neural network performing a coding task. The
goal of the network is to provide a statistical neural representation that convey as much
information as possible on the input stimuli in noisy conditions. We determine the family
of synaptic couplings that maximizes the mutual information between input and output
distribution. Optimization is performed under different constraints on the synaptic efficacies.
We analyze the dependence of the solutions on input and output noises. This work goes
beyond previous studies of the same problem in that: (i) we perform a detailed stability
analysis in order to find the global maxima of the mutual information; (ii) we examine
the properties of the optimal synaptic configurations under different constraints; (iii) we do
not assume translational invariance of the input data, as it is usually done when input are
assumed to be visual stimuli.



1 Introduction

This paper deals with the problem of learning the statistical properties of a set of mul-
tidimensional data with a neural network: by this here we mean finding, for a chosen ar-
chitecture, network configurations which are able to resolve as many features as possible of
the input data distribution. Finding such “optimal” codings can be of interest for both the
statistical applications of neural networks and the neural modeling of early sensory process-
ing. Some previous works concerned with several aspects of this problem are described in
[1, 2, 3] (See also [4, 5] and, for a review, [6]).

We suppose that the data are generated according to some probability distribution and
sent to the network as its input. In the easiest case the distribution is Gaussian and then the
task is equivalent to the learning of the principal components of the two-point correlation.
How many of these components can be learnt depends on the network architecture and
on the noise level that affects both the input (ideal signal) and the processing inside the
network. For the simplest architecture, a feedforward one-layer network with p output linear
units, and in the small noise limit, the best the system can perform is to adapt the synaptic
couplings between input and output neurons to the p principal components.

The system extracts these components in an unsupervised way: it simply receives the data
and updates its synaptic weights according to a given rule or by following an optimization
principle. Several alternatives have been suggested. Oja [4, 7] proposed a Hebbian updating
modified in such a way that these can not grow indefinitely. The rule for a single output
neuron gives, as the only stable solution for the synaptic couplings, the eigenvector with
the largest eigenvalue. For p output neurons stability is restricted to the subspace spanned
by the same number of principal components [8]. Sanger [5] has given a different rule that
converges to a solution with a similar behaviour.

An alternative method is to use optimization criteria based on information theory. For

instance it has been argued [1, 9] that the network builds an efficient coding by minimizing



the redundancy in the data, a criterion that tends to decorrelate the output activities. A
related procedure, the infomax principle, maximizes the information that the output has
about the input [2].

Several authors [10, 11, 12] have considered the maximization of the mutual information
in a linear channel with output noise and, under some hypothesis, they exhibited a solution
for the optimal couplings. These works, however, leave many questions open about the
behaviour of the network under different or more general conditions. In our work we dropped
some of these and solve for the optimal couplings under different constraints.

More precisely, we still stick to a Gaussian source, although no assumption about transla-
tional invariance is made. Apart from this the effect of both output and input noise is taken
into account. Most importantly, the analysis of the solution is also more rigorous in that
a full stability study is performed. This work generalizes a classical result on the optimal
coding for a linear channel [13].

We will show that the following general picture emerges. In the presence of finite noise the
network has to extract as many components as possible, given its architecture and the noise
level. As the noise level varies, there will appear threshold values of the noise where some of
the principal components become unstable: the dimension of the space of optimal solutions
will change each time that one of these thresholds is crossed. In fact, with p output neurons,
we will have degenerate solutions that, for a given noise level, span a space of dimension
m < p; when the next noise threshold is crossed, they will span a space of dimension m — 1.
Among the degenerate solutions at a given noise level, there will be one that extracts the
first m principal components, and in which only m output neurons are active; the optimal
couplings converging to the other p — m output unit will be zero; all other solutions will be
obtained from this one by convenient orthogonal transformations and they will make use of
the whole set of p output neurons. As we will see, the details of this picture will depend on
the condition imposed on the couplings to keep them finite. An exponential decay of the

synaptic weights, for instance, will give only the trivial solution when the output noise is



above a given threshold. On the other hand, a constraint imposed on the synaptic couplings
will give a different and more complicated relation between the threshold value of the input
and output noise and the dimension of the space spanned by the optimal solutions.

The paper is organized as follows. In Section 2 we briefly give some notions in information
theory; in Section 3 we show our model, and in Sections 4 and 5 we show the results. Finally

in Section 6 we draw our conclusions.

2 Information

In this section we give some notions in information theory. There is no attempt of
completeness in our exposition, and we only show the definitions that are relevant for our
study; there are several excellent books that treat the subject with all details; see, e.g., Ref.
[14].

We begin considering discrete random variables. If we have a random variable = that
can take on some discrete values zi, ..., z,, with probabilities P(z1), ..., P(z,), we denote
by X the set of the possible values x;. Then the following quantity defines the entropy H of
the set X endowed with the given probability distribution P(x):

n
H(X)=— ;P(ﬂci) log P(x;) (2.1)

i=
where the base of the logarithm defines the unit of H; with base 2 the entropy is measured
in bits. As one can see from Eq. (2.1) the entropy can not be negative, since it is the
average value of the random nonnegative variable — log P(z); besides, it can be shown that
it can not be larger than logn, and that it reaches this value for a uniform distribution. The
quantity — log P(z;) is interpreted as the amount of information required to specify that the
variable = has taken on the value x;, and it is called the self-information of x;, and therefore
the entropy is the average value of the self-information. It is intuitively satisfying that, on
one hand, for P(z;) = 1 the self-information vanishes, since we need not any information to

specify the occurrence of an event that is certain, and that, on the other hand, the smaller



P(z;) the larger the self-information.

