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Abstract.

We prove that maximization of mutual information between the output and the
input of a feedforward neural network leads to full redundancy reduction under the
following sufficient conditions: (1) the input signal is a (possibly nonlinear) invertible
mixture of independent components; (2) there is no input noise; (3) the activity of
each output neuron is a (possibly) stochastic variable with a probability distribution
depending on the stimulus through a deterministic function of the inputs; both the
probability distributions and the functions can be different from neuron to neuron;
(4) optimization of the mutual information is performed over all these deterministic
functions. This result extends the one obtained in [1] where the case of deterministic
outputs was considered.
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1. Introduction

Independent Component Analysis (ICA), and in particular Blind Source Separation
(BSS), can be obtained from the maximization of mutual information, as first shown in
[1]. This result was obtained for a deterministic processing system, with an arbitrary
input-output relationship. Technically, a small additive noise was considered in order
to define the mutual information between the inputs and the outputs variable. Then
the zero noise limit was taken in order to extract the relevant ” contrast” cost function
for the deterministic case, which is nothing but the output entropy. The relevance for
BSS was pointed out: in the particular case in which the inputs are linear combinations
of independent random variables ("sources” ), one can use a feedforward network (with
no hidden layer), and nonlinear transfer functions; then the outputs of the system will
give the independent components if both the weights and the transfer functions are
adapted in such a way that mutual information is maximized.

The practical interest of this information theoretic based cost function was then
demonstrated by [2, 3] in several BSS applications. Since then, it has also been realized
[4, 5] that the cost function in the form written in [2] is in fact identical to the one
derived several years before from a maximum likelihood approach [6].

In [1], the implication of the link between infomax and redundancy reduction
in the modeling of sensory systems was emphasized. The main result was that,
under some conditions, optimization of a nonlinear processing system implies the
optimization of the linear part of the processing as if no nonlinearity was present.
This may help to explain why linear models of visual systems lead to predictions
of receptive fields and constrast sensivity curves that compare favorably with
experimental data [7, 8, 9, 10]. The present study, in which stochastic nonlinear
outputs are considered, provides additional support to this analysis.

More precisely, in the present work we extend the main result of [1] to the case
where it is the probability distribution of each output which depends on the input
variables through some deterministic function. In section 2.1 we define explicitely the
class of models to be studied. As illustrative examples, we consider the case of the
simplest feedforward architecture (the one used in BSS applications, but here with
noisy outputs), and the case of a feedforward network of spiking neurons. In section 3,
we first write the mutual information between the input and the output in a way that
will be useful for our purpose; then we detail the proof of the fact that infomax leads
to redundancy reduction - whenever redundancy reduction can indeed be obtained.
In section 4 we illustrate our result on specific cases. In section 5 we shortly discuss
what will or may happen in some cases where the derivation of section 3 does not
apply (e.g. when input noise is present). Perspectives are given in the Conclusion.
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2. The model class

2.1. Stochastic processing

We consider a system with an output of m units, devoted to the processing of some
input signal S. Our interest being in the modeling of neural processing, we will think
of the system as a feedforward neural network with a layer of m output neurons
responding to the stimulus §. The model is more precisely defined as follows. We
assume a well defined probability measure dp[S| on the space of stimuli (in the
simplest case, S might be some N dimensional field, S = {S;,7 = 1,..., N} and
dp[S] = d¥ S p[S]). For a given input S, each neuron i (i = 1,...,m) has its activity
V; computed according to some stochastic rule that depends on & but not on the
activity of the other neurons: the probability of the output V given § is factorized:

QV18) = [[Q:Vi|S) &)

The model is completely defined by the choice of the m conditional probabilities
Q:(V; | S) of observing the state V; when the stimulus S is presented to the network.
The dependency of this probability (; on the stimulus is assumed to be entirely
through a scalar u;, which is itself a deterministic function of the stimulus:

Qi(Vi|S) = Qi(Vi | wlS]), i=1,..m. (2)
Hence the class of models we will consider is finally defined by:
S — u={wlS,i=1,..,m},
u={u,i=1,...m} — V=A{V,i=1,..,m} (3)
with probability IT; Q;(V | us)

Let us first give specific examples of this general model.

