Unsupervised and supervised learning:
the mutual information between parameters and observations

Didier Herschkowitz and Jean-Pierre Nadal
Laboratoire de Physique Statistique de I’E.N.S.”
Ecole Normale Supérieure
24, rue Lhomond - 75281 Paris cedex 05, France
herschko@lps.ens.fr nadal@lps.ens.fr
http://www.lps.ens.fr/ “risc/rescomp/

Abstract

We study the mutual information between parameter and data for a family of supervised and
unsupervised learning tasks. The parameter is a possibly, but not necessarily, high dimensional
vector. We derive exact bounds and asymptotic behaviours for the mutual information as function
of the data size and of some properties of the probability of the data given the parameter. We
compare these exact results with the predictions of replica calculations. We shortly discuss the
universal properties of the mutual information as a function of data size.
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I. INTRODUCTION

We consider the very general problem of finding the
structure underlying a set of data, also called exzamples,
patterns or training set. The parametric approach as-
sumes that the structure of the probability density func-
tion (pdf) the patterns have been sampled from is known.
Only its parameters have to be determined given the ex-
amples. We consider both supervised and unsupervised
learning paradigms within the same framework of pa-
rameter estimation. The process of determining the pa-
rameters is called unsupervised learning when the goal
is to estimate the probability distribution from the ob-
served data only. In the case of supervised learning one
is given additional information about the data, that is
each training example is labelled. Several type of labels
can be specified, and we will consider two kinds of label:
a cluster label, which, in the case of a mixture density,
indicates from which pdf the pattern has been produced
(to which cluster the pattern belongs to); and a class la-
bel, which is a classification of the observed pattern (e.g.,
it is the binary classification produced by a teacher per-
ceptron). In all these cases, the pdf of the data and/or
the labels can be characterized by a parameter, a vector
in a possibly high dimensional space, and the goal is to
estimate the parameter from the observed data.

Recent results on parameter estimation show that the
mutual information between data and parameter is a rel-
evant tool for deriving optimal performances [1-5]. Based
on Shannon information quantities (see e.g. [6]), it quan-
tifies the intuitive idea that our knowledge of the param-
eter value is limited if we have a finite amount of data.
This quantity is independent of any specific algorithm
used to estimate the parameter. The best possible esti-
mator of the parameter is the one which is able to extract
all this information hidden in the data. If such estimator
exists, its performance should then be related to the mu-
tual information. In fact, one should be able to compute
the best possible performance from the mutual informa-
tion without knowing in advance which algorithms will
allow to achieve this performance. In the context of su-
pervised learning, the mutual information is shown in [7]
to have, within the Bayesian framework, the meaning of
a cumulative entropic error.

In addition, any model of parameter estimation can be
interpreted in the neural coding framework, via the du-
ality shown in [8]: the parameter plays the role of the
stimulus and each pattern of the training set is then the
activity of a coding cell. In this context, the mutual in-
formation characterizes the quality of the coding system.
Its maximization has been proposed as a possible prin-
ciple for neural organization in living animals (see e.g.
[9,10]) and is related to coding based on redundancy re-
duction (see e.g. [11,12]).

All this motivates the study of the mutual information

between data and parameter, which we do in the present
paper for a family of unsupervised and supervised learn-
ing tasks. We address the question of the behaviour of
the mutual information as a function of the dimension
of parameter space, size of data set, and properties of
the pdf generating the data given the parameter. It is
already known that universal scaling laws exist for the
asymptotic performance of estimators - e.g. the gener-
alization error decreases as p/N for p >> N in the case
of smooth distributions [13]. Our main concern will be
to see what types of universal properties exist for the
mutual information.

Some of the results we present are very general, but the
detailed calculations and analysis will be done for a fam-
ily of models where the data structure can be character-
ized by a single symmetry-breaking orientation B along
which the pattern distribution is nonuniform. Models of
this family have been studied extensively with the replica
method in the framework of statistical mechanics [14-17].
As we will see, the self-averaged free energy associated
to Gibbs learning is directly related to the mutual infor-
mation - hence, it contains the typical properties of the
system.

After introducing the general framework of unsuper-
vised learning (section II), and introducing the mutual
information between data and parameters, we show how
the computation of the information gain in a supervised
learning task can be reduced to the one of the mutual in-
formation in a related unsupervised problem. As a result
we can then work on a family of parameter estimation
tasks which can be seen as unsupervised learning prob-
lems, some of them having in addition an alternative in-
terpretation as a supervised learning problem.

For this family of models we present first ezact results
(section III): a linear upper bound valid for any data
size and any parameter dimension; an upper bound for
the case of supervised learning also for any N and p;
the asymptotic behaviour of the mutual information for
smooth distributions in the limit of the data size p very
large compared to N, the parameter dimension, which
here is not necessarily large. In the later case we make
use of general results relating the mutual information to
the Fisher information [1,4,5]. Finally we make use of
tools, introduced in [7] in the context of the standard su-
pervised learning framework, to derive upper and lower
bounds for both unsupervised learning and supervised
learning in the case of patterns correlated with the pa-
rameter. A direct application of the techniques of [7]
provide the behaviour of the mutual informations in the
large data size limit. In addition, we show that one can
get also explicit upper and lower bounds valid in the large
N limit at any given value of @ = p/N (the derivation of
these bounds is detailed in the Appendix).

Next, in section IV with the relationship mentioned
above and to be detailed below between the mutual in-
formation and the free energy, we make use of replica



calculations already published, giving their interpreta-
tion in term of mutual information. We also present new
results, on both previously and not previously studied
models. These replica calculations are expected to be
valid in the case where the number p of observed pat-
terns is of order of the dimension N of the parameter
space, in the limit of very large N. We consider first un-
supervised learning, with both smooth and discontinuous
pdf, and we then deduce the relevant information quan-
tities for the associated supervised learning models. We
compare the predictions of the replica calculations made
under the replica symmetry ansatz with the exact bounds
and asymptotic behaviours presented in section III. In
section V we illustrate all these results on specific models.
Finally in section VI we use information quantities to de-
rive bounds on performance of specific estimators. In the
Conclusion we discuss general features of parameter esti-
mation in view of the results obtained on the particular
class of models studied in the present paper.

II. THE MUTUAL INFORMATION FOR A
PARAMETER ESTIMATION TASK

A. The model family

We first introduce the general setup from the point
of view of unsupervised learning. We assume that a set
of patterns X = {&" z=1 is generated by p independent
samplings from a non-uniform probability distribution

P(X|B) = [] p(¢"|B) (1)

p=1

where B = {Bj,...,By} represents the symmetry-
breaking orientation. For the family of models we are
considering, the probability of a given pattern £ can al-
ways be written in the form:

p(¢|B) =

= o (—% V) )

where N is the dimension of the space and
A=Bg/|B 3)

is the overlap between the pattern and the direction. Ac-
cording to (2), the patterns have normal, unit variance
distribution i.e. exp(—x%/2)/v/2x onto the N — 1 direc-
tions orthogonal to B and the distribution of the overlap
in the symmetry-breaking direction is given by:

PO = = e (—% V) ()

The potential V(\) characterizes the structure of the
data in the symmetry-breaking direction. In particular

if V(A) = 0, the patterns are uniformly distributed in all
the directions and no special orientation can be detected.
The potential V() satisfy the normalization condition

/ DA exp(—=V(A) = 1 (5)

where DX = d\ exp(—\?/2)/v/2n is the Gaussian mea-
sure. Here and in the following, when not explicitly writ-
ten, integrals go from —oo to +00.

As justified within the Bayesian and Statistical Physics
frameworks, one has to consider a prior distribution on
the parameter space, p(B). Convenient choices for de-
tailed calculations in specific models are, e.g., the Gaus-
sian prior p(B) = exp(—B?/2)/ ¥/2 or the uniform dis-
tribution on the unit sphere. From the point of view
of inference, there is however an optimal prior, the one
which maximizes the mutual information [1,4].

B. Unsupervised learning

The mutual information I(X ; B) between the exam-
ples and the the parameter (here the symmetry breaking
direction B) is (see e.g. [6]):

I(X ; B) = H(X) — H(X|B) (6)
where
H(X) = — / dX P(X) In P(X) (1)
is the pattern entropy according to their probability
P(X) = [ 4B p(B) P(XIB) ®)
and
H(X|B) = — / dB dX p(B)P(X[B) In P(X[B) (9)

is the equivocation: the pattern entropy conditional to
B, averaged over the parameter distribution. Here and
in the following, the logarithm are neperian. The unit
of the mutual information is then the nat. The mutual
information represents the mean amount of information
the data X convey about the variable B.