A relevant concept in information theory, and the one which is most important in our
study, is that of mutual information. It occurs when we have events specified by the values
of two random variables, e.g., z and y. In this case one is interested in what the knowledge
of the value of one of the two variables can tell about the value of the other. The event
specified by the couple (z;,y;) (with ¢ = 1,...,n, j = 1,...,m) occurs with the joint
probability distribution P(z;,y;).* The occurrence of a value of z, regardless of the value
of y, is described by the probability function P(z;) = X7, P(%,y;), i = 1,...,n, and in
the same way the occurrence of a value of y, regardless of the value of x, is described by
the probability function P(y;) = Yir, P(z,y;), 7 = 1,...,m. Given these definitions, the
following quantity defines the mutual information provided about the occurrence of x = x;
by the occurrence of y = y;, or, symmetrically, provided about the occurrence of y = y; by

the occurrence of r = z;:

P(zi, y;)
Iz, y;) =log -~ (2.2)
! P(z:) P (y;)
The average value of this quantity over the joint probability distribution P(z,y) is called

the average mutual information (or mutual information for short):

e P(zi,y;) ’ (2.3)
e P(x:)P(y;)

where we have denoted by X the set of possible values of z (z1, ..., x,) and by Y the set of
possible values of y (y1, - - -, Ym).- The mutual information can be shown to be a nonnegative
quantity, and also to be not larger than the smaller of the two entropies H(X) and H(Y)
given by P(z) and P(y), respectively. We also point out that, as one expects, for z and y
independent one has I(X,Y) = 0, since in that case P(x;,y;) = P(z;)P(y;).

When one considers continuous variables the situation is more difficult. A continuous

random variable z is described by the probability density p(x). If one tries in Eq. (2.1)

%To avoid burdening the notation, we have used throughout the paper the same symbol P for different
probability distributions for discrete variables, and the same symbol p for continuous variables.



to go to the limit of a continuous variable, one gets an infinite quantity plus the following
expression:

h(X) =~ [ p(x) logp(x) do (2.4)
which is called the differential entropy of X with the probability density p(x). The entropy
(i.e. the average value of the self-information) of a continuous variable is infinite since one
needs an infinite amount of information to specify its exact value. The differential entropy
does not have a definite sign as the entropy of discrete variables, and it is not invariant under
change of variable.

Contrary to the entropy, the mutual information is readily extendible to continuous

variables, and (2.3) is replaced by:

I(X,)Y)= /p(a:,y) log%dx dy. (2.5)

This nonnegative quantity now has no a priori upper bound, since the entropies of X and Y
are now infinite.

A transmission channel is a relevant example in which one has events specified by the
values of two random variables, and where the mutual information is an important charac-
terization of the system. The first variable (say z) is the input to the channel, and the second
variable is the output. If some kind of noise is present in the channel, the output y is not
a deterministic function of the input z, but it is characterized by a conditional probability
function p(y|x). The mutual information is then given by (2.5), with p(z,y) = p(x)p(y|x),
where p(z) characterizes the distribution of the input. In the next Section we describe our

model and give the expression of the mutual information.

3 The model

We consider a situation in which the actual realization of the transmission channel is a
neural model, that transforms an input set of variables { = {&,...,&y} into an output set

V= {V1,...,V,}. In Fig. 1 we give a pictorial illustration of the network. We consider only
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the case p < N. The element J;; of the px/N matrix J is the connection from the j-th input

—
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p(V|8): noisy channel

input noise 7

p(€): information source . . .
J
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£

Figure 1: the neural network as information processor. See text for the explanation of the
symbols.

=

unit to the i-th output unit; for later convenience we define the N-component vectors J;
1=1,...,p: the elements of J; are the connections Jij, j =1,..., N from all the input units
to the i-th output, and correspond to the matrix elements of the i-th row of the matrix J.
We assume that the input and output variables, {;? and ‘7, take on continuous values, and
that the output of the network is given by a linear transfer function plus a channel noise.
More precisely, the value of each output unit, V;, is given by Z;-V:l Jij€;+ channel noise. The
noises in all output units are assumed to have the same Gaussian distribution, and to be
uncorrelated among them. This is equivalent to have a conditional probability distribution:
= 1 12

p(V6) = o)z P Ty > (V% - Z_: Jz‘jﬁj) ; (3.1)

i=1

where the parameter b characterizes the channel noise. This expression has to be modified if
there is also an input noise. We assume that there is an additive Gaussian noise 7 in input,
such that the input to the j-th input unit is £; 4 v;, with 7/ uncorrelated with 5 <& >=0,
<y >=0, <y >= %"(Lj. In this case Eq. (3.1) is replaced by:

L 1
p(V|§) = e
Vi) \/mP det[bl, + by JT]

- {— (V= J8) - [p1, + b0 T"] " (V = J{)} . (32



where we have adopted matrix notation; 1, is the unit matrix of dimension p, and J7 is the
Nxp transpose matrix of J.

At this point we make assumptions about the environment 5 If one assumes knowledge
of only the first and second order correlations, < & > and < &&; >, a natural strategy
is that of choosing the p(g) which has maximum differential entropy, Eq. (2.4), consistent
with the values of the correlations. This gives a Gaussian distribution p(f) Since Z will not

depend on < &; >, we also assume for simplicity < & >= 0. Therefore we have:

p() = p(-£-c7) (3.3)

————eX
vV detC
with the positive definite correlation matrix C defined by < §¢&; >= %Cij. To compute Z

we still need the expression of the output distribution p(V) This function can be easily

obtained, and is given by:

p(V) = [ dén(VIEp(E) =

1 — — —
= exp{—V- [blp—i-J(bolN—i-C)JT] IV}.
\/m? det[bl, + J(boly +C)J7]

(3.4)
The mutual information Z is then given by:
7 = /dgdvp £ ) 1og 2EV)
p(&)p(V)
= [ dEaV p(E)p(V &) log U5=
T

2 det[b1, + by JJJT|
The base of the logarithm simply determines the scale of Z; we can therefore take the natural
logarithm.
As we mentioned in the Introduction, we are interested in the J configuration that maxi-
mizes the mutual information Z. We will give details of the properties of these configurations,

focusing in particular on the effects of both input and channel noise. Several authors (see,
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e.g., [3] and references therein, and [2]) have discussed a possible biological relevance of
maximizing the mutual information.