2.2. Illustrative examples

A first particular example of network belonging to the above family, is the one of the
simple feedforward network, with no hidden unit, responding to a multidimensional
input § = {951, ..., Sy}, with noisy additive outputs. In this case the activities of the
output neurons are given by

Vi = wlS] + z, (4)
where the f; are the (possibly non linear) transfer functions, and the h;, modeling the
postsynaptic potential (PSP), give the linear part of the processing. More precisely:

hilS] = % Jij S; (5)

the J;; being the synaptic efficacies. Finally the z; are independent noises (e.g.,
Gaussian noises). In this particular model, the conditional probability distributions
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Q; are obtained from the noise distributions (which may be different from neuron to
neuron):

Qi(Vi | us) = Pr(z = Vi — ). (6)

A second example is given by the same simple architecture but with a
multiplicative noise, e.g.,

The class defined by (3) includes also multilayer feedforward networks, where the
activities of the output neurons in the last layer can be described by, say, an equation
similar to (4). But this class concerns also cases of neurons with discrete outputs.
Indeed, an interesting case is the one of spiking neurons. The simplest model in the
class is the one of output neurons emitting spikes according to a Poisson process, with
mean firing rates v; that are deterministic functions of the input stimulus [11, 12, 13]:

The information on the input signal is encoded in the numbers of spikes k;,1 =1, ..., m

observed during some given time window t%:

it ki - it
Qi(k; spikes emitted in [0,¢] | v;) = (vit) e]zj)( vit) )

Information processing by such neurons is studied in detail in [11, 12] for both
short and large time windows. Such neuronal models give not only an example of
discrete output distributions but also an example where the noise strength is stimulus
dependent. This is more clearly seen in the large time limit where, for each output
neuron i, k; gives a good estimate of the mean firing rate v;: the empirical firing rate
Vi = k;/t tends to be a Gaussian centered around v;, but with a variance that depends
also on v;, in such a way that the activity V; can be described by the equation (7).

2.3. Decomposition in PSP and transfer functions

Coming back to the general case defined by (3), it will appear that it is convenient
to decompose each transformation u;[S],7 = 1,...,m in two steps:

hi = wi = fi(hi) (11)

where h;[.] is some deterministic function of the stimulus, and f; a real valued function
of a single variable. Such a decomposition appears naturally in most neural models,
in particular in the example presented in the previous section. By analogy with the
simplest case (4), we will call the h;’s ”PSP functions” (which in the general case
need not to be linear functions of the stimulus), and the f;’s the ”transfer functions”.

It is clear that such a decomposition (10,11) of u; in a (non necessarily linear)
PSP function h; and a transfer function f;, always possible, is somewhat arbitrary:
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indeed, if one chooses the function u,[.] and any invertible function f;[.], h; is then
defined as h;[S] = f; ' [us[S]]. In fact, it is precisely this arbitrariness which we will
use below, when we will ask for the maximization of information over all possible
choices of functions u;,2 =1, ..., m.

3. Maximization of the mutual information

3.1. The mutual information

The amount of information that the output layer, characterized by its activity
{Vi,i =1,...,m} =V, conveys about the input S is given by the mutual information
I between the input and output distributions[14]:
m QV |S)
= /dp[S] /d VOV IS) In =
where p(V) is the output probability distribution. Since Q(V | §) = Q(V | u[S)),
with deterministic (but not necessarily invertible) transformation & — u[S], the

(12)

mutual information I between the V’s and S is equal to the mutual information
between the V'’s and the u’s. To see this, one can rewrite I as