For the model family we are considering defined by (2),
the mutual information can be rewritten:

IX;B)= —p <V(A) > — <<In Z(X) >> (10)

where

Z(X) = /dB p(B) exp (—

V(A“)) . (1)

p=1



Here and in all this paper the brackets < .. > stand
for the average over the overlap distribution P()), equa-
tion (4), and << .. >> the average over the pattern
distribution P(X), equation (8). One should note that
— < V(XA) > is a positive quantity. In the statistical
physics literature, the quantity —IlnZ(X) is the ”free
energy” and Z the ”partition function”. From related
studies in the field of statistical physics of disordered sys-
tems, one expects the free energy to be a self-averaging
quantity, that is — % In Z(X) ~<< —%1InZ(X) >> in
the large N limit. This means that, in this limit, the
properties of the system depend no more on the specific
set of patterns X but on the patterns distribution P (X)
only. It is interesting that it is precisely this quantity, the
averaged free energy, which appears in the mutual infor-
mation. This shows that, on one hand, it is indeed the
mutual information that contains the typical behaviour
of the system, and on the other hand that the mean free
energy is a relevant quantity even for finite V.

A remark on our notation is in order. Since in the
following we will consider relationships between mutual
informations associated to different, but related models,
we will attach to the mutual information associated to
each model a subscript referring to the particular prob-
ability with which the patterns have been generated. In
particular, whenever considering a smooth potential (that
is such that V is as regular as needed), we will write the
mutual information (10) associated to the model (2) as
Ip(X;B) where the subscript P refers to the smooth dis-
tribution P(X), (4).

C. Supervised learning

We now turn to the case of supervised learning tasks.
We will consider two kinds of supervised learning: ”clus-
ter learning” and ”class learning”. We show how they are
related to smooth and discontinuous unsupervised learn-
ing tasks respectively.

1. Cluster learning

We consider a mixture density made of two smooth pdf
such that the data will appear as two clusters symmetric
about the origin: the symmetry-breaking direction is the
direction of the axis joining the centers of the two clus-
ters. To each cluster is associated a label A = +1. Each
pattern is generated in a two steps procedure: first one
choose a cluster with equal probability and then pattern
is generated from the corresponding cluster distribution.
Denoting by A = {A#}_, the set of cluster label, the
model we are considering is thus

p
P(AXIB) = [] 504 +0ae1)p("14°B)  (12)
p=1

We assume p(&|B) to have a smooth overlap distribution
P(}).

In the context of supervised learning, the patterns X
are given with their cluster label A = {A*}F_,. We
will denote by I4p(A,X;B) the information the pair of
variables (A, X) gives about the symmetry-breaking axis
B.

Now a pattern € coming from the cluster p(€|AB) gives
the same amount of information about the direction B
than a pattern A€ coming from the cluster p(A€|B). One
can thus do as if one was given the set of patterns { A#¢"}
generated from a single distribution A = +1: one is back
to the unsupervised task with the smooth overlap distri-
bution P(X).

This writes

I.p(A,X;B) = Ip(X;B) (13)

The direct proof is straightforward using p(A¢|AB) =
p(€[B).

If the cluster label A* is not provided, one has an unsu-
pervised learning equivalent to having the patterns gen-
erated from the symmetric and smooth mixture distribu-
tion:

| =

YP(A) = =(P(A) + P(—=X) (14)

—~ N

We will denote by Isp
by the patterns alone.

Another quantity of interest is the amount of infor-
mation conveyed by the cluster labels about B when the
patterns, generated with the probability (14), are known,
that is Irp(A;B|X). From information theory one has
that the information that the pair of variables (A, X)
gives about the symmetry breaking axis is equal to the
information that the patterns alone gives about B, plus
the information that A gives about B when the patterns
are already known:

X ; B) the information conveyed

I,p(A,X;B) = Iyp(X;B) + Ixp(A; B|X) (15)

As we will see in section IV, the left hand side (l.h.s.)
with (13) and the first term of the right hand side (r.h.s.)
can be computed with the replica technique. From these
two calculations one then gets the second term in the
r.h.s. Since the information is a positive quantity, from
(13) and (15) it follows

Iyp(X;B) < Ip(X;B) (16)

Equations (13) and (15) relating supervised and unsu-
pervised informations are illustrated on Figure 5 in the
particular case of a Gaussian overlap distribution.
Remark: If the (single cluster) distribution p(£|B) is
symmetric about the origin, the two clusters are indis-
tinguishable, and one has I4p(A,X;B) = Irp(X;B).



2. Class learning

We consider now that the patterns X = {£"}},_, are
generated by p independent samplings from the distri-
bution p(€|B) defined as in (2) with a distribution P()\)
associated to a symmetrical and smooth potential Vp(A).
In addition, for each pattern a teacher provides a class
label, that is a binary classification S* = £1. Since we
are considering models with a single symmetry-breaking
orientation, we assume that the B vector in the pattern
distribution (2) also controls the classification according
to

S# = sgn(B.£*). (17)

Denoting by S = {S¥}F_, the set of class label, the
model we are considering is thus

P(S,X|B) = [[ e(s"¢".B) p(¢"B) (18)

p=1

We denote by Ips(S,X;B) the mutual information be-
tween the pair of variables (S, X) and the parameter B.
It has to be noted that contrary to most supervised learn-
ing models previously studied, the patterns themselves
carry information about the teacher (the symmetry-
breaking direction).

As was pointed out in [16], the classification of the
pattern £ as S automatically implies that the pattern S&
is classified as +1. The overlap distribution of a pattern
S&, denoted by ©P, readily follows from the original one
P(A):

OP()) = 20(\)P()) (19)

where ©()) is the Heavyside distribution. The corre-
sponding potential is

Vor(A) = for A\ <0

Vor(\) = Ve(A) — In2 for A >0 (20)

The task is thus equivalent to an unsupervised learning
task with the discontinuous overlap distribution @ P(X).
This writes

Ips(S,X;B) = I@p(X;B) (21)

Remark: this equality is true only when the over-
lap distribution P () is symmetric. Otherwise patterns
with classification S = +1 and S = —1 convey differ-
ent information about B, and the supervised informa-
tion Ipg(S,X;B) is not in general directly related to an
unsupervised problem as in (21).

If the class label is not given, one is back to the unsu-
pervised learning problem with smooth potential P(A),
for which the information is Ip(X;B). The additional
amount of information given by the class labels is noted
Ip(S;B|X). Similarly to equation (15) and (16) one has

Ips(S,X;B) = Ip(X;B) + Ip(S; B|X). (22)
and
Ip(X;B) < Iep(X; B) (23)

Equations (21) and (22) relating supervised and unsu-
pervised informations are illustrated on Figures 8 and 9
for different choices of the overlap distribution.

One may note that we could have considered class
learning as a particular case of cluster learning where the
single cluster distribution is given by 20(A)P(A). How-
ever what justifies to distinguish the two types of super-
vised learning is that, as we have seen above, supervised
cluster learning is related through (13) to smooth unsu-
pervised learning, and class learning is related through
(21) to discontinuous unsupervised learning.

In the following, thanks to these relationships between
supervised and unsupervised learning tasks, we will in-
differently take either the supervised or the unsupervised
point of view according to which is the more convenient
or relevant to the current discussion.

III. EXACT BOUNDS AND ASYMPTOTIC
BEHAVIOURS

We derive now exact bounds and exact asymptotic be-
haviours for the mutual information. Some of these re-
sults are specific to the form (2) of the probability dis-
tribution and other are more general. We begin with a
linear upper bound.

A. Linear bound

The mutual information, a positive quantity, cannot
grow faster than linearly in the amount of data, p. In-
deed, it is easy to show that

I(X;B) < pI(¢; B) (24)

where [ is the mutual information between the parame-
ter and a single example (one can check that pI; — I can
be written as a Kullback divergence, a quantity always
non negative). However I; cannot be easily computed
in the general case. We derive the simpler linear upper
bound:

IX;B) < —p <V(})> (25)

This relation is true for all p and all N. We prove the
inequality for the case < A >= 0. The extension to the
case < A ># 0 is straightforward. As we will see, for the
particular family of model that we are considering, in the
large N limit this upper bound becomes in fact identical
to the bound pI;.