The first thing to note is that, in presence of channel noise b, the Js need some kind
of constraint, since, if we simply maximize Z, they will grow without limits. This can be
seen from Eq.(3.5) if there is only channel noise, i.e., if b # 0 and by = 0; in this case
T — oo if the Js tend to infinite. In the general case, b,by # 0, it can be inferred from
the property 3=, %Jij > 0 (which in turn comes from the positivity of the pxp matrices
JJT and JCJT), where the equality holds only when the Js go to infinite. It is clear that in
presence of channel noise the mutual information grows with the Js, since increasing the Js
the signal to (channel) noise ratio becomes larger and larger. When there is only b, Z tends
to the entropy of the input 5, which is infinite since the &s are continuous variables. When
there is also by, that can be interpreted as a sort of discretization of E, 7 is bounded, but
still it is increased by the growth of the signal to noise ratio.

On the contrary, when there is only the input noise, i.e., when b =0 and by # 0, Z is a
bounded function of the Js (it is invariant under global rescaling of the Js).

As expected, if b,by — 0, Z tends to infinite for any finite J. However, one can attempt
to give a meaning also to this case (see [15], where a short summary of the results with
by = 0 is given).

Here we study the general case, b, by # 0; therefore we need to limit the Js. A possibility
to limit the Js is to redefine the cost function of our optimization problem, adding a “penalty”
term (or damping) to Z of the form —3 pTr(JJ”), where p is a positive parameter. This added
term can be interpreted as a tendency of the connections J;; to forget.

However, it is interesting to see to what extent the features of the optimal solutions that
we find depend on the particular strategy that we choose to limit the growth of the Js.
Therefore we also analyze the case in which a real constraint is imposed on the Js, namely
a global constraint of the form 37, ij = o0, where o is a constant. In the next Section we

will treat in details the first case; in the successive Section we will consider the other case,



showing only the differences with the first case, and going into less details.

4 Results: the damped case

The function to be maximized is now:

- 1 1. det[pl, + J(boly +C)J*] 1
I=7— —pT LA p _
RPTr(JJ7) = 5 log det[b1, + by JJ7] 2

pTr(JJ7). (4.1)

We note the important property that both Z and 7 are invariant under any orthogonal
transformation J — AJ, where A is any orthogonal pxp matrix. This means that the points
corresponding to a given value of 7 cover an hypersurface in the Nxp-dimensional space of
the Js, and that they are connected by orthogonal transformations. We remark that the
transformations A are not rotations in the space of the N-dimensional vectors j; , but act on
the p-dimensional space of the columns of the matrix J. This invariance property is used
throughout all the derivation of the results. To find the maxima of Z we first look for its
fixed points, and then, with a stability analysis, we determine which of these fixed points
are maxima. Each fixed point is really an hypersurface, and later we will determine the

dimension of the hypersurfaces corresponding to the maxima.

4.1 Fixed points

The fixed points are given by the following matrix equation:

g:g—g—/ﬂz . (4.2)

Computing the derivative of Z we find:
(b1, + J(boly + C)J 7' J(boly + C) — [b, + boJJ |7 Jby — pJ = 0. (4.3)

This equation can be put in the form:
JC = (b1, + boJ I )pJ + JCIT (b1, + boJJT) " Tbg + JCI " pJ. (4.4)



. From this equation one can infer a first property of the fixed points: define I' as the subspace
of RN spanned by the vectors j;, i=1,...,p at a fixed point (the dimension of I" is so far
unspecified); then consider an N-component vector X eIt and right multiply Eq. (4.4) by
X:

JCX = (b1, 4 by JI ) pJ X + JCTT (b1, + boJJT) 0o JX 4+ JCI pJ X =0, (4.5)
where the last equality comes from the fact that J X=0 by definition. Then:
JCX =0=CX eI'". (4.6)

This means that 't is an invariant subspace of C; since C = C? this also means that T is
an invariant subspace of C. So our first result is that at the fixed points the vectors J; lie
in a subspace spanned by (a so far unknown number of) eigenvectors of C. This property
continues to hold after, in particular, any orthogonal transformation J — AJ, since, if
JX = 0, then obviously AJX = 0.

Notice now that JJ? and JCJ' are both symmetrical pxp matrices, so they can be
diagonalized by an orthogonal transformation. Besides, it can be proved that they can
be simultaneously diagonalized at the fixed points (see Appendix A). Therefore, in any
hypersurface in J space where 7T is an extremum, there is a point (apart from permutations
of the vectors j;), where the matrices JJ and JCJT are both diagonal; we can loosely say,
for short, that when we are at this point we are in the diagonal base. We continue the study
of the properties of the extrema of Z in the diagonal base. We right multiply Eq. (4.4) by

JT to obtain:
JCIT = (b1, + b T )pJ JE + JCTT (b1, + boJ J7) " boJ IV + JCT pTJT;  (4.7)
we then diagonalize JJ? and JCJT:

JJT —1D JCJjT — DY, (4.8)

10



where D and D! are diagonal pxp matrices; we denote their elements by:
Di; = 0ij fi Dz-lj = 0j . (4.9)
We notice that f; = ||J;||? in the diagonal base. Eq. (4.7) becomes:
D' = (b1, + byD)pD + D' (b1, + byD) " 'bD + pD'D. (4.10)

It can be proved that in the diagonal base the vectors j; are eigenvectors of C corresponding

to eigenvalues Ay(;) (see Appendix B), and that:

a; = k(i) fi- (4.11)

We suppose that the numbering of the eigenvalues of C, all positive, is such that A\; > Ay >
... > Ay > 0. The value k(i) is so far arbitrary, the only condition being that different 4
are associated to different k, since JJ7 is diagonal. Now we rewrite the generic diagonal

element of Eq. (4.10) as:

1
ki) fi = bpfi + bopf? + Ay Ji——bo fi + )\k(z’)Pfiz- (4.12)
b+ by fi

This equation always admits the solution f; = 0; the other solutions are determined by the

following second order equation:
pbo(bo + Akiy) f7 + pb(2b0 + Aigay) fi + b(pb — Akgiy) = 0. (4.13)

The two solutions are always real; one of them is always negative, while for the other to be
positive it must be:

pb < Api)- (4.14)

If this expression is satisfied, the positive solution of (4.13) is:

b
i = —— | = (2by + M) F 4/ A2+ 4
f 20o(bo + M) l (260 + Anco) \/ k(0)

Since negative solutions for f; are not acceptable, we are left, for each i, with a choice

bo k(i)

(bo + ki) (4.15)

between the solution f; = 0 and the positive solution of Eq. (4.13), provided Eq. (4.14) is

11



satisfied. The appropriate choice to be made will be determined by the stability analysis, to
which we turn in the next subsection.

If the additional hypothesis of translational invariance of the input data is made, these
results can be directly compared with those in [3, 12, 16]. We make comments about these
point in the last Section.

At the end of this subsection, we would like to give a feeling of why, as we can see from
Eq.(4.14), the noise thresholds which determine the positivity condition for ||J]| depend only
on the channel noise b, and not on the input noise by; we do that considering the simplest

situation, N = p = 1. In this case Z becomes:

1. b+b+Nf 1

I=-log————2= 4.1
218 i 5P (4.16)
where f = J?; we then have:
- 0T I
T(f =0) = bt =—(Z_-)p]. 4.1
s=0=0 g =35 (4.7
If pb < A we have: g—? = > 0, and therefore the maximum of Z can not be at f = 0. On
the other hand, if pb > A and f > 0, then:
~ 1 Af 1 Af Af
IT=-]1 1 — < - |1 1+4—]——| <0. 4.18
2 0g<+b+bof> P <3 Og(+b> b (4.18)

since log(1 + z) <  for z > 0; therefore the maximum of Z is at f = 0.

4.2 Stability analysis

To determine, among the fixed points, the maxima of Z, we perform a stability analysis.

More precisely, we write the matrix expression

0T 0T

AJ == 22
T=%7=57 "

(4.19)

where AJ is a finite variation of J in which each element J;; changes by a quantity equal to

the component of the gradient of 7 on the axis labeled by (i, 7) of the Nxp-dimensional space

12



of the Js. In (4.19) we substitute for J the generic fixed point plus a small perturbation,
and we rewrite it keeping only the terms of the first order in the perturbation, so obtaining
a linear equation; we then project the variation of J onto the possible directions in .J space
and verify in this way if that fixed point is stable.

We denote by Jy the generic fixed point solution, and by e the perturbation, so that
J — Jo +¢; we also put C = byly + C. Then, to first order in &, Eq. (4.19) becomes, after

some algebra:

Ae = —(bl,+ JCIT) " (eCIT + JoCe™) (b1, + JoCIT) ™ JoC
+ (b1, + JoCIT)1eC — (b1, + boJoJT) " eby

+ (blp + bojng)_l(gbojg + JobogT)(blp + boJng)_lbojo — PE. (420)

Now we turn to the diagonal base. Notice that the same stability properties that we find
in this base, hold in all the basis reached from the diagonal one through an orthogonal
transformation (see the discussion at the beginning of the Section); this also implies, as we
will see later, the existence of zero modes. Eq. (4.20) now reads (for convenience we will

keep the symbols ¢ and Jy unchanged in the new base):

Ae = —(b1, + D' +bD) ' (CI + JoCe™) (b1, + D' + byD) "1 JoC
+ (b1, + D' +byD) *eC — (b1, + byD) ‘boe

+ (b].p + boD)il(Eb()Jgj + JobogT) (b].p + bO'D)ilb()JO — PE. (421)

As we mentioned above, the main point of the stability analysis is to project this equation
onto all the directions in J space. The number of this directions is Nxp, and we have
proceeded in the following way: we have multiplied Eq. (4.21) by N-components vectors X ,
thus projecting each time onto p directions. So, multiplying by a complete base of the N-
dimensional space, we exhaust all the possible directions in the J, Nxp-dimensional space.

For convenience we divide the process in two steps: first we project onto a complete base of

13



't and then onto one of I'.b
4.2.1 Stability in I't

For the first part, multiplying Eq. (4.21) by any X € I'*, and noting that CX € I'* implies

Jo(f)z = 0, the equation becomes:
A(eX) = (b1, + D' + byD) 'eCX — (b1, + byD) 'hpe X — peX. (4.22)

At this point it is convenient to turn to vector notation, introducing, analogously to the
vectors j;, the vectors €;: €; is the i-th row of the matrix . As a base for I'* we choose X to
be in turn one of the eigenvectors V,, of C spanning I+, v = 1,...,dim . The i-th element

of Eq. (4.22) is:

- bo + A bo -
A _; . — 2l _ _ _’Z . —
(&-15) (b + M@y fi +bofi b+ bof; p) (&-15)

Ay (b +bo fi) — boei) fi -
((b +20fi)2 + My i(b+ 0o fi) p) (& V). (423)

Now we have to consider two cases:

1) f; = 0: in this case the above equation becomes:

aE-V) = (G- o) @7 (1.24)

the stability condition, that the coefficient of (£} - V:,) is negative, implies that pb > \,;
2) fi > 0: in this case we can use Eq. (4.13) to transform the denominator in the last line

of Eq. (4.23), obtaining:

s )= (5 -1) (MF+1)| @7 (4.25)

now the stability condition is:

Ay < Aki)- (4.26)

In the previous subsection we have seen that if pb < Ay(;) we have the freedom to choose

fi=0or f; > 0, otherwise only the solution f; = 0 exists. Now we introduce the number m

5This technique has been previously used in the stability analysis of the noiseless Oja algorithm in [8].
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which will be used throughout the following; m is determined by the number of eigenvalues
of C which are greater than pb: if this number is not larger than p, m is equal to this number,

otherwise m = p. Then suppose to make the following choice for the fs:

fl f2 fr/ fr—|—1 fr—|—2 fmJ fm+1 fm—|—2 f;ll (427)

-~

doe(fr..fy>0)  coose(frirefrn=0) st b (i t1---fp=0)

where r < m is arbitrary. Of course if m = p the third group in (4.27) does not exist, and
the second group ends at p (and r < p). Any fixed point, in the diagonal base, can be put
in this standard form, since the numbering of the J; is irrelevant.