I = /dmu l/dp[S] H 6(u; — wlS] )]

x /di Q(V |u) In % (13)
that is
I = / d™u P(u) / d"VQ(V | u) In % (14)

where P(u) is the probability distribution of u induced by the stimulus distribution,
= [ aplSIT] 6w — wis]) (15)

and p(V) can also be written as
/ d™u P(u) Q(V | u). (16)

The r.h.s. of eq. (14) is precisely the mutual information between the V’s and the u’s.
The factorization of the output probability distribution given the stimulus,
equation (1), that is

Q(V [u) = HQZ Vilu,) (17)

allows to rewrite the mutual information in the following way:

:Zli_R (18)



Stochastic neurons: infomax and redundancy reduction 6

where each I; is the information conveyed by neuron 7 alone, and R is the redundancy
contained in the set of the m outputs. More precisely the I; are the individual mutual
informations conveyed by a single neuron:

Qi(Viluy)
I = i Pi(u; i Qi(Vilui) In | ———— 1
/du’P(u)/dVQ(V|u)n<pi(Vi) (19)
where P;(u;) and p;(V;) are the marginal probability distributions for neuron 7,
Pilus) = [ dplS)o(us — uilS)). (20)
() = [ dus Palus) Qu(Viluws). (21)

The redundancy R is the Kullback divergence between the joint probability
distribution p(V) and the factorized distribution [T; p;(V;):
_ [ m p(V)
R = [dVp(V)In (Hipz-(vz-)) (22)

Since the mutual informations I; are positive, and the redundancy R is also
positive, the mutual information I will be maximized when the redundancy is as
small as possible, and at the same time each individual mutual information is as large
as possible. This shows already that the maximization of information transfer will
lead to some redundancy reduction. However, we want to know if, whenever complete
redundancy reduction is possible, this will indeed give the maximum of the mutual
information. Indeed, one may wonder whether it is possible to maximize the I; and
minimize R at the same time, or whether it could be possible to accept a non zero
redundancy in order to increase considerably the individual mutual informations ;.
The purpose of this section is to give a precise answer to these questions. Explicitely,
we address the question of maximizing the mutual information (14) over all possible
choices of functions u;,7 =1, ..., m.

Before starting, several remarks are in order.

e Depending on the type of conditional probabilities @);, the optimization problem

may not be well defined unless maximization is performed under some constraints
(e.g., the mean output ativity is given). In addition, for a specific application
other constraints may have to be taken into account. One should note also that
possible constraints on u; are implicitely contained in ();. For instance, stating
that u; belongs to [0, 1] is the same as stating that @;(.|u;) is not defined (or
equivalently is zero) outside the interval [0, 1].
In order to keep the discussion general, we will not distinguish between the cases
with and without constraints: in all what follows mazimization will be meant for
constrained mazximization for all cases for which a set of constraints has to be
prescribed.
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e What we have just said apply to constraints on the (; alone. Other type of
constraints may prevent from reaching a factorized solution. In particular, in
practical cases a specific architecture for the system is chosen (e.g. a multilayer
feedforward neural network), which means that the functions u;[S] belongs to
a parametrized family of functions. In such cases the optimization has to be
performed over the functions belonging to that family, and the derivation which
follows may not apply.

Indeed in what follows we will not put any restriction on the set of admissible
functions (apart from those resulting from the definition of the @;’s). Only at
the end, in section 5.1, we will come back to the role of constraints.

3.2. Step 1: maximization of the individual informations

Let us consider an individual term I;, as given by (19). This quantity depends on the
conditional distribution @;(.|.), and on the probability distribution P;(.) of u;:

I = I[Qi, P] (23)

The probability @); is given: it defines completely the neuron model. We can consider
the maximisation of (23) under all possible choices of P;(.). Let us call P a
probability distribution which realizes the maximum of ;. One should note that
the maximum I of the mutual information (as well as P{*") is a function of Q;(.|.)
only:

= 11Qi, P = ClQi] (24)

In the context of Communication Theory, @;(.|.) defines a channel, and C[Q;] is its
Shannon capacity [14].