In the expression (6) of the mutual information,
the computation of the second term, the equivocation
H(X|B), is straightforward. One gets:

pN

2(<)\2 1) +p<V >

(26)

The first term in the r.h.s. of (6), that is the entropy
of the data, H(X), is the quantity difficult to compute.
However, one can upperbound this entropy by the en-
tropy of the Gaussian with the same covariance matrix.
The covariance matrix of the data is easily obtained as

<< ELEY >>= 0, (05 + (< N* > —-1)B;B;/|B|”) (27)

where (.) denotes the average over the parameter distri-
bution. One then has

N
22111(1 +(<A2>-1)np)

i=1

N
H(X) < 7’7 In(27e) +

(28)

where 7; are the eigenvalues of the matrix B;B;/ 1B
Putting (28) and (26) together with (6), one gets the
linear bound

IX;B) < —p <V()) >
+25N In(1+

Using the property In(1 + z)

- E(<A>-1)
(<X >-1)m) (29

< z together with

N
Zm,
=1

one then gets the simpler bound (25).

In fact the bound (29) becomes identical to (25) in the
asymptotic regime N — oo whenever all the eigenvalues
7; are of the same order, that is 1/N. This is in particular
true if the prior is spherically symmetric, in which case
n; = 1/N for all i = 1,..., N. In these cases, for finite N,

N
= Y BiBi/|B|* =
i=1

the bound (29) reads
IX;B) < —p <V(A)> —E<A>-1)
2
+28 In(1 + <A2=1) (30)

In the large N limit, keeping oo = % fixed, one has then

lim NI(X B) <

N—oo

—a <V(A\)>. (31)

From the relationship between mutual information and
free energy, equation (10), this inequality (25) can also
be written as

—<<In(Z)>><0 (32)

that is, the mean free energy is always negative or null.

B. Asymptotic behaviour and Fisher information

The asymptotic limit usually considered in the context
of statistical parameter estimation is the one where the
dimension of the parameter space, N, is given (and not
necessarily large), and the number of examples p is large
compared to the dimension N. For smooth structure, it
has been proved [1,4,5] that, in that limit p > N, the
mutual information increases as half the logarithm of the
determinant of the Fisher information matriz. This ma-
trix is a fundamental quantity in parameter estimation:
its inverse is a bound on the covariance of any efficient
estimator (Cramer-Rao bound, see e.g. [6]). Hence, in
this asymptotic limit of large data size, one has a sim-
ple and explicit link between the mutual information and
the best possible performance of an estimator. For our
model family, this asymptotic behaviour of the mutual
information reads

I(X7B) ~ IFisher fOI";D >> N

IFz'sher = % In (% < VI2()\) >) (33)
where V'(A) = dV(X)/dA. We will see in section IV
that this asymptotic behaviour is correctly predicted by
the replica calculation for smooth potentials, in the limit
N — oo first, then @ = £ — oo. In the case of non
smooth distributions, the Fisher information matrix does
not exists (it is infinite). One can then expect a differ-
ent asymptotic behaviour for the mutual information, as
suggested by the bound derived in the next sections.

C. Bound on the class information

We show in this section that the mutual information
between the class and the symmetry-breaking orientation
given the pattern, Ip(S; B|X), is bounded:

Ip(S;B|X) <In A(p,N) (34)
where
mm(p,
Z C’c (35)
Wlth C #'k)‘

This bound and its proof are the same as for the infor-
mation capacity of a perceptron studied in [18,8,19]. The
argument is as follows. Since the class is a deterministic
function of the parameter B, when the pattern is given,
the mutual information between the class labels and the
parameter is equal to the entropy of the labels given X:

Ip(S;B|X) = = ) << P(S|X) In P(S|X) >> (36)
S



where P(S|X) = [dBP(B|X)[],_, ©(S*B.£") with
P(B|X) = p(B)P(X|B)/P(X). Let us call A(X) < 2P
the number of realizable dichotomies, that is the number
of distinct configurations S = {S#}?_, for which there
is at least one parameter B such that S¥ = sgn(¢".B)
for every p = 1,...,p. The entropy of the distribution
P(S|X) is maximum when every possible S has the same
probability, that is 1/A(X). Hence:

Ip(S;B|X) < <<In A(X) >>. (37)

If the patterns are in ”general position”, one basic result
[20] is that A(X) is in fact independent of the particular
sample X, and depends only on p and N, being equal to
A(p, N) defined in (35). As a result one then obtains the
bound (34). If the patterns are not in ”general position”,
the bound remains valid because then A(X) < A(p, N).

In the limit N — oo and @ = £ fixed, one has the
asymptotic behavior

In 2 ifa<2
In A(p, N @ =
im BACN) ) H(/a) ifa>2 (38)
N=oo ~1In «a for large o

where H(z) = —[z In z + (1 — z) In(1 — z)]. This shows
in particular that for p >> N the mutual information
Ip(S;B|X) increases at most as Inp/N for p large. We
will see below, sections III D and IV, that this behaviour
is indeed reached for supervised learning tasks. This
should be contrasted with the behaviour for smooth den-
sities, in 1 Inp/N.

D. Opper-Haussler bounds

In the case of class supervised learning with patterns
correlated with the vector B, it is not clear at this
point which asymptotic behaviour for the mutual in-
formation between data and parameter should be ex-
pected. In the case of supervised learning, with a pdf
for the patterns which does not depend on the param-
eter p(&|B) = p(&), very useful bounds on the mutual
information I(S,X;B) = I(S;B|X) have been derived
by Opper and Haussler [19,7].

From these bounds one obtains the asymptotic be-
haviour for the mutual information. For the standard
perceptron (that is for supervised learning with the de-
terministic rule and patterns uncorrelated with the pa-
rameter), the main result is I(S;B|X) ~ Nlnp in the
limit p — oc.

In the Appendix we apply the techniques of [7] to the
case of supervised and unsupervised parameter estima-
tion tasks with patterns correlated to the parameter.
Quite interestingly, as we show in the Appendix, these
tools introduced in [7] in order to extract the large p be-
haviour of the mutual information, allow also to derive

lower and upper bounds for both unsupervised and su-
pervised learning in the regime of large N and large p for
any given value of a = £ - that is in the same regime as
with the replica calculations. These bounds are shown on
figure 2 for an unsupervised Gaussian and simple percep-
tron learning (Model 1 and 6 respectively). The details
are given in the Appendix, and we present here the main
results concerning the limit of large data size.

One deduces from the bounds that in the large p limit,
I~ % Inp for smooth unsupervised learning, and I ~
N Inp for supervised learning. For N large, in the large
a limit, one finds for smooth unsupervised learning

1 e . 1
Eln (aZ <V"? >) <i(X;B) < iln(ae <V"?>)
(39)

with i(X;B) = limy_ ﬂ%, in agreement with the
exact behaviour (33) derived in section III, that is I ~
% In% < V"2 >. One can note the quality of the bounds
in this case. For supervised learning, in the same limit

In (a%e‘v(o)) <i(S5,X;B) <lna+O(lnlna) (40)

with (S, X;B) = limy 0 w. In the case of the
standard perceptron, that is for V' = 0, we have the bet-
ter upper bound given by (38), which shows that there
is no correction of order Inln « to the leading behaviour.
We will see in the next section that the replica calcula-
tions, in agreement with the above inequalities, suggests
that there is no such correction for non zero potentials
as well.

IV. REPLICA CALCULATIONS

We now compare the previous results with those pre-
dicted by replica calculations.

A. Replica calculation of the mutual information

In the limit N — oo with « finite, the calculation of
the free energy << In Z(X) >> in (10) can be per-
formed by standard replica technique. This calculation
is the same as those related to Gibbs learning, done in
[15-17] but the interpretation of the order parameters is
different. Assuming replica symmetry, the result for the
total mutual information (10) is as follows:

limye  2XIBL = (a,Q)
i(a, Q) = —% QR+In(1-Q)—a< V() >

—a [ Dz A(2,Q) n Az,Q) (41)



with
A(z,Q) = /Dy exp—V(yv/1-Q+2/Q) (42

Dz and Dy being the Gaussian measure. The order pa-
rameter () = («) is solution of the saddle point equation

i

_— = 4

oQ 0 (43)
which reads

0A
-0 —QQ = 2a/D:E % In A(z,Q) (44)

The order parameter () is restricted to the [0, 1] interval
and can be interpreted as the typical overlap between
two directions compatible with the data. The stability of
the symmetry ansatz has already been studied for various
specific choices of potentials V. The main result [17] is
that the replica symmetric solution is stable if

dQ

o 0. (45)
Within this hypothesis of replica symmetry, and for a
general potential V', one can analyse from (41) the be-
haviour of the mutual information i(a) = i(a, Q(a)) as
function of «. Different behaviours will occur depending
on some properties of the potential. We will illustrate
each case with a specific model in section V.

