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Abstract
In the context of both sensory coding and signal processing, building fac-

torized codes has been shown to be an efficient strategy. In a wide variety of
situations, the signal to be processed is a linear mixture of statistically indepen-
dent sources. Building a factorized code is then equivalent to performing blind
source separation. Thanks to the linear structure of the data, this can be done,
in the language of signal processing, by finding an appropriate linear filter, or
equivalently, in the language of neural modeling, by using a simple feedforward
neural network.

In this paper we discuss several aspects of the source separation problem.
We give simple conditions on the network output which, if satisfied, guarantee
that source separation has been obtained. Then we study adaptive approaches,
in particular those based on redundancy reduction and maximisation of mutual
information. We show how the resulting updating rules are related to the BCM
theory of synaptic plasticity. Eventually we shortly discuss extensions to the
case of non linear mixtures. In all the paper we take care to put into perspective
our work with other studies on source separation and redundancy reduction.
In particular we review algebraic solutions, pointing out to their simplicity but
also their drawbacks.

∗Laboratoire associé au C.N.R.S. (U.R.A. 1306), à l’ENS, et aux Universités Paris VI et Paris
VII.
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Introduction

In the recent years many studies have been devoted to the study of sensory coding
following a general framework initiated by H. Barlow more than thirty years ago
[Barlow 1961]. The general idea is to define a cost function based on the properties one
thinks a neural code should satisfy. Then, given a neural architecture with a simpler
enough neuron model, one derives the parameters of the network (synaptic efficacies,
transfer functions,...) which minimizes this cost function. A great deal of work has
been done on cost functions based on information theoretic criteria [Barlow etal 1989,
Linsker 1988, Atick 1992]. The result for the receptive fields will crucially depend
on the statistical properties of the signal to be processed (visual scenes, olfactory
stimuli,...). Several cost functions have been proposed. One is based on the original
idea of Barlow [Barlow 1961], which is that redundancy reduction should be performed.
This leads to the notion of factorial code [Barlow etal 1989, Redlich 1993]: in the pool
of neurons defining the neural code (the ”output” neurons), each neuron should code
for features statistically independent of the features encoded by the other neurons.
Redundancy reduction has been explored with a lot of details in the case of visual
processing, with a linear neural network model [Atick 1992]. A different proposal has
been promotted by Linsker under the name of infomax principle [Linsker 1988]: one
asks the network to simply maximize the mutual information between the input (the
signal received onto the receptors) and the output (the neural code). Again, most
studies have been performed for linear networks in the context of visual processing
[Linsker 1988, van Hateren 1992, Del Giudice et al 1995]. The predictions of these two
strategies, redundancy reduction and maximization of mutual information, appeared
to be very similar. In fact, we have shown [Nadal and Parga 1994] that, in the low
synaptic noise limit with non linear outputs, infomax implies redundancy reduction,
when optimization is done over both the synaptic efficacies and the non linear transfer
functions. As a result, the optimal neural representation is a factorial code, for both
cost functions in the limit of low processing noise. When noise is present, it can easily
be shown [Atick 1992] that pure redundancy reduction is not a meaningful strategy.
Essentialy, an efficient code is one which gives the independent features, but add some
redundancy to compensate for the noise. This can be studied in detail for a linear
neural network [Del Giudice et al 1995], where one can find, for instance, the number
of meaningful principal components at a given noise level.

In the case of signal processing and data analysis, however, the processing noise
can indeed be neglected. It is then interesting to search for algorithms able to perform
redundancy reduction, and to determine the neural architectures the best adapted to
a given type of signal. Of particular interest is the case where a factorial code can be
found by a feedforward network with no hidden layer. This implies that there exists a
linear combination of the input that produces a factorial code. This arises when the
input (the signal to be processed) itself is a linear mixture of statistically independent
sources. Then finding the synaptic efficacies leading to a factorial code is equivalent,
in the signal processing language, to finding the linear filter performing blind source
separation (BSS). After the pioneering works of Bar-Ness [Bar-Ness 1982] and of
Herault and Jutten [Jutten and Herault 1991], interest for source separation has con-
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siderably increased during the recent years [Comon 1994, Cardoso 1989, Molgedey
and Schuster 1994]. It is interesting that the link between signal processing and sen-
sory coding is present in this field from the beginning: Jutten and Herault proposed
a now well-known heuristic for performing BSS, using a neuromimetic architecture
for analysing a signal coming from muscles. Conversely, experience gained with the
study of this algorithm allowed for new approaches in the study of the olfactory sys-
tem [Hopfield 1991, Rospars and Fort 1994]. On the neuro-psychological side, it is
involved in the coktail party effect (one is able to focus on one speaker, separating his
speech from all the ambiant noise). In signal processing BSS can be used for making
cancellers, that is systems for substracting the noise from the signal [Bar-Ness 1982].
In fact BSS has a wide variety of applications in data processing (see, e.g., [Deville
and Andry 1995]). In speech and sound processing, there is an additional complica-
tion: the signal is not simply a linear superposition of sources, but also a convolution
[Jutten and Herault 1991]. In this paper, we will however not consider the case of
blind source deconvolution.

Although working on linear mixtures of sources, researchers soon realized that
finding independent components might be a useful strategy for any data processing.
The term Independent Component Analysis (ICA) was then promoted as a general-
ization of BSS to non Gaussian data, and as an alternative to the standard principal
component analysis (PCA) [Jutten and Herault 1991, Comon 1994]. To one of his
papers on BSS Comon has given the title: ”Independent Component Analysis: a new
concept ?” [Comon 1994]. To this question one may answer no, since this concept
has been already proposed by Barlow at the begining of the sixties, under the name
of factorial coding - and even before by Attneave [Attneave 1954], although in a less
precise way, under the name of ”economy of coding”. Still, it is quite interesting that,
many years after Barlow suggested that factorial coding could be a major strategy
used by Nature for sensory coding, engineers arrived at the same conclusion in the
context of signal analysis. In the same vein, it has been shown [Comon 1994] that
there is a particularly well chosen cost function for BSS, and this special cost function
is nothing but the redundancy reduction cost function mentioned above in the context
of sensory coding. While this convergence in the definition of relevant concepts may
appear today not surprising, one should remember that this has not always been the
case. In particular there are stimulating discussions by Barlow [Barlow 1961] where
he is opposing the Nature’s and engineer’s approaches to coding.