Now for a given choice of the function u;[S] one has I; < C[Q;]. Since the
redundancy R is positive, it is then clear that, for any choice of the functions
u;,t = 1,...,m, we have the upper bound

< i clQl (25)

3.8. Step 2: minimization of the redundancy

Let us now assume that there exists at least one set of m functions S — {h/*“[S],i =
1,...,m} = h/% such that the probability distribution induced on h/% by S,

O(h) = [dplS] I] o(hi — h{*[)), (26)

factorizes:

¥(h) = H W;(hi) (27)

1
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Note that such a factorization is not trivial since, for a given set of PSP functions
h;[.], the marginal distributions ¥; are given by:

[H [ dn

ki
In fact the above hypothesis (27) is equivalent to state that the input signal is a

= / dplS] 6( hi — hi[S]). (28)

(possibly nonlinear) invertible mixture of independent components.

We now choose the functions u; as in (10,11), with these particular PSP functions
hI* which realize (27), and with transfer functions f; which are yet arbitrary. Then
clearly with such a choice the output distribution factorizes as well:

[/dh\If ) Qi(Vilfi(h ] sz (29)

As a result, the redundancy R is zero.

3.4. Step 3: the optimal transfer functions

We can now construct the optimal functions u?”*. We have chosen the PSP functions
in Step 2. We know that the upper bound (25) will be reached if each marginal
distribution P; of u; can be set equal to the optimal distribution P computed in
Step 1. This is easily realized by choosing the transfer functions f;.

Explicitely, this is obtained for each ¢ by writing that the probability distribution
for u;, as induced by U;(h;), should be equal to PP (u;):

POt (y / dh; U, — fi(hy). (30)

This gives the’ equahzatlon rule

P k) 1] = Wil (1)

This result can be also written as an equation for the optimal function S — u**[S]

(taking here f; as a monotonic function):

ug?t ) hi[S]
/ du P (u) = / dh W, (h) (32)
As a result, the mutual information is exactly equal to the upper bound (25),
I =3 Ol =ClQ={Qi,i =1,...,m}] (33)
i=1

This maximum, C[Q], is thus the information capacity of the system. This capacity,
equal to the sum of the m individual capacities, can be reached only if complete
redundancy reduction can be performed.

4. Specific cases

We have shown that whenever redundancy reduction can be performed exactly, then
the capacity (33) can be reached. Let us illustrate on this result on specific cases.



Stochastic neurons: infomax and redundancy reduction 9

4.1. Deterministic limat

If one takes the limit of a deterministic output,

Qi(Vi | wi) — (Vi — uy) (34)
one recovers the result of [1]. In particular, in the case of a bounded output, say
0 < V; < 1, the optimal distribution P?*(u;) is the uniform distribution on [0, 1];
then one recovers the standard equalization rule[15],[1],

d

dh;
which relates the optimal transfer functions to the marginal probability distributions

= W;(hy) (35)

of the independent fields h;s. We come back now to the general, stochastic, case.

4.2. Blind source separation

A particular case where a factorization as in (27) is possible is the one of a stimulus
which is a linear mixture of N independent sources: this corresponds to the source
separation problem[16, 1], for which one can use the linear model (5) with m = N.
Then, there exists synaptic efficacies J;;’s (linear filters) such that (27) is obtained,
each h; being proportional to one of the sources. Our result implies that, whatever
the processing (output) noise level (e.g. the numerical resolution), such couplings
will be found if the mutual information is maximized over both the J;;’s and the
transfer functions. This is the extension of the result in [1] to the case of stochastic
outputs. One should note that the optimal transfer functions, for a non deterministic
output, are still related to the marginal distributions of the independent components,
although in a less straightforward way than in the deterministic case.

4.83. Spiking neurons

The very same result applies to spiking neurons. To illustrate this, let us consider the
case of the model defined by (8) and (9), together with

vilS] = wlS] = fi(h[S]), i=1,..., N,
81 =3 Jij Sj. (36)

With the hypothesis that the input is a linear mixture of independent sources,
maximization of the mutual information will then give J;;’s such that (27) is true,
together with the optimal transfer functions f;’s, which can be computed for each i
separetly.