A first remark concerns the concavity of i(a). One
expects the mutual information to be a concave function
of the data size, p. This is indeed the case for the mutual
information computed with the replica technique under
the replica symmetry ansatz. Since ) satisfies (43), one

has & — 9i 5o that from (41) one can write

- da’
Q 1 di(a)

—5 —3 m1-Q)=i(@ - a—. (46)

As the Lh.s. is always positive for @ in [0, 1], one has

@ > %. Under the reasonable hypothesis that the

mutual information is a non decreasing function of a, it

follows that i(«) is concave. From equation (46) on gets
d%i

also that 22 has the sign of —£% (wherever ¢ admits a
da da

second derivative), hence % > 0: this is exactly the con-
dition for the stability of the replica symmetric solution.

One can note also the interesting structure of the above
equation (46). From the replica calculation one has that
the Lh.s. is the (logarithm of the) volume of the do-
main in parameter space in which two directions taken
at random have a typical overlap equal to ). If we de-
fine j = dg(s), the r.h.s. of (46) is the Legendre transform
1(j) = i(a) — a j, which is a function of j alone, that is
of the marginal gain of information for an infinitesimal
increase of a.

We consider now the behaviour of the mutual informa-
tion (41) in the small and large « regimes according to
the replica calculation.

B. Unsupervised learning

We consider first the case of unsupervised learning. We
derived the behaviour for small a which is true for all po-
tential. In the large a we consider smooth and discontin-
uous potentials showing different asymptotic behaviours.
In the next section we will deduce the asymptotic be-
haviour for supervised learning from the behaviours ob-
tained for unsupervised learning.

1. Small o

For some potentials one finds @ strictly null from o = 0
up to a critical value a, > 0. This is known as retarded
generalization in the context of supervised learning [21],
and retarded classification in the case of unsupervised
learning [15]. Explicit calculation gives that such re-
tarded classification occurs whenever < A >= 0, a case
illustrated by Models 1 and 2 in the next section.

In such case, since from (42) A(z,0) = 1 for any z,
one gets from (41) that the mutual information is strictly
linear in [0, ac):

i(a) =—a< V() > (47)

This is a regime where there is no redundancy in the data:
each datum conveys some information independent from
the information conveyed by the other data. It corre-
sponds, in the context of neural coding, to the regime
where full redundancy reduction can be achieved [8,12].

In this regime one saturates the bound (25): one gains
from the data the largest possible amount of information
about the probability distribution of the patterns. How-
ever, () = 0 means that no estimation of the parameter
B is possible for a < a.. To understand better this seem-
ingly paradoxal result, consider the simple case N = 3
and a overlap distribution P(A) = §(\). After receiving
a first example &, we know for sure that the vector B lies
in the plane orthogonal to this pattern. We have thus
gain a large amount of information about the localiza-
tion of B. However, due to the symmetrical nature of
the space left for B, one cannot give an estimation of
this orientation and the direction of the next pattern is
still unpredictable.

It is only at a. when correlations between examples
appear that one is able to make prediction on the next
sample. Then ) becomes different from zero, and this
may happen either continuously or with a jump to a fi-
nite value. According to (46) the linear regime is left
smoothly in the continuous case, and with a discontinu-
ity in the slope in the discontinuous case. In any case,
the mutual information itself is continuous at the tran-
sition since the information is bounded by (25), and it
cannot decrease (one can not have less information with



more examples). It follows also that the mean free energy
must leave his zero level continuously.

For < A ># 0, the bias in the distribution of A allows
to build a non trivial estimate of B even with a very
small number of examples. Then the mutual information
cannot saturate the linear bound. Indeed, in the o — 0
limit, one finds the following behaviour for the mutual
information when < A ># 0:

i) =—a< V(A > —ioﬁ < A>T 4+0(a®).  (48)

2. Large o limit

We consider now the a — oo limit. First, one can
see the relationship between the asymptotic behaviours
of @ - 1 and i(«) from equation (46). If for large a the
equation (43) for Q gives

1-Q=(aC)™ (49)

for some exponent v > 0 and constant C, then equation
(46) gives

v—1
2

i(a) ~ % In(aC) + (50)
In already studied models one finds v = 1 for smooth
pdfs, and v = 2 for standard supervised learning tasks
(see e.g. [2] and the cited papers section IV A). This
implies a behaviour in %lna and Ina for smooth and
non smooth potentials, respectively. More precisely, the
asymptotic behaviours are as follows.

For smooth potentials, a straightforward expansion of
(41), (44) for @ — 1 leads to:

i(a) = % In(a < V2(3) >) + 0(a™") (51)

This is in agreement with (33) and the bounds (39). Two
examples of smooth unsupervised learning are detailed in
section V, Models 1 and 2.

We study now the interesting case of a discontinuity of
the form

P()\) =0
P()\) smooth
lim,\_>,\0 P()\) =AP>0

A< X
A> X (52)

By closer inspection of (41), (44), one finds that in the
limit @) — 1, in the region that contribute the most in the
integrations on z and A, one can replace exp —V (z) with
2=yV/1—=Q + zv/Q by O(z — X\g) exp —V (max[)g, 7]).
This yields the leading order in the asymptotic expan-
sion:

i(a) ~In(a AP K) (53)

with

- Dy. (54)

—T

Kz\/E/Dxxln

The numerical value of this constant is K ~ 1.489.

This behaviour (53) is in good agreement with the
lower bound in (40) For such discontinuous probability,
the rate of information gain given by the patterns is twice
the rate for smooth potentials. This rate is controlled by
the value of the discontinuity AP. An example of unsu-
pervised learning with discontinuous potential is detailed
in section V, Model 3.

C. Supervised learning

The asymptotic behaviours follows directly from the
analysis given in the preceding section. For supervised
learning we use equations (13) and (21) and for the la-
bel information we make the difference between the two
information related to unsupervised learning in (15) and
(22). We give below the main results for cluster and class
learning. The notations are the same as in section II C.

1. Cluster learning

Let P(A) be a smooth distribution. For small «, one
gets

limy 00 % = —a<Vp>+0(a?)
lmpy o ZEABX) — (< Vp > — < Vap >) + 0(?)
(35)
and for large o
lmpy oo A2AXB). = 11y (o < V2 >) + 0(a )
. . V12 _
limy o0 71”(?\,’]3‘)() =1l (—<<V§P>>) +0(a™)
(56)

The amount of information given by the cluster label
converges toward a constant. Then almost all the in-
formation comes from the patterns alone. This is il-
lustrated in section V, Model 4. In the special case of
two non-overlapping cluster distribution, that is P()\)
and P(—)) are not different from zero together, we have
< V¥, >=< V# > and the label information converges
to zero. With a large number of patterns, the vector B
becomes localized with high accuracy. Now, since the
patterns with A = —1 and A = 41 are well separated in
this model, the label of the patterns become predictable
and give no additional information. This behaviour is
illustrated in section V, Model 5.



2. Class learning

In this section P()) is a symmetrical smooth distribu-
tion. For small a, with Vgp defined in (20), one has

limpy 00 w ~ —a < Vop(A) > +0(a?)
(57)
limy 00 Lj\?\x) ~ aln 2 + O(a?)

The O(a?) is a negative contribution. This is in agree-
ment with the bound (34), (38).

Consider first the particular case where the patterns
have no statistical dependency in the vector B, that is
V(A) = 0. Then the pattern themselves carry no in-
formation about B, and the task is the standard super-
vised learning task by a simple perceptron. One gets
the asymptotic behaviour for the mutual information
(S, X; B) (S; BIX):

I Perceptron =T Perceptron

. 2
A}gnoo IPerceptron(S; B|X)/N ~In <a\/;K) (58)

where K is given by (54), in agreement with the com-
putation of the free energy done in [22]. In this case
the bound (34), (38) is asymptotically saturated. This is
illustrated in section V, Model 6.