Now we observe that for the set of eigenvalues A associated with the non-zero f;,
the indices k(1),...,k(r) must be a permutation of (1,...,r); if this were not the case,
it would exist at least one eigenvalue \,, corresponding to a direction in I'*, for which
Ay > A for at least one 4, in contradiction with Eq. (4.26), and the fixed point would
not be stable. Therefore at the stable fixed point the r non-zero f; must be associated
with the first r eigenvalues of C. For the f; with ¢ = r + 1,..., m, which have been chosen
as zero, the stability condition, together with the above observation, requires in particular
that pb > \,.1; since, on the other hand, we have by hypothesis pb < A,,, we see that this
choice leads to unstable solutions. Therefore it must be r = m, which in turn means that
where, from the fixed point equations, we have the freedom to choose f = 0 or f > 0, the
stability forces us to choose f > 0. For f; with i = m 4+ 1,...,p, which have to be chosen
as zero (group that does not exist if m = p), we see that they are stable, since the condition
pb > A4 is satisfied by hypothesis.

We have so far perturbed the fixed point solutions along directions in I'"; we turn now

to perturbations along the directions in I'.
4.2.2 Stability in I’

To study the stability with respect to perturbations along directions in ', we start again

from Eq.(4.21), and multiply it by vectors spanning I'; for convenience we choose them as
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the fixed point vectors Ji, k = 1,....m (with f # 0 because of the definition of ') which

in the diagonal base are, as we saw, eigenvectors of C. Note that, for ease of notation, we

will drop throughout the following the “0” subscript denoting the fixed points of J.
Recalling the results obtained for the stability in I't we see that we can now write

-
i

ki) = Ai (renumbering, if necessary, the vectors J;), and we make use of the fact:
Ji- Ik = fid  CJx = Mg (4.28)

After some algebra we get for the i-th element:

= T = {_ (Do + Ae)* fr by + Ak
AE - Jy) = { b+ Xifi+b0ofi)b+ Aefe +bofx) b+ Nifi+bofs
bgfk bo - -
N {_ (Bo + Xi) (bo + M) fi B fi } i)
(b4 Nifi +bofi) b+ Mefs + bofe) | (b+bofi)b+bofi) [ * 7

(4.29)

Analogously to the previous case, we have to distinguish between two cases, the first of which
exists only if m < p:

1) f; = 0: in this case Eq.(4.29), after substituting f; = 0 and using Eq.(4.13) for f; gives:
A& - J) = 0. (4.30)

This means that along these directions in .J space that value of Z does not change at this
order in the perturbation. One should then perform a higher order perturbation expansion
to decide the stability properties along these directions. We will come back to this point
shortly.
2) f; > 0: we consider two subcases:

a)i = k: now Eq.(4.29), after using Eq.(4.13) for f;, reads:

—2(by + N2 f; 202 f;

A&~ J;) = b+ Nifi+bofi)?>  (b+bofi)

SICTNA (431)
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The coefficient of (&; - J:) between square brackets can be seen to be always negative, thus
proving stability.
b)i # k: in this case, using again Eq.(4.13) for f; and fi, Eq.(4.29) becomes:

2
A(E - Jg) = b)\p—/\k { lbbo)\kfi — bo i fi fi(bo + Ak) — bbo i fi + b (b — ;) (€ k)
+ [P k] (- J:)} (4.32)

We see from this equation that, at the first order in €, A(é] - fk) depends only on (&; - j;;)

and (&} - J;); therefore, writing the analogue of Eq.(4.32) for A(g}, - J;) we obtain a closed
linear system, that in addition is of the following particular form:

{ A& - i)

A(E) - J;)

in which A and B are the coefficients that appear in square brackets in Eq.(4.32). For

A& - Jp) + B(& - J;)
A&+ Jy) + B(& - i)

e

(4.33)

=~

Eq.(4.33) we have the two eigenvalues 0 and A + B; it can be easily verified that:
A+ B = —bby(fi — f)(Ai — Ax) + (negative terms) (4.34)

Since it can be seen that g/;— > 0, and then that larger \; corresponds to larger f;, then also
the first term on the right hand side of Eq.(4.34) is negative. This implies that the directions
in J space corresponding to the eigenvalue A+ B of the system (4.33), for each couple (i, k),
are directions of stability. The eigenvalues that are equal to 0 correspond to directions along
which the value of Z does not change at this order in the perturbation. As in point 1), one
should then perform a higher order perturbation expansion to find the stability properties.

However, we now show that the directions for which we have found a first order zero
variation of AJ, are directions belonging to the hypersurface of constant Z passing through
the maximum, thus proving the (marginal) stability. We give the proof in three steps. First,
we determine, as we said at the beginning of the Section, the dimension of this hypersurface.
We write an infinitesimal orthogonal transformation as A = 1,4L, where L is an infinitesimal