In the case of BSS framework, as we said previously one is working under the
hypothesis that linear processing is able to produce a factorial code. The main goal
in BSS is then to find efficient algorithms in order to compute the filter (or synaptic
efficacies) that leads to source separation. Besides heuristic algorithms such as the
Herault-Jutten (HJ) algorithm [Jutten and Herault 1991], there are adaptive and
gradient descent algorithms based on appropriate cost functions [Bar-Ness 1982, Burel
1992, Comon 1994, Laheld and Cardoso 1994, Bell and Sejnowski 1995, Delfosse
and Loubaton 1995, Amari 1996], and algebraic solutions [Féty 1988, Cardoso 1994,
Tong et al 1990, Molgedey and Schuster 1994, Shraiman 1993] in which the filter is
algebraically derived from a particular set of measurements on the data.

In this paper we present new results on BSS. We deal with different mathematical
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aspects of BSS, keeping in mind the possible application to sensory systems modeling,
and the general framework of factorial coding and redundancy reduction. Because
there is a widespread literature on this subject that belongs to both sensory coding
and signal processing, we found necessary to put into perspective our contribution
with previous works on source separation and redundancy reduction. In fact we will
use a general framework, namely the reduction to the search for an orthogonal matrix
(as explained in section 1), which will appear convenient for both deriving the new
results and presenting related works - some times in a simpler way as compared to their
original formulation. First, in section 2, we give necessary and sufficient conditions
for the network to be a solution of the ICA. These conditions are that a given small
set of cumulants have to be set to zero. The number of cumulants which enter in any
of these conditions is smaller than what is usually found in the literature. Next, in
section 3, we present a short review of known algebraic solutions, making use of the
same framework. In the next two sections we deal with adaptive approaches. In section
4, after reminding of the relationship between maximizing mutual information and
minimizing redundancy (hence building a factorial code), we discuss several possible
approaches based on these information theoretic concepts. We consider with more
details one of them, and show how the resulting updating rules are related to the
BCM theory of synaptic plasticity [Bienenstock etal 1982]. In section 5, we discuss
shortly adaptive algorithms from cost functions based on cumulants, these costs being
built from the conditions derived in section 2. Eventually in section 6 we also shortly
discuss possible extensions to non linear processing. Perspectives are given in the
Conclusion.

1 Linear mixtures of independent sources

1.1 Statement of the problem

Here and in the rest of the paper as well, we will consider the case where the factorisa-
tion problem has a priori an exact solution using a linear filter or a feedforward neural
network with no hidden units (we will however comment, whenever appropriate, on
the possible extensions to cases where a multilayer network would be needed). This
means that we are assuming the input data to be a linear mixture of independent
sources. More precisely, we assume that at each time t the observed data S(t) is a N
dimensional vector given by

Sj(t) =
N∑

a=1

Mj,aσa(t), j = 1, ..., N (1)

(in vector form S = Mσ) where the σa are N independent random variables, of
unknown probability distributions, and M is an unknown, constant, N ×N matrix,
called the mixture matrix. By hypothesis, all the source cumulants are diagonal, in
particular the two point correlation at equal time K0:

K0
a,b ≡< σa(t)σb(t) >c= δa,bK

0
a (2)
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where δa,b is the Kronecker symbol. Here and in all this paper < z1z2...zk >c denotes
the cumulant of the k random variables z1, ..., zk. Without loss of generality, one can
always assume that the sources have zero average:

< σa >= 0, a = 1, ..., N (3)

(otherwise one has to estimate the average of each input, and substract it from that
input).

Performing source-separation (or equivalently factorizing the output distribution)
means finding the network ”couplings” or ”synaptic efficacies” J (the linear filter J
in the language of signal processing), such that the N -dimensional (filter, or network)
output h

hi(t) =
N∑

j=1

Ji,jSj(t), i = 1, ..., N (4)

gives a reconstruction of the sources: ideally, one would like to have J = M−1. How-
ever, as it is well known and clear from the above equations, one can recover the
sources only up to an arbitrary permutation, and up to a sign-scaling factor for each
source: nothing tells us which output should be equal to which source; one cannot
distinguish Mσ from M′σ′ with M′ = MΛ and σ′ = Λ−1σ, where Λ is any diagonal
matrix having non zero diagonal elements. In particular, one can fix the absolute value
of the arbitrary diagonal matrix by asking for J to be the inverse of MK0 1

2 - which
is equivalent to state that all we can expect is to estimate normalized cumulants of
the sources, such as the k-order normalized cumulants ζa

k :

ζa
k ≡

< σk
a >c

< σ2
a >

k/2
c

, a = 1, ..., N (5)

To conclude, any solution J that one may find will thus be equal to the inverse
of MK0 1

2 up to what we will call a ”sign-permutation”, that is the product of a
permutation by a diagonal matrix with only ±1 diagonal elements.

As it is usually done in the study of source separation, we have assumed that
the number of sources is known (we have N observations, e.g. N captors, for N
independent sources), and we assume M to be invertible. The difficulty comes from
the fact that the statistics of the sources are not known, the mixture matrix is not
known and is not necessarily (and in general it is not) an orthogonal matrix.