Consider now the case where the pattern are correlated
with the direction B, that is V/(A) #Z 0. The distribution
(19) has the form (52) with Ag = 0 and AP = 2P(0).
The asymptotic behaviours are given by

limpn oo 71”(?\’,&]3) ~ In (a\/gK e_V(O))

N%ln(a )

where K is given by (54). The information rate given
by the pair (S, X) behaves as In «, as for the simple per-
ceptron, but here half of the information comes from the
patterns alone and half from the class information. These
results are illustrated in section V, Models 6 and 7.

Ir(S;B|X) 2K2 72V(O
N

limn_, =<
00 V>

V. SPECIFIC MODELS

We illustrate on specific models the different be-
haviours of the mutual information discussed in the pre-
ceding section. We compare the predictions of the replica
calculations with the exact results from section ITI. Some
of the models presented here have been previously treated
in the replica symmetry approach. For those models, the
behaviour of the order parameter can be found in the
cited references.

Mutual Information (N . nat)
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A. Unsupervised learning

Model 1 Smooth Gaussian learning

The simplest model is obtained for a Gaussian overlap
distribution. The replica calculation of the free energy
has been performed in [23]. We use the following param-

p

The mutual information I¢(X,B) is shown in figure 1
with parameters value p = 0 and o = 1/v/6.
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FIG. 1. The smooth unsupervised Gaussian learning

I¢(X; B) from model 1. For large « it behaves as ~ 1/2 In «.
The supervised class information Igs(S,X;B) and the ad-
ditional class information I¢(S;B|X) from model 6 with
oc=1/ V6 and p = 0. Their asymptotic behaviour are re-
spectively ~ In o and ~ 1/2 In . Shown also is the class
information IPerceptron(S5 B|X) for the simple perceptron
from model 6 and the bound on the class label information
In A(p, N) from (38). The simple perceptron asymptotically
saturates the bound. Both of them have a ~ In o asymptotic
behaviour.

As < A >=0, retarded classification occurs. For large
a, the information behaves as ~ 1/2 In(a < VZ4* >) in
agreement with (33). The behaviour is similar to the one
in Model 2 below for which we give a more detailed anal-
ysis. In figure 2a the information as computed with the
replica technique is compared with the lower Ij; and up-
per I,; bound from section IIID computed respectively
by (A14) and (A33). The bounds are in very good agree-
ment with the replica calculation.
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FIG. 2. The lower I, and upper I,, bound on the mu-
tual information from section IIID. These are computed with
equations (A14) and (A33) respectively and compared with
the mutual information computed with the replica technique
(a) for the smooth unsupervised gaussian learning, Model 1
and (b) for the supervised learning of the simple perceptron,
Model 6.

Model 2 Smooth mizture distribution

The data are generated from a Gaussian mixture dis-
tribution with an overlap distribution given by

P(A) = GG(X; p,0)

= (61)

1
5 Z G(A)‘a P U)
A=+1

where G is the Gaussian distribution (60) introduced in
Model 1. We will see how this particular overlap distribu-
tion is also related to supervised cluster and supervised
class learning (see models 4 and 7).

The behaviour of the order parameter () and the mean
free energy are given in figure 3. The mutual informa-
tion Igg(X;B) and the bound (25) associated with the
distribution (61) are shown in figure 4. In both figures
the parameters are p = 1.2 and ¢ = 0.5.

Since < A >= 0, retarded classification occurs: up to
a critical value ag, the order parameter @) is null, the
free energy is null and the mutual information saturates
the linear bound, being given by (47). At «, the mutual
information leaves this linear regime. In the large o limit,
the asymptotic behaviour is ~ % In a. This is the same
behaviour as in Model 1.

In the replica symmetry ansatz, the true minimum of
the free energy is given by << In Z >>= 0 until a = a1,
and then the solution ay — P3 shown on figure 3b. The
corresponding behaviour of the order parameter is shown
on figure 3a: @ is null until a; and follows the lower
branch until P3 where it jumps to the upper branch. In
this scenario we thus have a, = a;.

However it had been suggested in [17] that the or-
der parameter () can reach the upper branch well before
a(P3). As we have seen, the mean free energy cannot be
positive and must be continuous (see section IVB1). It
results that the only possibility of a jump to the upper
branch before a(Ps;) (that is by following a metastable
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solution), would be that the free energy follows the path
0 - as — P3 (see figure 3). In such case the order
parameter is null until ay where it jumps to the upper
branch. This would give o, = as.

1.0

QY

—— Order parameter Q
0.8 1

0.6 1

0.4

0.2 4

0.0
2.0

0.002

— -<<InZ(X)>>/N (b)

0.001

0.000

-0.001 A

-0.002 1

-0.003 T T
2.0 2.4 2.6
a

22

FIG. 3. (a) the order parameter @) and (b) the free energy
as functions of a, for the smooth unsupervised mixture learn-
ing, Model 2 with p = 1.2 and o = 0.5, as computed in (Buhot
and Gordon, 1998) under the replica symmetry ansatz. In the
range of a values shown on these graphs the mean field equa-
tion for @, (43), accepts several solutions (in particular Q = 0
is always a solution). The stability analysis (not shown) and
our results allow to eliminate some of them. In particular the
values giving a positive free energy must be rejected. The
solution corresponding to the absolute minimum of the free
energy follows 0 — a1 — a2 — P3 which gives a. = ai.
Another metastable pathway is 0 — a2 — P3 (see text).
a1 = 2.10, as = 2.515 and a(P3) = 2.527.

Model 3 Discontinuous Gaussian learning

This case has been treated in [16]. The data are gener-
ated from the discontinuous overlap distribution obtained
from the truncated Gaussian distribution, OG(}; 0, p) =
20(A\)G(X; 0,p). The mutual information Igg (X, B) is
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given in figure 1 with ¢ = 1/v/6 and p = 0. The asymp-
totic behaviour for large a is ~ In «, see (53). For large
data size, it is the patterns near the discontinuity which
give the largest information about the localization of B.
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1.6 /// /,//’//—// ot
P5 + _- -~ laca(AX;B)=
1.4 Sl 150X N
’ P4 ’\/}/
Y
1.2 4 yes | (XB) L
/l/ / GG !
10 J ‘//1 /, L
i
0.8 1 /’ ) L
/ |
06 T / : -
/ |
0.4 1 ! I (ABX) [
,/ _-Q"\\. ! 1 5a(S;B|X) 6e
0.2 -y O Ay F—— -
a T T, e
c
0.0 — T T T T
0.0 2.0 4.0 6.0 8.0 10.0 12.0
a

FIG. 4. As function of «, in the large N limit: (i) The
mutual information for smooth unsupervised mixture learn-
ing Iea(X;B) for model 2, with ¢ = 0.5 and p = 1.2, to-
gether with the associated linear bound. This information is
strictly linear up to a.. The special structure near a¢ visi-
ble on the order parameter and the free energy (figure 3) is
not visible here due to the graph scale. (ii) The supervised
Gaussian cluster information Iaga(A,X;B) and the cluster
information Igg (A;B|X) from model 4. (iii) The supervised
discontinuous class information Igaes(S,X;B) and the class
information Igg(S;B|X) from model 7. All these models
are linked together (see figures 5 and 9). «(Ps) = 3.45 and
a(Ps) = 3.65 are upper bounds on a. (see text, models 4 and
7).

B. Supervised learning

Model 4 Gaussian cluster learning

As a particular instance of cluster learning, equ. (12),
we consider the Gaussian mixture (61) introduced in
Model 2 in which the two clusters A = +1 have Gaussian
distributions:

P4(X) = G(AX; p,0) (62)

where G is the Gaussian distribution (60). Each pattern
is generated from one of the two clusters with equal prob-
ability and the cluster label A = £1 is given. Noting
Iiga(A,X;B) the information the patterns and their
labels give about B and Igg(A;B|X) the cluster infor-
mation, relations (13) and (15) relating supervised and
unsupervised learning are illustrated in figure 5.
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1, (X;B) | oo (XiB) + 1o (ABIX)

J

Unsupervised
smooth learning

Supervised mixture
learning

Unsupervised mixture
learning

FIG. 5. Illustration of equations (13) and (15) for the par-
ticular case of Gaussian cluster learning. The information
Isce(A,X;B) the patterns and their labels give about B is
equal to the information I¢(X;B) given in an unsupervised
smooth learning with examples drawn from the overlap prob-
ability G(A;0,p). This information is also equal to sum of
the information Ig¢e(X;B) the patterns without any cluster
information give about B (the unsupervised mixture infor-
mation associated to Model 2), plus the cluster information
Icc(A;B|X) the labels convey about B when the patterns
are known.