The optimal distribution P (u) is known for various cases [11, 12]. In particular
for a neuron emitting spikes according to a Poisson process, with given smallest
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and largest frequencies Vpin, Vimae, in the large time limit P (u) gives a uniform
distribution for /u:

1 1 1
2 \/Vmaz = /Vimin /U
Each optimal transfer function f”* can then be derived from the equalization rule
(31) (with every P¢P*(u) given by (37) if Vpmin and Ve, do not depend on 7). We will
not discuss how biological systems manage to adapt both receptive fields and transfer
functions - if they do. We just remind that adaption of receptive fields is a well

7)opt(u) = (37)

established fact in particular in early visual systems, and that there are experimental
evidences for the adaptation of transfer functions [15].

5. Discussion

In this section we comment on cases where the hypotheses needed for the derivation
of section 3 are not fulfiled.

5.1. The effect of constraints

We come back to the maximization of the mutual information under constraints which
do not reduce to constraints on the (); alone.

5.1.1. Constraints that allow factorization. We consider the case of constraints on
the u;’s (that is on the architecture) which are such that there still exist PSP functions
(satisfying the constraints) wich realize a factorial code. We argue that, in such case,
a factorial code still gives a maximum of the mutual information, although it could
be a local maximum. Suppose we have at least one family of m PSP functions A;
such that (27) is true. Then the redundancy is set to zero, its absolute minimal value.
Now we are left with the optimization of the individual mutual informations over all
possible transfer functions which are allowed by the constraints. One then obtains
the maximum amount of information that can be conveyed by the network when the
transfer functions are restricted to this particular set. This, of course, does not imply
that one has obtained an absolute maximum of the mutual information. In fact, if
there exists several families of PSP functions that lead to factorization, they may not
lead to the same value of the mutual information.

Another aspect is the choice of the number m of outputs. If the input lies in a
space of dimension /N, one can extract at most N independent component. In the
unconstrained case, the optimal number of output is then m = N. On the contrary,
when resources are limited it may be that information cannot be conveyed on every
component, so that there is an optimal number of outputs m < N (that is more units
would not convey more information).
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5.1.2. Comparison with the linear case. The above discussion is well illustrated by
the results obtained for a linear network with a Gaussian input[8, 9, 17]. In that case
maximization of the mutual information has to be performed under some constraints.
In fact, one can see that the constraints play the same role as non linear transfer
functions [1], and this allows us to make a comparison with non linear networks.

Let us consider two types of constraints: one on the outputs (e.g. the mean output
variance is given), and one on the synaptic efficacies (e.g. the sum of the norms of the
coupling vectors is given). In both cases, qualitatively the maximum of the mutual
information is obtained by (see [8, 17] for details):

(i) first, performing a principal component analysis: one finds the PSP functions h;’s
giving a factorial code, each h; giving the projection of the input onto the ith
principal component;

(ii) second, one multiplies each component by a weight, say z;, in order to satisfy
the constraint; this is the gain control analogous to the choice of the transfer
function.

Hence for both type of constraints, the network is able to find the independent
components (that is here the principal components), and the global maximum is
obtained by a factorized solution. There is however a qualitative difference between
these two type of constraints. If one fixes the mean output variance, the same amount
of information is extracted from each one of the m component. This is in agreement
with the result of section 3.1 obtained for nonlinear units: a constraint on the output
variances is a constraint on the @; only; if all the @; are identical (and a same
constraint is applied to all of them), then all the capacities C[Q;] are equal. This is
not the case for a constraint on the couplings (which is a constraint on the architecture,
on the u;s). There, the information conveyed by each component will depend on the
value of the associated eigenvalue. In addition, some weight x; may be zero, which
means that there is in fact an optimal number of output units m < N. The reason
is that at a large enough noise level the constraint cannot be fulfilled for principal
components with small eigenvalues, so that no information can be extracted from
these components. This is again an effect of putting a constraint on the architecture.