1.2 Reducing the problem to finding an orthogonal matrix

An elementary, but extremely useful remark, first made by Comon [Comon 1994] and
Cardoso [Cardoso 1989], is that the search for a solution J can be reduced to the
search for an orthogonal matrix. Indeed, the J we are looking for has in particular
to diagonalize the two point connected correlation of the inputs; as it is well known,
the diagonalization of a symmetric positive matrix defines a matrix only up to an
arbitrary orthogonal matrix. Hence, performing first whitening will leave us with an
orthogonal matrix, which has to be determined from, e.g., higher cumulants. Because
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we will make an extensive use of this fact, and in order to introduce our notation, we
give below a detailed derivation.

So let us write that J sets the variance output to the N ×N identity matrix 1N :

< hhT >c= 1N (6)

This reads, in term of the correlation C0 between the input data,

C0 ≡< SST >c= MK0MT (7)

as
JC0J

T = 1N (8)

One should keep in mind that C0 is what one can measure, and the r.h.s. of equation
(7) is its expression in function of the unknowns. Every solution of this equation (8)
can be writen as

J = Ω C0
−1/2 (9)

where Ω is an orthogonal matrix:

Ω ΩT = 1N (10)

The inverse of the square root of C0 is defined from the principal component analysis
of the real positive matrix C0. If we denote by J0 the matrix whose rows are the
orthonormal eigenvectors of C0, and by Λ0 the diagonal matrix of the associated
eigenvalues, one has

J0C0J
0T = Λ0

J0J0T = 1N (11)

and
C0

−1/2 = J0T Λ
− 1

2
0 J0 (12)

Now suppose that one first projects the input data onto the normalised principal
components, that is one computes h0 defined by:

h0 = Λ
− 1

2
0 J0S, (13)

Then, taking J as in (9) and replacing C0
−1/2 by its expression (12), h can be written

as
h = ΩJ0T Λ

− 1
2

0 J0S = ΩJ0T h0 (14)

SinceO ≡ ΩJ0T is again an orthogonal matrix, finding J means finding an orthogonal
matrix O such that the output

h = Oh0 (15)

is a vector of N mutually independent components.
This means equivalently that, going from S to h0, leads to the problem of sepa-

rating an orthogonal mixture. Let us check that h0 is indeed an orthogonal mixture
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of the sources. First we write, in term of the unknowns, that the rows of J0 are the
eigenvectors of C0:

J0MK0MT J0T = Λ0 (16)

Then this implies that Λ
− 1

2
0 J0MK0 1

2 is an (unknown) orthogonal matrix which, for
later convenience, we define as the transposed of some orthogonal matrix O0:

Λ
− 1

2
0 J0MK0 1

2 = O0T (17)

O0O0T = 1N

Hence, the projected data h0 as defined in (13) can be expressed, in function of the
unknown sources, as an orthogonal mixture:

h0(t) = O0T K0 −1/2σ(t) (18)

Eventually, from (18) and (15), one can also write h in terms of the sources as

h = X K0 −1/2σ (19)

where X is the orthogonal matrix OO0T . Clearly, the desired solution is, up to a
sign-permutation, O0 for O or equivalently 1N for X.

We conclude this section with some additional remarks.

1. In reducing the source separation problem to the search for an orthogonal ma-
trix, we have seen that one can choose different, although equivalent, formu-
lations. Each of them may be specifically useful depending on the particular
choosen approach. In particular, in the next section 2, where we will determine
the family of couplings J solution of a given set of equations, it will be conve-
nient to use the formulation (19) taking X as unknown; next, for the algebraic
approach in section 3, we will use only the quantities related to the principal
components, that is h0 and O0 with the basic equation (18); and in section 5 we
will consider adaptive algorithms for computing either J itself or O as defined
in (15).

2. In all this paper we will mainly consider the ideal situation where one would
have access to the exact values of the cumulants. We can make however some
elementary remarks onto the practical cases, where cumulants are computed
empirically (e.g. as time averages performed over some large enough time win-
dow T ). In practice, all what is required implicitely is to have, for the sources,
small enough cross-cumulants when these cumulants are defined from the chosen
averaging procedure. Furthermore, this has to be true only for the cumulants
which one has to compute in a given approach. We will not address the problem
of the accuracy of the solution as a function of the quality of the estimation of
cumulants.

3. In many sensory coding and data analysis problems, PCA is a natural thing to
do (clearly for close to Gaussian data, but also for much more complex cases,
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e.g. in the analysis of time series). In all cases, one can go beyond the strict
PCA, using the freedom in the choice of the orthogonal matrix Ω. An important
example is in the application of redundancy reduction to the modeling of the first
stages in the visual system [Linsker 1988, Atick 1992, Li and Atick 1993]. There,
after whitening (in fact an extension of whitening which takes noise processing
into account), this freedom is used to satisfy as much as possible some additional
constraints, such as locality of receptive fields and invariance by dilatation. As
a result, one finds [Li and Atick 1993] a block-diagonal orthogonal matrix which
leads to a multiscale representation of the visual scenes.

2 Criteria based on cross-cumulants of output ac-

tivities

The main purpose of this section is to present two new necessary and sufficient con-
ditions for J to be a solution of the ICA. These conditions are that a given set of
cumulants, associated to correlations at equal time, are set to zero. For comparison
we will also give other conditions based on correlations at equal time and on time cor-
relations which are related to known algebraic solutions. Eventually we will comment
on the relationship and differences with other criteria proposed in the literature.