I¢(X;B) and Ige(X;B) have been calculated respec-
tively in model 1 and 2. All these information are plot-
ted in figure 4 for o 0.5 and p = 1.2. For small
a, the cluster information grows. As the estimation
of direction B becomes more and more accurate with
the number of data, the cluster to which the patterns
belong becomes more predictable. This explains the
decrease of the information which converges towards a
constant (56). Due to the smooth nature of the pdf
G(X;0,p), the large a supervised information behaviour
is Inga(A,X;B) ~1/2 1n a.

We show that the linear bound on the mutual in-
formation can be used to obtain bounds on the value
a.. Let a(P,) be the intersection of the information
IAgg(A,X;B) with —a < Vgg >, that is the lin-
ear bound for the unsupervised information Igg(X;B).
Since the supervised information is always bigger than
the unsupervised one, see (16), one has

e < aPy). (63)

This is illustrated on figure 4.
Model 5 Non-overlapping cluster learning

We consider the cluster distribution Pa(A)
CC(AX;a) with

L (1+a)? (1 +a))?

The model is similar to Model 4 but now the two clusters
do not overlap. Relations between supervised informa-
tion Iacc(C,X;B), unsupervised smooth information
I (X;B), unsupervised smooth learning I-¢(X;B) and



the cluster information Icc(A;B|X) are illustrated in
figure 6.

lacc (AXiB) = 1cXB) = 1 ceXiB) +1cc (ASBIX)

N \
A

A=-1

Supervised mixture
learning

Unsupervised
smooth learning

Unsupervised smooth
learning

FIG. 6. Ilustration of equations (13) and (15) for the pdf
P(X) = CC(X;a) (see text, section IIC2 and Model 5). The
two clusters are well separated and all the distributions are
smooth.
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FIG. 7. As function of o the information quantities ap-
pearing in figure 6 for model 5 with a = 0.9: Iacc(A,X;B)
(supervised learning), Ic(X;B) (smooth unsupervised), to-
gether with the associated linear bound —p < Vg¢o >, and
Icc(A;B|X) (cluster information). The supervised and un-
supervised informations have the same asymptotic behaviour,
~ 2 In a. The class information vanishes because the cluster
label becomes easily predictable for large a.

The information behaviours and the linear bound as-
sociated with distribution (64) are shown in figure 7 for
a = 0.9. The unsupervised information Icc(X;B) shows
a similar behaviour as the one encountered in Model
2. Iec(X;B) and I1cc(C,X;B) converges to the same
limit in ~ 1/2 In a. The cluster information vanishes due
to the fact that the clusters do not overlap (the cluster
label becomes predictable with high accuracy).
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Model 6 Supervised perceptron

The data are generated by the overlap distribution
G(X;0,p) considered in Model 1 and a teacher pro-
vide the class label S = sgn(B.£) for each pattern &
of the data set. Relations between supervised infor-
mation I5s(S,X;B), unsupervised discontinuous infor-
mation Ieg(X;B), calculated in Model 3, unsupervised
smooth learning I5(X;B), calculated in Model 1, and
the class information I (S; B|X) are illustrated in figure
8.

I GS(TS,XB) = es(X;B) = 15(X;B) +15(S;BIX)
\ ‘
S=sgn(BZ )
Supervised Unsupervised Unsupervised
perceptron discontinuous learning perceptron

FIG. 8. Illustration of equations (21) and (22) relating su-
pervised and unsupervised learning with a Gaussian pdf to
unsupervised learning with a discontinuous distribution. For
each mutual information the subscript refers to the distribu-
tion from which the examples are drawn (see text, section
IIC2 and Model 6). The particular case ¢ = 1, for which
I¢(X;B) = 0, corresponds to the standard supervised learn-
ing task by a perceptron.

These information quantities are shown in figure 1 for
o = 1/v6 and p = 0. Also shown is the bound (34)
on the class information in the large N limit. For small
a, the class information I (S; B|X) almost saturate this
bound in agreement with (57). For large « it behaves as
~ 11n . In this limit the label information of examples
near the boundary separating S = —1 and S = +1 exam-
ple give valuable information about B. The smooth unsu-
pervised part I (X; B) behaves also as ~ 3 In . This im-
plies that the total supervised information Igs(S,X;B)
behaves as ~ In a.

The special case ¢ = 1, p = 0 corresponds to V() = 0,
that is to the standard supervised learning task with a
teacher perceptron. The patterns are symmetrically dis-
tributed in all the directions and are not correlated with
the symmetry-breaking orientation. Then I¢(X;B) =0
and Igs(S,X;B) = IPerceptron(S5 B|X). This informa-
tion is plotted in figure 1. According to (58) it asymptot-
ically saturates the bound. In figure 2b the information
as computed with the replica technique is compared with
the lower I;; and upper I,,; bound from section III D com-
puted respectively by (A14) and (A33). One sees that the
replica calculation is in good agreement with the bounds.
If one believes that it gives indeed the exact result, then
one can see the very good quality of the lower bound



at any value of «, whereas the upper bound is less pre-
cise due to the presence of the term of order Inlna (see
section ITI D).

Model 7 Class learning

The patterns are generated with the mixture distri-
bution GG(\;0,p) considered in Model 2, but now a
teacher provides the class label for each pattern, that is
S = sgn(B.£). We note Iggs(S,X;B) the information
the patterns and their labels give about B, I¢¢(S; B|X)
the label information. The relations (21) and (22) are
illustrated in figure 9 where Ioge(X;B) in an unsuper-
vised discontinuous learning from examples drawn from
the discontinuous overlap probability OGG(A;o,p) =
20(N)GG(A;0,p) and Ige(X;B) has been calculated in
Model 2.

l 6es (S:X;B)

1
S-sgn(’BE )\

locs(XiB) = 156(X;B) +1 56(S:BIX)

Unsupervised mixture
learning

Supervised class
learning

Unsupervised
discontinuous learning

FIG. 9. Illustration of equations (21) and (22) relating su-
pervised class learning to unsupervised learning with discon-
tinuous distribution. For each mutual information the sub-
script refers to the distribution from which the examples are
drawn (see text, section IIC2 and Model 7).

These informations are drawn in figure 4 for ¢ = 0.5
and p = 1.2. For not too large «, the behaviour of the
class information Iggs(S, X;B) and Ige(S; B|X) is sim-
ilar to the behaviour of their corresponding cluster infor-
mation I4gg(A,X;B) and Igg(A;B|X). For large «
this is no more true due to the discontinuous nature of
the class learning. The large a behaviour is similar to
the one encountered in Model 6.

As the supervised information is always bigger than the
unsupervised one, similarly to (63) one gets that a(Ps) is
an upper bound on a. (see figure 4). It has to be noted
for supervised learning that in some region, especially for
small a, one can gain more than one bit of information
per example: one bit from the binary classification plus
the information conveyed by the patterns themselves.

VI. BOUNDS FOR SPECIFIC ESTIMATORS

Given the data X, one wants to find an estimate J
of the parameter B (see fig.10). Although this paper is
not primarily concerned with the question of estimating
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the performance of estimators, we show in this section
that making use of the mutual information one can de-
rive simple bounds on the performance of some specific
estimators.

2| PXB) | POX)
p(B)

FIG. 10. The flow of information. First an orientation B
is drawn from a prior distribution p(B). Then, patterns are
generated according to P(X|B). In the last process, an es-
timation J of the original orientation is extracted from the
examples. The information decreases at each step.

The amount of information I(X ; B) limits the perfor-
mance of any estimator. Indeed, since processing cannot
increase information [6], one has

I(J; B) < I(X ; B). (65)
This basic relationship allows to derive interesting
bounds based on the choice of particular estimators.
We consider first Gibbs learning, which consists in sam-
pling a direction J from the ’a posteriori’ probability
PJX) = P(X|D)p(d) / P(X). In this particular case,
the differential entropy of the estimator J and of the pa-
rameter B are equal H(J) = H(B). If 1-Q,? is the vari-
ance of the Gibbs estimator, from (6) and using again the
fact that the entropy of a Gaussian distribution is greater
than the entropy of any distribution with the same vari-
ance, one gets the relations for a Gaussian prior on B

2 in(1 - Q,%) < Tgan (@ ; B) < T(X; B)  (66)

These relations together with the linear bound (25) al-
lows to bound the order parameter ()4 for small o where
this bound is of interest.