5.2. Maximization when zero redundancy cannot be achieved

The exact link between infomax and redundancy reduction remains unclear when
one cannot find a set of functions that factorizes the input distribution as in (27).
However, we point out that it is always possible to minimize the redundancy R
over all possible functions u, under the constraint that, for each 1, the marginal
probability distribution of u; is equal to P;¥ t(u) To do so, one decomposes each
functions u; as a transfer function f; applied onto a PSP function h;. For a given
choice of the PSP functions, we have the induced probability distribution ¥(h), and
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the resulting marginal distributions W;(h;),7 = 1,...,m. (see (28)). For each neuron
i, one can achieve P (u) by choosing the appropriate transfer function according to
the equalization rule (31). In this way, one obtains I; = C[Q;], and one has

I=cQ - R (38)

The redundancy R is an implicit function of the probability distribution of u =
{u; = fi(h;),i = 1,...,m}. Since we choose the transfer functions according to (31),
the f; are functions of the h;, and thus R is an implicit function of the functions
hZ[S],Z = 1, ey M.

The representation u; = f;(h;) might lead to a practical way - an algorithm -
for performing the optimization. More importantly, this representation allowed us to
show that it is always possible to satisfy a constraint -in fact essentially any constraint
- on the marginal probability distributions.

5.3. Plausible effect of a nonzero input noise

The results obtained so far concern the zero input noise case. In [1], an expansion at
first order in the input noise shows that the main result is still valid at this order, the
noise providing a scale with which to choose among different solutions that all lead
to a factorial code. The situation will be different with a finite input noise, in which
case the factorization (1) of the output distribution given the input is no more true
in general.

Let us however speculate on the possible effect of a finite input noise. In the
case of a linear system with a Gaussian input, infomax and redundancy reduction
have been studied in detail for arbitrary levels of input and output noises [8, 9, 17].
As we already said, the qualitative result is that optimal processing is obtained by
performing principal component analysis, assigning to each component 7 a (possibly
zero) weight z; that depends on the corresponding eigenvalue and the noise level
[8, 17]. For the linear network, the weights can be given two interpretations: x; can
be seen a gain control, as mentionned above, or as a redundancy introduced in that
particular channel 7 - in fact an equivalent solution is obtained by having a certain
number (of order z;) of output neurons for each component 7. It would be interesting
to know whether a similar result holds for nonlinear systems and non Gaussian inputs:
one may expect mutual information to be maximized if independent components are
separated, and then some redundancy is added - that is, say, several output neurons
are extracting a same independent component. Further work is clearly necessary in
order to see whether any general statement can be derived on the effect of input noise.

6. Conclusion

We have obtained the strong result that, for a processing system defined as in
(3), maximization of the mutual information leads to full redundancy reduction
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whenever the input signal is a (possibly nonlinear) invertible mixture of independent
components. More precisely, this result is the extension of the one obtained for the
deterministic case [1] to a broader class of models, where the outputs activities can
be stochastic variables. In particular it applies to spiking neurons. It also implies that
for performing blind source separation one can use the mutual information as a cost
function even if the numerical resolution on the outputs is very poor.

Several lines of research are suggested by considering cases where the conditions,
under which the result is obtained, are not fulfilled. In particular, we commented on
the case of constraints onto the architecture, which may even prevent from finding
independent components. This will happen for an invertible nonlinear mixture of
independent components if the inverse cannot be computed with the chosen neural
architecture. Finally we discussed shortly the plausible role of input noise, in which
case some redundancy is clearly required in order to increase the signal to noise ratio
for each independent component. It is then of interest to study a network with a
number of output cells larger than the dimension of the stimulus (input) space. A
typical case on which we are presently working[13] is the coding of a scalar by a
population of neurons.
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