2.1 Condition on a set of non symmetric higher cumulants

The claim is that for J to be a solution, it is sufficient (and of course necessary) that
J performs whitening and sets altogether to zero a given set of cross-cumulants of
some given order k, the number of which being only of order N2. More precisely, we
have the following theorem:

Theorem 1 Let k be an odd integer at least equal to 3 for which the k-cumulants of
the sources, ζa

k , a = 1, ..., N , are not identically null; then

• (i) if at most one of these k-cumulants is null, J is equal to the inverse of M
(up to a sign-permutation and a rescaling as explained above), if and only if one
has:

for every i, i′, {
< hihi′ >c= δi,i′

< h
(k−1)
i hi′ >c= 0 for i 6= i′.

(20)

where h is the output vector as defined in (4).

• (ii) If only 1 ≤ L ≤ N − 2 k-order cumulants are nonzero, then any solution J
of (20) is the product of a sign-permutation by a matrix which separates the L

sources having non zero k- cumulants, and such that the restriction of J MK0 1
2

to the space of the N − L other sources is still an arbitrary (N − L)× (N − L)
orthogonal matrix.
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One should note that the second line in (20) means that the matrix < h
(k−1)
i hi′ >c

is diagonal, but that the values of the diagonal terms, to be named below ∆i, need
not be known in advance. The detailed proof is given in Appendix A. Here we give
only the sketch of it, in the case where all the k-cumulants are non zero. First, solving
for the diagonalization of the 2nd order cumulant, one uses the representation in term
of orthogonal matrices as in section 1. As a result, we have seen that one can write
h as h = X K0 −1/2σ, where X is the unknown orthogonal matrix. Replacing h by
this expression in the higher order cumulants, one then uses several times the fact
that X is orthogonal. In particular, because we are considering for each pair i, i′ a
cumulant which is linear in hi′ , one can obtain an equation for each Xi,a separately.
As a result, for each pair i, a, either Xi,a is zero or factorizes into the product of two
terms, one depending only on i, and one depending only on a (namely the inverse of
the cumulant ζa

k ). From the condition that XXT has zero off-diagonal elements, one
then gets that X has on each row and each column a unique non zero element, and
this implies that X is a sign-permutation.

Some remarks are in order:

1. In the case of N − L ≤ N null cumulants, for a typical solution L outputs
will then appear as still correlated with one another, yet uncorrelated with the
other N − L outputs. One has then to try another value of k, but only for the
subspace of yet unseparated sources.

2. As one would expect, the conditions of application of the theorem are not sat-
isfied, for any k, in the case of Gaussian sources - for which all the cumulants
of order higher than 2 are zero, and nothing more than whitening can be done.

3. For k even, one can easily find an example showing that the conditions (20) are
not sufficient (see Appendix A).

An interesting application of this theorem concerns the adaptive algorithm of
Herault and Jutten [Jutten and Herault 1991]. In its simplest version, this algorithm
aims at setting to zero the two point correlation and the cross-cumulants < h2

i hi′ >c

for i 6= i′. If the algorithm does reach that particular fixed point, Theorem 1 asserts
that full source separation has been obtained.

It is not difficult to find other families of cumulants of a given order k for which
a similar theorem will hold. We illustrate this by giving an anologous result for a set
of cumulants involving more indices.

Theorem 2 Let k and m be two integers with m at least equal to 2 and k strictly
greater than m, for which the k-cumulants of the sources, ζa

k , a = 1, ..., N , are not
identically null; then

• (i) if at most one of these k-cumulants is null, J is equal to the inverse of M
(up to a sign-permutation and a rescaling as explained above), if and only if one
has:
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for every i, i′, i′′,{
< hihi′ >c= δi,i′

< h
(k−m)
i hm−1

i′ hi′′ >c= 0 for at least two non identical indices.
(21)

where h is the output vector as defined in (4).

• (ii) If only 1 ≤ L ≤ N − 2 k-order cumulants are nonzero, then any solution J
of (21) is the product of a sign-permutation by a matrix which separates the L

sources having non zero k- cumulants, and such that the restriction of J MK0 1
2

to the space of the N − L other sources is still an arbitrary (N − L)× (N − L)
orthogonal matrix.

The proof is given in Appendix B. In the above theorem, the cases k = m and
m = 1 are excluded so that (21) never reduces to the conditions (20) of Theorem 1.
In fact, these conditions (20) are a subset of the conditions (21), corresponding to the
cases i = i′. However, Theorem 2 is not exhausted by Theorem 1: no condition on the
parity of k (the order of the cumulants) is required for the second theorem. Theorem
2 shows that only a subset of all the k order cumulants with three indices is enough
in order to obtain separation. The case m = 2 is related to the joint diagonalization
approach of [Cardoso and Souloumiac 1993], which we will discuss in section 3 where
algebraic solutions are presented.

2.2 Conditions related to algebraic solutions

In the above approach, one has N2 + N unknowns (the mixture matrix elements and

the k-cumulants of the sources), and we use more equations, namely N(N+1)
2

+ N2

equations in the case of theorem 1. Coming back to our result, the counting argument
suggests that one should be able to separate the sources with less conditions, that
is exactly N2 + N . One possibility would have been that diagonalizing the second
order cumulants and the symmetric part of the k-order cumulants in (20) would do.
This is not the case: taking N = 2, one can easily check that in doing so unwanted
solutions appear. However, looking at the derivation of the above theorems one sees
that it results from the fact that we are using cumulants linear in at least one of the
hi. One has thus to try cumulants which are symmetric in i, i′ and linear in both hi

and hi′ . This appears to be easy, and one gets another family of sufficient conditions
with exactly N2 + N conditions for N2 + N unknowns. An additional advantage is
that, because of the linearity in hi, hi′ , one can solve the equations algebraically: in
fact these conditions appear to be related to (or to the extension of) known algebraic
solutions - which we will then review in section 3.

There is however a price to pay for working with the minimal number of equations:
the restriction that we had in Theorem 1 and Theorem 2, namely that of having non
zero k-order statistics for the sources, is replaced here by the much more restricting
condition of having different cumulants, as stated below.
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2.2.1 Conditions on symmetric higher cumulants

We first consider conditions based on correlations at equal time.