The Bayes estimator consists in taking for J the center
of mass of the ’a posteriori’ probability. In the limit
a — 00, this distribution becomes Gaussian centered at
its most probable value.

We can thus assume Ppggyes(J|B) to be Gaussian with
mean QB and variance 1—Q,2. Then the first inequality
in (66) (with @, replaced by Qs and Gibbs by Bayes)
becomes an equality. Using the Cramer-Rao bound on
the variance of the estimator one can then bound the
mutual information for the Bayes estimator

N 12
IBayes(J; B) < 5 In(14+a< V™)) >) (67)
The Lh.s. is the Fisher information (33). For @ — oo
all these quantities have the same asymptotic behaviour.
They are shown in figure 11 from replica calculation,

when the data are generated with the Gaussian overlap
distribution G(); p, o) from Model 1.
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FIG. 11. The mutual information Ig(X,B) for Gaus-

sian unsupervised learning (Model 1 with ¢ = 1//6,
p = 0). It limits the performance of any estimator J, since
I(J ; B) < I(X; B). The curve —1In(1 — Q,”) is a lower
bound on the mutual information between the Gibbs estima-
tor and B (which would be equal to this bound if the condi-
tional probability distribution of the estimator were Gaussian
with mean Qg# and variance 1 — Q,%. Shown also is the
analogous curve —% In(1— Q,?) for the Bayes estimator with
Qp = \/Q_g. Qg is computed from (44). In the limit @ — co
these two latter curves and the replica information I¢(X ; B),
all converge toward the exact asymptotic behaviour, which
can be expressed as Irisher = %ln(l +a < V'2()\) >). This
latter expression is, for any p, an upper bound for the two
Gaussian curves.

The fact that @)y, as computed with the replica tech-
nique, asymptotically saturates the Cramer-Rao bound
was first noted in [24]. We have shown here that this
manifests itself in the behaviour of the mutual informa-
tion and in the related quantity Ip.y.s defined above.

VII. CONCLUSION

We have studied the mutual information between data
and parameter in a family of unsupervised and super-
vised clustering tasks. We derived exact bounds, exact
asymptotic behaviour, and have compared these results
with replica calculations.

We have restricted the analysis to continuous parame-
ters. The case of discrete parameters is discussed in [3].
In such case the mutual information is upper bounded
by the entropy of the prior distribution on the parameter
space, and converges exponentially to this value.

Most of the results concerning the behaviour of the mu-
tual information, observed for this particular family, are

15

”universal”, in that they will be qualitatively the same
for any problem which can be formulated as either a pa-
rameter estimation task or a neural coding task. This
is in particular the case for the linear bound - that is
the information cannot grow faster than linearly in the
data size -, and the asymptotic behaviours. For smooth
pdf, the large data size (p >> N) behaviour for I, given
by the Fisher information, is I ~ % In£. In the case
of potentials with a discontinuity, or equivalently in the
case of supervised learning of a binary classification, the
asymptotic behaviour is I ~ N In £. These behaviours
can be seen to be valid for any learning machine (see
[1,4,5] for the smooth case, [7] for supervised learning),
N being understood as the number of independent pa-
rameters. In particular, this results in optimal perfor-
mances which depends on p/N and not on p/dy ¢, where
dyc is the Vapnik-Chervonenkis dimension [26] (see in
particular [13] for the smooth case).

We have obtained bounds and exact asymptotic be-
haviours by extending the results in [7] to the case of
unsupervised and supervised learning with patterns cor-
related to the parameter. An interesting feature is that,
for the supervised learning tasks where the patterns are
correlated with the symmetry-breaking direction, half of
the mutual information comes from the patterns alone,
and half from the class information (given the patterns).

Besides the asymptotic regime p large, N arbitrary,
we have also considered the case of large N at any given
value of @ = p/N. In this regime we have both replica
calculations and exact bounds, in particular an upper
bound for the class information and explicit upper and
lower bounds for the mutual information obtained with
the techniques of [7]. The results suggest that the replica
symmetry ansatz give the correct solution. The lower
bound is then quite good whereas the upper bound over-
estimate the mutual information by a factor which keeps
increasing with the data size. We have also seen that
our linear bound is particularly interesting in the case of
retarded classification for & ~ a.. This critical value
a. gives the value of a at which the mutual informa-
tion ceases to increase linearly with the amount of data,
and where generalization begins. Contrary to the asymp-
totic regime, it can be seen to be related to the Vapnik-
Chervonenkis dimension. This fact is confirmed by the
analysis in [25] of the respective roles of N and dy¢ in a
supervised learning task for a model with N # dy¢.

The analysis of the mutual information between data
and parameter we have presented, suggests that it should
be interesting to study other models with the same set of
techniques, e.g. non smooth potentials with a singularity
which is not a simple discontinuity, or models with a
more complicated structure such as multilayer networks,
or support-vector machines [26] which have been recently
studied with statistical mechanics techniques [27].
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APPENDIX: OPPER-HAUSSLER BOUNDS

In this section we derive lower and upper bounds for
the mutual information following Opper and Haussler [7].
We will write P(D|B) for the data distribution given the
parameter, where D is X or (S,X) depending on the
particular model considered.

1. Lower bound

Following [7], we make use of

I(D;B) = J1(D; B) > J;(D; B) (A1)
for any 0 < ¢ < 1, with
Ji(D;B) = — [dB p(B) [dD P(D[B)
In [ dWp(W) (7;,<(,'@,I|Vg)>)t (A2)

(where [ dD means the integration over the continuous
data and the summation over the discrete data, if any).
This holds because

P(BD)
Q(B|D)

is the average over the data of the Kullback divergence
of P(B|D) relative to Q;(B|D) defined by

/ dWp(W

Using the convexity of the logarithm, one lower bounds
J¢ by putting in (A2) the average over the data inside the
logarithm. One then makes use of the independency of
the examples given the parameter, leading to, for any ¢
different from 0 and 1,

>0,

:/dDP(D) /dB P(BD)In

Q«(BD) = p(B) (P(D|B))’

I>1I= / dB p(B) In / dWp(W) [w(B, W)]?
(A3)

with, in the case of smooth unsupervised learning, that
is P(D|B) = P(X|B) defined by (1),
wt(BJ W)

=M (B, W) (A4)

(P(DIW))".
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and, in the case of class learning, that is for P(D|B) =
P(S,X|B) defined by (18):

w (B, W) = (B, W) — e(B, W) (A5)
where
wB,W) = [ depleB) peW) (40
and
a(B, W)= [d€ p(¢|B)*~p€|W)
2s—+10(SEB)O(— SEW) (A7)

In the particular case where the patterns £ are indepen-
dent of the parameter, p(§|W) = p(€), one recovers the
supervised learning case considered in [7]: (B, W) =1
and (B, W) is the probability that B and W dis-
agree on the classification of an example. Note that
v is the normalization factor that makes the mixture

p(€IB)—Vp(€|W)? / 4 a well defined pdf for &.

We perform the rest of the analysis working with (A3)
and (A5) for both supervised and smooth unsupervised
learning, keeping in mind that for the latter case the term
€; must be dropped. It will appear that, precisely, the
asymptotic behaviour will be governed by properties of
7 in the case of smooth learning, and of ¢; in the case of
discontinuous learning, leading respectively to the % Inp
and N Inp behaviours.

Since the quantity (B, W) — (B, W) lies in [0, 1],
for p large the integral in (A5) is dominated by the W
such that v; —e€; is close to 1. Similarly to [7], one will get
that, if the volume V5(B) of W such that v(B, W) —
(B, W) > 1 — § behaves as 6%®) as § — 0, then for
large p the lower bound behaves as d Inp, whith d =
[dB p(B) d(B). For the particular model family we
are considering, this coeflicient and in fact the detailed
behaviour of the bound for both the limit p large and the
limit N large with p/N fixed, are easily derived, as we
show now.