antisymmetric matrix, and we apply this transformation to the fixed point .J in the diagonal
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base; the number of the relevant elements L;; will give the dimension of the hypersurface
of constant Z at the fixed point. Since in the diagonal base only jl, cee J,, are different
from zero, and since L is antisymmetric, the elements L which are relevant are those with
j =1,...,m and, for a given j, with ¢ = j + 1,...,p; their number is tm(2p — m — 1),
and this is the dimension of the hypersurface of constant Z. Secondly, we notice that in our
analysis we have found exactly the same number of independent directions of first order zero
variation of AJ. In fact, each of the systems (4.33) gives one direction, and their number is
sm(m—1); each of the Egs. (4.30) gives another direction, and their number is m(p—m); the
sum of these two numbers is exactly $m(2p—m—1). The directions for which we have found
stability are: p(N —m) for the stability in T'", and %m(m + 1) for the stability in I'; adding
these two numbers to $m(2p — m — 1) we have Np, the dimension of J space. Thirdly, we
show that, applying the infinitesimal orthogonal transformation 1, + L to the fixed point J
in the diagonal base, we obtain the vectors £€1,. .., &, for which, in our stability analysis, we
have found first order zero variation of AJ. In fact we find immediately that &; - J. = Ly fx,
i=1,...,p, k=1,...,m (we remind that L is infinitesimal). For i =m+1,...,p we are in
case 1) above (that exists only if m = p), and this proves that any perturbation of the zero

vectors, along directions in I', belongs to the hypersurface of constant T:fori=1,...,m we

have, since L is antisymmetric:

E-Jo) _ _fe

(5kJ,) _fi’

and this is exactly the relation found in case 2) above in correspondence with the zero

(4.35)

eigenvalue of the system (4.33); in fact, for the zero eigenvalue (4.33) gives:

g '_ j; = —g, (4.36)

but it is easy, using Eq.(4.13), to see that % = J% This concludes the proof.
4.3 Summary of results
We summarize here the main points illustrated in the above discussion.
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The maximization of Z leads to stable, fixed point .J configurations that have the following

properties:

e The vectors j;, 1 =1,...,p lie in a subspace I' spanned by the first m eigenvectors
of C, where m = dim [ is determined by the number of eigenvalues A\ of C satisfying
the relation pb < A: if this number is not larger that p, m is equal to this number;

otherwise m = p.

e From the invariance property of Z under arbitrary pxp orthogonal transformations, it
can be seen that a particular base can be chosen in I space, in which m vectors j are
non-zero, and are eigenvectors of C, the other p —m being zero. All the other J config-
urations where Z is maximum can be reached performing an orthogonal transformation
J — AJ. In a generic base, p — m vectors J_; are linearly dependent on the other m.
We also note that in the diagonal base the output distribution p(V') is factorized, and
the non-zero J; produce at the output the projection onto the principal components of
the input distribution.

e When the channel noise b increases, higher and higher principal components are desta-
bilized: in the diagonal base more and more vectors J; go to zero, while in a generic
base the decrease of dimI" shows up by the decrease of the number of linearly inde-
pendent vectors. In particular, when pb > A, all the vectors J: are zero. The input
noise by is not relevant in the determination of the thresholds, but only in the value of

7, in particular at the maximum.

5 Results: the global constraint

Now the function to be maximized is Z itself, but under the constraint =, ij = o, that
means that the sum of the square moduli of the vectors i, . J; is constant. We notice
immediately that the analysis and the results are similar to the previous case; therefore we

show only the differences.
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The expression which is to be kept constant can also be written as TrJJT; from here
we see that, like Z, this quantity is invariant under any orthogonal transformations A. This

gives the possibility to study the fixed points in the diagonal base, as in the damped case.

5.1 Fixed points

To find the fixed point we have to solve the equation:

0T

where now p is a Lagrange multiplier, needed to satisfy the constraint. It is convenient to
write an explicit expression for p, which will be useful later. This can be obtained writing

an expression analogous to (4.19):

0z

— pl, (5.2)

and finding the expression for the Lagrange multiplier p that makes AJ belong to the
hypersurface defined by the constraint. This happens if pJ is equal to the projection of g—§
on the direction perpendicular, at that given point in J space, to the hypersurface defined

by the constraint. We then find:
b ~
p=_Tr (b1, + boJ JT) ™! = (b1, + JCIT) 7] (5.3)

Starting from Eq.(5.1) we can make exactly the same steps (although p is no more a fixed
parameter) as, in the previous Section, from Eq. (4.3) to Eq. (4.6), proving that at the fixed
point the vectors J: lie in a subspace spanned by eigenvectors of C.

Also the diagonalization procedure shown in (4.8) can be performed, for the property
noted at the beginning of the Section. Therefore we still find, for the square moduli of the
vectors .J; in the diagonal base (which are still eigenvectors of C), the possible solutions f; = 0
or f; given by Eq. (4.15); as before, this solution is acceptable only if the condition (4.14) is

satisfied. But now p has to be determined by the consistency relation:

p

Y fi=o (5.4)

=1
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As in the damped case, the choice between the positive and the zero solution for f; is

determined by the stability analysis.

5.2 Stability analysis

The matrix equation (5.2), analogous to (4.19), but with p function of the Js through
Eq.(5.3), is expanded around the fixed point. We obtain matrix equations analogous to
(4.20) and (4.21), but with an extra term on the right hand side, which is due to the
expansion of the Lagrange multiplier p. At the first order in the perturbation this added

term is:

Denoting the quantity in parenthesis by dp we have, in the diagonal base, the equation

corresponding to (4.21):
Ae = —(b1, + D' +bD) " (eCIT + JoCeT)(b1, + D' + byD) ' JoC

+ (b1, + D' + byD)'eC — (b1, + byD) 'boe

+ (b1, + boD) (eboJT + JoboeT) (b1, + byD) tboJy — pe — (0p)J. (5.6)
We will see that the extra term is relevant only in one step of the stability analysis, which
is therefore very similar to the previous case.

It is to be noted that, contrary to the damped case, the elements of the matrix £ can

not be chosen independently, since also the perturbed matrix J has to satisfy the constraint.
Since the constraint is 37, j; . j; = o0, we see that, to first order, the constraint imposes

P& J: = 0, where the J: are the fixed point vectors. Therefore the constraint acts as a

limitation on the choice of the elements of € only in the study of the stability in I

5.2.1 Stability in I'*

Multiplying Eq.(5.6) by any X € I't, the term with dp does not contribute; therefore the
analysis is as in the damped case, with a difference concerning the determination of the noise

thresholds, as we will see.