Theorem 3

• (i) Let all the cumulants ζa
4 , as defined in (5) for k = 4, be different from one

another, then J is equal to the inverse of M (up to a sign-permutation and a
rescaling as explained above), if and only if one has:

for every i, i′, {
< hihi′ >c= δi,i′

< hi
∑N

i′′=1(hi′′)
2 hi′ >c= 0 for i 6= i′.

(22)

where h = {hi, i = 1, ..., N} is the output vector as defined in (4).

• (ii) If one or several sets of sources have a comon value for ζa
4 (but different

from one set to the other), then any J solution of (22) is the product of a
sign-permutation by a matrix which separates the sources having a distinct 4-
cumulant, and separate the sets globally - the restriction of J MK0 1

2 to the
subspace of a given set is still an arbitrary orthogonal matrix.

The elementary proof is short enough to be given here. As before, we first solve the
diagonalization of the two point correlation, and express h in term of the unknown
orthogonal matrix X. The higher order cumulants in (22) can then be expressed as

< hi

N∑
i′′=1

(hi′′)
2 hi′ >c=

∑
a

Xi,a {
∑
i”

(Xi”,a)
2} ζa

4 Xi′,a (23)

But since X is orthogonal,
∑

i”(Xi”,a)
2 = 1, and the above equation (23) reduces to

< hi

N∑
i′′=1

(hi′′)
2 hi′ >c=

∑
a

Xi,a ζa
4 Xi′,a (24)

What we want is to impose

< hi

N∑
i′′=1

(hi′′)
2 hi′ >c= ∆iδi,i′ (25)

where the ∆i are yet indeterminate constants. Comparing the two equations (24)
and (25), one sees that X gives the eigen-decomposition of a matrix, which is in fact
already diagonal. This implies that if all the eigenvalues, that is the ζa

4 , are distinct, X
is a sign-permutation. Otherwise X is, up to a sign-permutation, the identity matrix
on the subspace corresponding to the distinct eigenvalues, and an arbitrary ` × `
orthogonal matrix on each subspace associated to an eigenvalue of degeneracy `. The
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algebraic solution associated to the above theorem was proposed by Cardoso [Cardoso
1989] (see section 3.3).

Finally, we note that in the above statement one may replace
∑

i h
2
i by any Q(h)

being a scalar depending polynomially on h (and by extension any analytical function
of h), such that, for any orthogonal matrix X, denoting its rows by Xa, a = 1, ..., N ,
the N numbers < Q(σaXa)σ

2
a >, a = 1, ...N are distinct (here every σa should be

understood as the normalised source σa√
<σ2

a>c

). In practice, it may not be easy to prove

that such a condition holds, even for the simplest cases, say Q(h) =
∑

i h
k
i with k

even at least equal to 4.

2.2.2 Conditions on time correlations

We consider now conditions related to algebraic solutions based on time correlations
[Féty 1988, Tong et al 1990, Belouchrani 1993, Molgedey and Schuster 1994]. These
are extremely simple. If the sources present time correlations, namely the 2-point
correlation matrix K(τ) for some time delay τ > 0,

K(τ)a,b ≡< σa(t) σb(t− τ) >c (26)

has non zero diagonal elements:

K(τ)a,b = δa,b Ka(τ) (27)

then one can state:

Theorem 4

• (i) Let all the cumulants Ka(τ), as defined in (27) be different from one another,
then J is equal to the inverse of M (up to a sign-permutation and a rescaling
as explained above), if and only if one has:

for every i, i′, {
< hi(t)hi′(t) >c= δi,i′

< hi(t) hi′(t− τ) >c= 0 for i 6= i′
(28)

where h = {hi, i = 1, ..., N} is the output vector as defined in (4).

• (ii) If one or several sets of sources have a comon value for Ka(τ) (but different
from one set to the other), then any J solution of (28) is the product of a sign-
permutation by a matrix which separates the sources having a distinct Ka(τ)-

cumulant, and separate the sets globally - the restriction of J MK0 1
2 to the

subspace of a given set is still an arbitrary orthogonal matrix.
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The proof is essentially the same as the one of theorem 3: one writes

< hi(t) hi′(t− τ) >c=
∑
a

Xi,a Ka(τ) Xi′,a (29)

What we want is to impose

< hi(t) hi′(t− τ) >c= ∆iδi,i′ (30)

where the ∆i are yet indeterminate constants. These two equations (29) and (30) play
the same role as (24) and (25) in the case of theorem 3, and the rest of the proof
follows in the same way.

In practical situation, averages are conveniently computed as time averages over a
time window of some size T . In general, it could happen that the two point correlation
Ka(τ) is a function of the particular time window [t−T, t] considered. However if, on
that time window, the sources are sufficiently independent (Ka(τ) is diagonal), since
the mixture matrix does not depend on time, the solution J obtained from the data
collected on that single time window is an exact, time independent, solution.