We thus take into account the special structure (2) for
the pdf p(¢|B). In this case the quantities v; and €; de-
pends only on the scalar product of the two parameters,
g = B.W/||B||||W]|. We have

Iy = — / dB p(B) In / g 2(¢.B) [ 4(0) —a(9) "

(A8)
where
v(q) = [Dz [ Dy
exp —(1 =)V (z) -tV (zg +yv/1 - ¢*)
e(¢) = 2 [Dz O(z ny@ —zq—y\/1—¢?)
exp—(1—t)V(z) —tV(zq +y\/1—¢?)
(A10)



Dz and Dy being the Gaussian measures, and with Q
the volumic fraction of parameters having an overlap ¢
with B:

Q(q,B)=/de(W) (¢ — B.W/|[BJ|[[W]]) (A11)

In the above expressions we have assumed for simplicity
the potential to be symmetric - although there is no diffi-
culty in considering non symmetric potentials in the case
of unsupervised learning. Also for simplicity let us re-
strict to the case of the uniform prior on the unit sphere,
in which case the above volume does not depend on B.
Denoting by Sy the surface of the unit sphere in N di-
mension, we have

(A12)
and

==t [d0@) [w@ -]  (A13)

Consider first the large N limit with p = a/N. The
lower bound I, can then be computed by the saddle point
method. One has

) . 1
in = lim ~2 =—In(1-¢%) —alnfyu(g) — &(q)
N—oo 2
(A14)
where ¢ satisfies the saddle point equation
2@' (99 =0 (A15)
dq wlg) =Y.

One can see that 74 = 714, so that the best lower
bound is obtained for ¢ = 1/2. For a given model, the
saddle point equation can be solved numerically (setting
€, = 0 in (A14) if one consider a smooth unsupervised
learning model). More explicit calculations can be per-
formed for the simplest cases. For the Gaussian unsuper-
vised learning defined in (60), with p = 0, we have

-1/2

(1 — 02)2 (1 _ q2)

@) = [1+10 -7~ (416)
and for the standard perceptron supervised learning, we
have 4 = 1 and

() = eol) = ~arcos(a). (A17)
The resulting bounds are shown on figures 2a and 2b.

Expression (A14) is very reminiscent of the expression
of the mutual information obtained with the replica tech-
niques, see (41). If we identify ¢ with /@, the ”order pa-
rameter” g which appears here must be identified as the
Bayes parameter, whereas @, in the replica approach, is
the Gibbs parameter (see section VI).
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The large o limit is obtained by taking the leading
behaviour for ¢ — 1. One gets:

Ye(g) ~1—t(1—-t)(1—q) <V? > (A18)
er(q) ~1—g¢ ge—wo) (A19)

For large a one then gets that the the lower bound on
the mutual information behaves for smooth learning as

. 1 e 2
i~ 5 In (a— <V >) (A20)

4

where we have taken ¢ = 1/2 which gives the largest lower
bound, and for supervised learning as

iy ~ In (a%efv(o)) (A21)

whatever ¢ is.

As can be seen starting from (A13), the leading term
in the large p limit, for IV finite, is the one given by
expressions (A20) and (A21), thatis I ~ &' lnp and I ~
N In p, respectively.

2. Upper bound
Again we follow closely [7]. The first step is to consider
the inequality
P(DB)
(D)

which is true for an arbitrary pdf Q(D) (this follows
from the fact that the difference between the r.h.s. and

I(D;B) < / dB p(B) dD P(D|B) In (A22)

the 1h.s. can be written as a Kullback divergence,
hence an always nonnegative quantity). Taking Q as
P(D|B)

9(D) = [dW p(W)Q(D|W), and rewriting In

Q(D)
as —In [dW p(W) exp—In g((g‘l‘}?v)), the second step
consists in upper bounding the r.h.s. of the above in-
equality by passing the mean over the data inside the

exponential. One gets

I(D;B) < — [dB p(B) In [ dW p(W)

exp— [dD P(D[B) In 552

(A23)

Optimizing with respect to Q, this inequality is a varia-
tional method for bounding the mutual information. For
a smooth distribution, hence for the case of smooth un-
supervised learning, P(D|B) = P(X|B) being defined by
(1), the optimal choice is simply

O(D|W) = P(D|W). (A24)
In the case of a discontinuity or of supervised learning
(that is P(D|B) = P(S, X|B) defined by (18)), the ratio



P(S,X|B)/9O(S, X|W) is not bounded. Following [7] we
thus take

Q(DIW) = [T as(5*|€",B) p(¢"|B)

(A25)
p=1
with ¢s a noisy version of the deterministic rule:
1)
4(S[€, W) = (1 - 0)0(SE.W) + 5 (A26)

where ¢ is a parameter smaller than 1 over which op-
timization will be done to get the best possible upper
bound.

The upper bound then becomes, for supervised learn-

ing,

I < I,=-[dBpB) In[dW p(W)

exp —pDs(B, W) — pD4(B, W, 9) (A27)

where D, and Dy are Kullback divergences related to the
smooth and discontinuous parts of the pdf, respectively:

B . PEB)
Ds(B,W) = /d£ p(¢|B) 1 p(E[W) (A28)
and
) , O(sEB)
Dy(B, W, 6) = / dé p(¢|B) S;El@(Sﬁ-B) I (STE, W)
(A29)

As it is clear from the above equations, the case of smooth
unsupervised learning is obtained by simply dropping the
term Dgy. Conversely, in the case considered in [7] where
there is no correlation between the patterns and the pa-
rameter, the quantity D, is not present (it is zero). We
perform the rest of the analysis for both discontinuous
(supervised) and smooth (unsupervised) learning, keep-
ing in mind that for the latter case the term Dy must be
dropped.

We note that D, and Dy are simply related to the
quantities which appear in the lower bounds, v and e
defined in equations (A6) and (A7), as follows:

8
p,=— |2 A
[&ﬂho (A30)
and
D——1(1—§)— 1 (A31)
a=TmE Ty T My

The next step in [7] is to upper bound again I,;; in such a
way that both the lower and the upper bounds depend in
a simple way on the same quantity (namely €;/,). Here
we will instead keep the (slightly) better bound I, since
it can be easily computed for the particular model family
we are considering.
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We thus specify now the analysis to the case where the
pdf p(€|B) has the special structure (2). Following the
same procedure as for the lower bound in the preceding
section, we get

Iy =—In / dg Q(q) exp—pDs(q) — pDa(g,0) (A32)

with © given by (A12), and D;(q) and Dy(q, d) related to
v:(q) and €(q) at t = 0 according to (A30) and (A31).

Consider first the limit N — oo with a = £ fixed.
Using the saddle point method one has

. g Iub _ 1 2
Tup = A}gnoo ~ =3 In(1 — ¢°) + aDs(q) + aDy(gq, d)
(A33)
where ¢ is given by the saddle point equation
0.
6—qzub(q) =0. (A34)

One should remind that the term Dy is not present in
the case of smooth learning. For supervised learning,
at any given a the optimal choice for § is solution of
2Da(q,6) = 0, that is

4(a)

2~ ) (435)
This is an implicit equation for §, since ¢, solution of
(A34), depends on 4. One should note that €y(q) is the
error rate that results from using a parameter W having
an overlap ¢ with the parameter B defining the rule. At
the optimum Dy takes the nice expression of the binary

entropy associated to the error rate €g(q):

= —€o(q)Ineo(q) — (1 —€0(q)) In(1 — €o(q))-

As for the lower bound, the saddle point equation can
be solved at least numerically for any specific model. For
the Gaussian case we have

lﬂ(l _q2)

Dy (A36)

D,(q)

. (A37)

and for the standard perceptron Ds(q) = 0 and Dy(q) is
given by (A31) and (A17). The upper bounds are shown
on figure 2 for these two models.

Consider now the large a behaviour. We have to take
the limit ¢ — 1. From (A30) and (A31) using (A18) and
(A19) one gets

Ds(g) ~(1—q) <V"? > (A38)
and
) V2 )
Dd(q)N—ln(1—§)—\/1—Q7e V(O)ln2—_5
(A39)



One then gets the behaviour of the upper bound as «
goes to infinity, for smooth learning

1
fup ~ 5 In (e < V'?>) (A40)
and for supervised learning
, é ae _ 2—-9
iyp ~ —aln(l — 5) +1n (?e VO in T) (A41)
In this limit the optimal value of § is given by
2
e — A42
01n(2/9) (442)
which gives the upper bound
iyp =Ina+ O(Inln ). (A43)

One can see that both the upper and lower bounds
have a qualitative behaviour very similar to the one of
the mutual information not only at large a but also at
finite a. In particular when retarded classification occurs,
they have a linear regime on a finite range of a values (see
the related discussion section IVB1).

As for the lower bound, one can check that the leading
term in the large p limit, for N finite, is correctly pre-
dicted by expressions (A40) and (A43), thatis I ~ JInp
and I ~ Nlnp+ O(N Inln p), respectively.
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