21



We again introduce the number m determined as in the damped case. Then the stability
requires that fi,..., fi, are given by Eq.(4.15) (with Ay = A;), while fp.41,..., f, are zero
(if m = p we have only fi,..., f, given by Eq.(4.15)). But, while in the previous case m
was determined simply by the value of the noise b, once the parameter p had been chosen,
now it has to be found using the consistency relation (5.4), that determines the value of p,
for given b and by, and therefore the value of pb. However, if we insert the expression of f;
in Eq.(5.4) we obtain a complicated irrational equation. We have therefore proceeded in the

following way. In the diagonal base the expression (5.3) for p becomes:

h 1 1 b & Aifi
p= =

(5.7)

o ; b+bofi b+(o+N)fi] o ,221 [+ bo fi][b + (bo + i) fi]

If we insert the expression for f; we obtain an identity; but if we pose p = ’\Tm in the left
hand side, and we insert the expression of f; after having made the same substitution, then
we obtain an equation which gives the expression of the noise thresholds. After some algebra
we obtain the following relation between the noises b and by, that holds when pb = A, and

therefore when the subspace spanned by the vectors j; at the maximum, from m-dimensional

becomes (m — 1)-dimensional:

11— (200 + A) + N7+ 452 (b + ) g
b_QbOJZz:; bo + \; (5.8)

The first thing to note is that now the thresholds depend on both b and by; the simple
argument shown at the end of subsection (4.1) is no more valid, since now the different f;
are related by the constraint. It can be easily computed that, increasing by, also b, as given
by (5.8), increases. Furthermore, if Eq.(5.7) is regarded as an expression giving pb as a

function of b and by, it can be computed that %

> (0 and 66(—2’3) < 0. Therefore one can infer
the following properties. At fixed by, increasing b starting from b = 0 (or from an arbitrarily
small positive value if by = 0), one crosses successively p — 1 thresholds, in each one of which

the dimension of the space spanned by the vectors J: decreases by one, starting from p; at

the end the dimension of the space is one (as expected, at least f; must remain positive to
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satisfy the constraint, and in fact the last threshold in (5.8), for m = 1, gives b equal to
infinite, independently from the value of by). The value of b at these thresholds is higher, the
higher is by. At fixed b, and increasing by starting from by = 0, the situation is the following.
For by = 0 the dimension of the space spanned by the vectors J; depends on the value of
b; it can be computed from Eq.(5.8) that the dimension is p if b < (cA,)/(p — Ap Xy )\%)
Increasing by one crosses successively the thresholds at which the dimension of the space

increases by one up to the value p.
5.2.2 Stability in I’

Now we multiply Eq.(5.6) by the fixed point vectors j,;, k=1,...,m, as for the damped case,
to obtain the analogous of Eq.(4.29), expressing A(E; - Ji). The term with dp contributes.

It is not difficult to write the explicit expression for it. We find:

_ Q m bo + N _ bo .7
o _20;<[b+(bo+&-)fi]2 [b+bofz']2> (€ ) (59)

In the damped case we had, in the stability analysis in I', the two cases 1) and 2), and case
2) was divided in the two subcases a) and b). Since dp multiplies J, and since dp has the
form given by Eq.(5.9), we see that the term with dp gives different expressions from the

damped case only in subcase a) of case 2). Using both Eq.(4.31) and Eq.(5.9), we obtain:
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- P —2(bo + ;)2 f; 203 f; .
AG- ) = l(b'i‘)\ifi + bo fi)? * (b-l—bofi)?] (& - Ji)

é.m bo-i-/\j B bo . 7
¥ 20f12<[b+(bo+%)fj]2 [b+bofj]2> &) (G10)

j=1
When we consider this expression for i = 1, ..., m, we obtain a system of m equations in the
m variables (£; - j;), 1 =1,...,m. According to what has been noted, at the beginning of the

subsection, concerning the constraint, these variables can not be considered independent.
However, we can exploit this dependence to simplify the system, and to show that for all
the permitted choice of the variables we obtain stability. This is done in Appendix C.

We finally note that the dimension of the hypersurface in J space, where Z is at its
maximum, is the same as, in the damped case and for the same value of pb, the dimension
of the hypersurface where Z is at its maximum.

To summarize, the maximization of Z under the global constraint leads to J configurations
that have the same general properties described, for the damped case, in subsection 4.3. The
main difference is in the determination of the noise thresholds, where the dimension of T’
changes. Now both the channel and the input noise, b and by, are relevant, and the thresholds

are given by expression (5.8).

6 Discussion and conclusions

We have examined in detail in this paper the features characterizing the synaptic config-
urations that maximize the input-output mutual information in a linear neural network, in
presence of both input and synaptic noise.

Several authors have enlighten the relationship between the maximization of the input-
output mutual information in a linear network and the extraction of the principal components
of the input data distribution at the output of the network, in the absence of noise (see, e.g.,
[2]). The analysis for the noisy case was there treated mostly on the basis of qualitative
arguments, and it was not clear to what extent the picture survives after the introduction

of noise; our work is devoted to fill this gap.
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It turns out that it is necessary to impose some limitations on the admissible synaptic
configurations; we have examined two strategies to do this: i) a penalty term, quadratic in
the Js, is introduced in the function to be maximized; ii) a global constraint is imposed on
the admissible J configurations.