2.3 Comparison with other criteria

To conclude this section, we comment shortly on other criteria, namely those pro-
posed by Comon [Comon 1994]. This author has shown that independent component
analysis is obtained from maximizing the sum of the square of k-order cumulants, for
any chosen k > 2. That is, it is sufficient to find an (absolute) minimum of

C ≡ −
N∑

i=1

< (hi)
k >2

c (31)

for any given k > 2, after whitening has been performed. This is a very nice result
since it involves only N cumulants. However, one should note that defining a cost
function is not exactly the same as giving explicit conditions onto the cumulants
(even though one can easily derive a cost function from these conditions, as we will
do in section 5). In fact, the minimization of a cost function such as (31) does involve
implicitly the computation of order N2 cumulants, as it should (see the counting
argument at the begining of this subsection). This can be seen in two ways. First,
since the value of the k-cumulants at the minimum is not known, the minimization
of C given in (31) is not equivalent to a set of equations for these cumulants; then, if
one wants to perform a gradient descent, one has to take the derivative of the cost
function with respect to the couplings J, and this will generate cross cumulants. It
is the resulting fixed point equations which then matters in the counting argument
(we will come back to the algorithmic aspects in section 5). Second, Comon showed
also that the minimization of (31) is equivalent to setting to zero all the non diagonal
cumulants of the same order k (still in addition to whitening):

< hi1hi2...hik >c = 0, for every set of k non identical indices. (32)

Hence, what we have obtained is that only a small subset of these cumulants have to
be considered.
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3 Algebraic solutions

In this section we present four families of algebraic solutions. This short revue on
algebraic solutions is intended to point out to their advantages and drawback, to insist
onto their simplicity when formulated within the framework described in section 1,
and to relate them to the results of section 2.

3.1 Using time delayed correlations

In the case where each source σa shows time correlations, it has been shown [Féty
1988, Tong et al 1990, Belouchrani 1993, Molgedey and Schuster 1994] that there is
a simple algebraic solution using only second-order cumulants. More precisely, let us
assume that the 2-point correlation matrix K(τ) for some time delay τ > 0,

K(τ)a,b ≡< σa(t) σb(t− τ) >c (33)

has non zero diagonal elements:

K(τ)a,b = δa,b Ka(τ). (34)

It follows [Molgedey and Schuster 1994] that source separation is obtained by asking
for the rows of J to be the left-eigenvectors of the following non symmetric matrix

C(τ) C0
−1 (35)

where C(τ) is the 2nd order cumulant of the inputs at time delay τ :

C(τ) =< S(t) ST (t− τ) >c . (36)

The equivalent, but more natural, aproach of [Féty 1988, Tong et al 1990] is to work
with a symmetric matrix, making use of the reduction to the search for an orthogonal
matrix presented in section 1. Indeed, let us first perform whitening (note that this
implies the resolution of the eigen-problem for C0, a task of the same complexity
as the computation of its inverse which is needed in (35)). We then compute the
correlations at time delay τ of the projected inputs h0 (as given by (13)), that is the
matrix < h0(t) h0T (t − τ) >c. Using the expression (18) of h0 as a function of the
sources, one sees that this matrix is in fact symmetric, and given by:

< h0(t) h0T (t− τ) >c= O0T K0 −1/2 K(τ ) K0 −1/2 O0 (37)

This shows that the desired orthogonal matrix is obtained from solving the eigen
decomposition of this correlation matrix (37).

Remark: in the present section averages might be conveniently time averages, such
as < A(t) >=

∫
dt′ A(t− t′) exp(−t′/T ). In that case, τ has to be small compared to

T in such a way that e.g. K0 is the same when averaging on t′ < t and on t′ < t− τ .
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3.2 Using correlations at equal time

Quite recently Shraiman [Shraiman 1993] showed how to reduce the problem of source
separation to the diagonalisation of a certain symmetric matrix D built upon third
order cumulants. We refer the reader to [Shraiman 1993] for the elegant derivation
of this result. Here we will show how to derive this matrix from the approach intro-
duced in the previous sections 1.2 and 2. We will do so by working with the k-order
cumulants, giving thus a generalization of Shraiman’s work to any k at least equal to
3.

We start with the expression of the data projected onto the principal components
as in (18):

h0(t) = O0T K0 −1/2σ(t) (38)

One computes the k-order statistics < h0
i1
h0

i2
...h0

ik
>c. From (38), these cumulants

have the following expression in term of sources cumulants:

< h0
i1
h0

i2
...h0

ik
>c=

N∑
a=1

O0
a,i1

...O0
a,ik

ζa
k (39)

where the ζa
k are the normalised cumulants as defined in (5). Now, one multiplies

two such cumulants having k− 1 identical indices, and one sums over all the possible
values of these indices. One sees that this will produce the contraction of k−1 matrices
O0 with their transposed, leading to just a 1N , and only two terms O0 will remain.
Explicitly, we consider the symmetric matrix, to be referred to as the k-Shraiman
matrix,

Di,i′ =
∑

i1,i2,...,ik−1

< h0
i h

0
i1
...h0

ik−1
>c< h0

i′h
0
i1
...h0

ik−1
>c (40)

which, from (39), is equal to

Di,i′ =
N∑

a=1

O0
a,iO0

a,i′(ζ
a
k )2 (41)

The above formula is nothing but an eigen-decomposition of the matrix D. This shows
that the rows of O0 are the eigenvectors of the k-Shraiman matrix, the eigenvalues
being (ζa

k )2 for a = 1, ..., N . A solution of the source separation problem is thus given
by the diagonalisation of one k-Shraiman matrix (e.g. taking k = 3 or k = 4).

3.3 A simple solution using fourth order cumulants

We now consider the solution based on fourth order cumulants [Cardoso 1989], which
is directly related to the results obtained in section 2.2.1. Let us consider the following
cumulants of the input data projected onto the principal components, h0:

C4 i,i′ ≡ < h0
i

N∑
i′′=1

h02
i′′h

0
i′ >c (42)
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In term of the orthogonal matrix O0 and of the cumulants ζa
4 it reads

(C4)i,i′ =
N∑

a=1

O0
a,iζ

a
4

N∑
i′′=1

(O0
a,i”)

2 O0
a,i′ (43)

Since O0 is orthogonal, this reduces to the equation

C4 = O0 K4 O0T (44)

where K4 is the diagonal matrix of the 4th order cumulants,

(K4)a,b = δa,bζ
a
4 (45)

This shows that O0 can be found by solving for the eigen decomposition of the
cumulant C4.

Before proceeding to the next subsection, we make a remark which apply to any
of the algebraic solutions considered up to now in this section. One can see that all
of them are based on the same two facts: (i) the diagonalization of a real positive
symmetric matrix leaves an arbitrary orthogonal matrix, which in turn can be used
to diagonalize another symmetric matrix; (ii) but because one is dealing with a linear
mixture, applying this to two well chosen correlation matrices is precisely enough to
solve the BSS problem (in particular we have seen that working with two symmetric
matrices provides at least as many equations as unknowns).

3.4 The joint diagonalization approach

All the algebraic solutions discussed so far suffer from the same drawback, which is
that sources having the same statistics at the orders under consideration will not be
separated. Moreover numerical instability may occur if these statistics are different
but very close to one another. One may wonder whether it would be possible to work
with an algebraic solution involving more equations than unknowns, in such a way that
indetermination cannot occur. A positive answer is given by the joint diagonalization
method of Cardoso and Souloumiac [Cardoso and Souloumiac 1993] and Belouchrani
[Belouchrani 1993]. We give here a different (and slightly more general) presentation
than the one in [Cardoso and Souloumiac 1993]. In particular we will make use of the
theorems of section 2.1. We will consider only correlations at equal time. The case of
time correlations is discussed in [Belouchrani 1993].

The basic idea is to joint diagonalize a family of matrices Γr

Γr
α,β = < h0

αh0
βQr(h

0) >c (46)

where h0 is the principal component vector as defined in (13) and the Qr are well
chosen scalar functions of it, the index r labeling the function (hence the matrix) in
the family. One possible example is the family defined by taking for r all possible
choices of k − 2 indices k ≥ 3,

r ≡ (α1, ..., αk−2), 1 ≤ α1 ≤ α2... ≤ αk−2 ≤ N (47)
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and
Qr=(α1,...,αk−2)(h

0) = h0
α1

...h0
αk−2

(48)

The case considered in [Cardoso and Souloumiac 1993] is k = 4. Using the expression
of h0 as function of the normalized sources,

h0(t) = O0T K0 −1/2σ(t) (49)

where O0 is the orthogonal matrix that we want to compute (see section 1.2), one
can write

Γr = O0TΛrO0 (50)

where Λr is a diagonal matrix with components

Λr
a = ζa

k O0
a,α1

...O0
a,αk−2

(51)

As it is obvious on (50), the matrices Γr are jointly diagonalizable by the orthogonal
matrix O0. However, if for at least a pair a, b one has Λr

a = Λr
b for every r, O0 is not

the only solution (up to a sign-permutation). Actually this never happens, as shown
in [Cardoso and Souloumiac 1993] for k = 4. Let us give a direct proof valid for any
k.

We consider one particular orthogonal matrix O which jointly diagonalize all the
matrices of the family, and let h = Oh0. By ihypothesis, the matrix OΓrOT is
diagonal, that is

< hihi′h
0
α1

...h0
αk−2

>c = 0 for i 6= i′ (52)

and this for every choice of the k−2 indices. Multiplying the l.h.s by Oi1,α1 ...Oik−2,αk−2

and summing over the greek indices, one gets that for any choice of i1, ..., ik−2,

< hihi′hi1 ...hik−2
>c = 0 for i 6= i′ (53)

We can now make use of our theorem 2: one can write (53) for the particular choice
i1 = i2 = ... = ik−2 = i′, which gives exactly the conditions (21) for k and m = 2,
and we can thus apply Theorem 2 (equivalently, one can deduce from (53) that these
cumulants are zero whenever any two indices are different, and then use (32), that is
Comon’s result [Comon 1994].

For the simplest case k = 3, these conditions are exactly those of Theorem 2: joint
diagonalizing the N matrices Γα =< h0h0T h0

α >c is strictly equivalent to imposing the
conditions (21) for k = 3 (and m = 2) (one should note however that the number of
conditions is larger than the minimum required according to Theorem 1). For k > 3,
the number of conditions in (53) is larger that the number of conditions in (21). To
conclude, one sees that, at the price of having a number of conditions larger than the
minimum required (in order to guarantee that no indetermination will occur), source
separation can be done with an algebraic method, even when there are identical source
cumulants.

Remark: in practical applications, cumulants are empirically computed, and thus
the matrices under consideration are not jointly diagonalizable. For this reason a
criterion is considered in [Cardoso and Souloumiac 1993] which, if maximized, provides
the best possible approximation to joint diagonalization. In the present paper we do
not consider this aspect of the problem.
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4 Cost functions derived from information theory

We switch now to the study of adaptive algorithms. To do so, one has first to define
proper cost functions. Whereas in the next section we will consider cost functions
based on cumulants, in the present section we will consider the particular costs derived
from information theory. In both cases we will take advantage of the results obtained
in section 2. We will see that an important outcome is the derivation of updating
rules for the synaptic efficacies closely related to the Bienenstock, Cooper and Munro
(BCM) theory of cortical plasticity [Bienenstock etal 1982].

4.1 From infomax to redundancy reduction

Our starting point is the main result obtained in [Nadal and Parga 1994], namely
that maximization of the mutual information between the input data and the output
(neural code) leads to redundancy reduction, hence to source separation for both
linear and non linear mixtures. To be more specific, we first give a short derivation of
that fact (for more details see [Nadal and Parga 1994]. We consider a network with
N inputs and p outputs, and nonlinear transfer functions fi, i = 1, ..., p. Hence the
output V is given by a gain control after some (linear or non linear) processing:

Vi(t) = fi(hi(t)), i = 1, ..., p (54)

In the simplest case (in particular in the context of BSS), h is given by the linear
combination of the inputs:

hi(t) =
N∑

j=1

Ji,jSj(t), i = 1, ..., p (55)