It is useful to make a comparison, as we anticipated in Section 4, between our work and
the results obtained in [3, 12, 16]. First of all we stress the fact that our results do not rely
on the hypothesis of translational invariance of the input signals, contrary to the works just
cited. Besides, we give an explicit proof of the stability condition for this more general case.
If we specialize our work to the translational invariant case, our equation for the f; can be
viewed as an equation for the Fourier components of the receptive field, since in this case
the eigenvector decomposition can be shown to be equivalent to the Fourier expansion. In
particular, our Eq. (4.15) can be directly compared with Eq. (22) in [12]; in that work a
different choice is made for the constraint on the neural filter. In our notation the constraint
would read:

Tr[bl, + by JJT + JCJT] = const, (6.1)

which would lead to an equation for the f; equal to Eq. (22) in [12], up to notational changes.
The difference in the constraints leads to quantitatively different results for the f;, which,
however, share the property of filtering out some components in the input signals. This
shows up as the restriction of admissible solutions due to the positivity of f;.

Up to now inputs without translational invariance have been considered only in the
particular context of color vision, where the 3-dimensional color field (2 or 3 cone types),
not translationally invariant, is coupled to the spatio-temporal contrast field [17].

We now turn to a summary of our main results:

e the values of the synaptic weights pointing to each one of the p output units are, for the
optimal configurations, the components of vectors lying in the subspace spanned by the

first m principal components of the input distribution. The value of m is determined
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by the amount of noise present in the input data and in the synaptic channel.

e the way in which the noises b and by determine the number m of stable principal com-
ponents, is different, depending on the choice we make between the above mentioned
options i) and ii).

In case i), m changes as b crosses some threshold values, irrespective of the value of
by; however, the value of the mutual information attained for the optimal synaptic

configurations depends on both b and by. In case ii), m changes when b and b, are

related by (5.8).

e the optimal solution is degenerate, in that the function to be maximized enjoys, in
both cases i) and ii), a symmetry under suitably defined orthogonal transformations.
A particular base can be chosen, in which the output distribution is factorized; this
relates to the factorial code proposed by Barlow [1] as an unsupervised strategy suited

to implement a biologically plausible redundancy reduction scheme.

Future developments include numerical simulations involving non-Gaussian input distri-
butions and different architectural choices, with possibly non linear processing. We have
seen that a large degeneracy exists when infomax is performed with a linear processing on a
Gaussian distribution; however we know, from studies in the low noise limit, that processing
of non-Gaussian distributions and/or non linear processing will essential remove this degen-
eracy, leading, whenever it exists, to a factorial representation [18]. We will thus investigate
which statistical features of the environment are extracted by the network when maximizing
the mutual input-output information, also in the presence of noise, in these more general

cases.
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Appendix A

We prove here that JJT and JCJT can be simultaneously diagonalized at the fixed point.
Suppose we diagonalize JJ? — D by J — AJ, with A an orthogonal matrix; then from

Eq.(4.7), we obtain:
AJCJ"AT = (b+ byD)pD + AJCI AT (b + byD) ™ 'byD + AJCI"AT pD (A1)

Putting: [AJCJTAT);; = ayj; Dij = fidij, and writing the element (i7) of the above equation
we get:

aiglb = pfi(b+bof;)] = (b +bofi)*pfidis (A.2)
The term in square brackets on the left hand side is always different from zero. Therefore
we see that «;; o< d;; thus proving the result; also, in particular, a;; = 0 if f; = 0. In the

text we have denoted o; = «;.

Appendix B

Here we prove Eq.(4.11). Given that the vectors J; span an invariant subspace of C, we can
decompose the vector C J_; as follows:

CJ; = vJ; + 3 1Tk (B.1)

k#j

In the diagonal base, where both JJ? and JCJT are diagonal, Eq.(4.11) is trivially satisfied
for the indices for which f; = 0, since in Appendix A we have shown that o; = 0 if f; = 0.
For the other indices we can use (B.1) in the diagonal base, with the sum running only on
the indices different from j for which fj, # 0. Then, multiplying (B.1) by J;, with i # j and

with f; # 0, and taking into account that J - J. = fi0;kx, we obtain:

Ji-Cli=0 = Ji- (i + Y 7lJe) =
=7
= Y Mfibik = fi. (B.2)

k]
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Thus 7/ = 0, and therefore only the first term appears in right hand side of Eq.(B.1), which

in turn implies that +; is equal to a certain eigenvalue of C: 7; = Ay;y; furthermore:
a;j = Aij) fi- (B.3)
Appendix C

Here we prove that from Eq.(5.10) we obtain stability. Let us denote by —a; the coefficient

of (£;-J;) in the first term on the right hand side of (5.10), and with &; the coefficient of

(&
J;) = z;, (5.10) becomes:

Qfs

_;) in the second term. We have seen in Section 4 that a; > 0. Denoting, in addition,

—

—
™

g j=1

In this system of m equations the permitted values of the z; are those that satisfy the
constraint 1", x; = 0. We suppose to study the system only under this condition, and then

we can transform the coefficients. In fact, from > z; = 0 and from Y~ f; = o we obtain:
Therefore we can rewrite (C.1) as:
_ fi &
A(.’EZ) = —Q;T; + — Z Q;T;. (C3)
o
At this point we make a change of variables: z; = {fyz We then have:

Ay) = —ayi + > “ajy;. (C.4)
=17
We study the eigenvalues p of this system; and at the end we will come back to the problem
of the dependence of the y;. Then we compute the determinant of the following system:

—(a; + p)y: + Z %a’jyj = 0. (C.5)

i=1
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The determinant can be computed by a recursive calculation. Denoting ¢; = %ai + p it is
given by:

(~mud & (H ) . (C6)

i=1 9 \nzi

This determinant is zero if 4 = 0 or if the sum on the right hand side is zero. But this sum
can be zero only if at least one of the ¢; is not positive. Therefore, when the sum is zero, we

choose one of these ¢; and we then have:

= c; — %ai < —%ai < 0. (C.7)

Thus we have one zero eigenvalue and all the other eigenvalues are negative. At this point
we come back to the dependence of the y;, or of the x;. We see that, by construction of the
system (C.3), the eigenvalue equal to zero is associated with >7*, z;. But this quantity has
to be kept equal to zero to satisfy the constraint. Therefore all permitted values of the x;

are associated with the negative eigenvalues, and this concludes the proof of the stability.
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