However here the hi(t) can be as well any deterministic (hence not necessarily linear)
functions of the inputs S(t). We will in particular make use of this fact in section 6:
there hi will be the local field at the output layer of a one hidden layer network with
nonlinear transfer functions. The mutual information I between the input and the
output is given by [Blahut 1988]:

I ≡
∫

dpV dNSP (V,S) log
P (V,S)

Q(V) P (S)
. (56)

This quantity is well defined only if noise processing is taken into account (e.g. res-
olution noise). In the limit of vanishing additive noise, one gets that maximizing
the mutual information is equivalent to maximizing the (differential) output entropy
H(Q) of the output distribution Q = Q(V),

H(Q) = −
∫

dpV Q(V) log Q(V), (57)

In the r.h.s. of (57), one can make the change of variable V → h, using

p∏
i=1

dViQ(V) =
p∏

i=1

dhiΨ(h) (58)
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and
dVi = f ′

i(hi)dhi, i = 1, ..., p. (59)

This gives

H(Q) = −
∫

dhΨ(h) ln
Ψ(h)∏p

i=1 f ′
i(hi)

(60)

This implies that H(Q), hence I, is maximal when Ψ(h) factorizes,

Ψ(h) =
p∏

i=1

Ψi(hi), (61)

and at the same time for each output neuron the transfer function fi has its derivative
equal to the corresponding marginal probability distribution:

f ′
i(hi) = Ψi(hi), i = 1, ..., p. (62)

As a result, infomax implies redundancy reduction. The optimal neural representation
is a factorial code - provided it exists.

4.2 The specific case of BSS

Let us now come back to the BSS problem for which the h are taken as linear
combinations of the inputs. By hypothesis, the N -dimensional input is a linear mixture
of N independent sources. In the following we consider only p = N .

One should note that the factorial code is obtained by the network processing
before applying the nonlinear function at each output neuron. From the algorithmic
aspect, as suggested in [Nadal and Parga 1994] this gives us two possible approaches:

• One is to optimize globally, that is to maximize the mutual information over
both the synaptic efficacies and the transfer functions. In that case, infomax is
used in order to perform ICA - the nonlinear transfer functions being there just
to enforce factorization.

• Another possibility is to first find the synaptic efficacies leading to a factorial
code, and then compute the optimal transfer functions (which depend on the
statistical properties of the stimuli). In that case, one may say that it is ICA
which is used in order to build the network which maximizes information trans-
fer. Still, if one considers that the transfer functions are chosen at each instant
of time according to (62), the mutual information becomes precisely equal to
minus the redundancy cost function R:

R ≡
∫

dhΨ(h) ln
Ψ(h)∏p

i=1 Ψi(hi)
(63)

In the context of blind source separation the relevance of the redundancy cost
function has been recognized by Comon [Comon 1994] (one should mention
also a work by Burel [Burel 1992] where a different but related cost function is
considered).
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Remark on the terminology: the quantity (63), called here, and in the literature
related to sensory coding, the redundancy, is called in the signal processing literature
(in particular in [Comon 1994] the mutual information, as a short name for the mutual
information between the random variables hi (the outputs). But this mutual informa-
tion, that is the redundancy (63), should not be mistaken for the mutual information
(56) that we introduced above, which is defined in the usual way, that is between the
input and the output of a processing channel [Blahut 1988]. To avoid confusion, we
will consistently use the name redundancy for (63), and mutual information for (56).

Although it is appealing to work with either the mutual information or the re-
dundancy, doing so may not be easy. It is convenient to rewrite the output entropy,
making in (60) the change of variable h → S as done in [Bell and Sejnowski 1995].
Since the input entropy H(P ) is a constant (it does not depend on the couplings J),
the quantitiy which has to be maximized is

E = ln | J | +
∑

i

< log ci(hi) > (64)

where | J | is the absolute value of the determinant of the coupling matrix J, and
< . > is the average over the output activity hi. The function ci can be given two
interpretations: it is either equal to f ′

i if one considers the mutual information, or to
Ψi if one considers the redundancy (the mutual information for the optimal transfer
function at a given J). In the first case, one has to find an algorithm for searching for
the optimal transfer functions; in the second case, one has to estimate the marginal
distributions.

The cost (64) can be given another interpretation. In fact, it was first derived in
a maximum likelihood approach [Gaeta and Lacoume 1990, Pham et al 1992]: it is
easy to see that (64), with ci = Ψi, is equal to the (average of) the loglikelihood of
the observed data (the inputs S), given that they have been generated as a linear
combination of independent sources with the Ψi as marginal distributions.

In the two following subsections we consider practical approaches.

4.3 Working with a given family of transfer functions

We have seen that, at the end of the optimization process, the transfer functions will
be related to the probability distributions of the independent sources. Since precisely
these distributions are not known - and cannot be estimated without first performing
source separation! -, the choice of a proper parametrized family may be a problem.
Still, any prior knowledge on the sources and any reasonable assumption may be used
to limit the search to a family of functions controlled by a small number of parameters.

A practical way to search for the best f ′
i is to restrict the search to an a priori

chosen family of transfer functions. In [Pham et al 1992] a practical algorithm is
proposed, based on a particular choice combined with an expansion of the cost close
to a solution. An other, and very simple, strategy has been tried in [Bell and Sejnowski
1995] where very promising results have been obtained on some specific applications.
Their numerical simulations suggest that one can take transfer functions with a simple
behaviour (that is, e.g., with one peak in the derivative when the data show only one
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peak in their distribution), and to optimise just the gain and the threshold in each
transfer function - which means fitting the location of the peak and its height.

4.4 Cumulant expansion of the marginal distributions

When working with the redundancy, one would like to avoid to have to estimate the
marginal distributions from histograms, since this would take a lot of time. One may
parametrize the marginal probability distributions, and adapt the parameters at the
same time one is adapting the couplings: this is exactly the same as working with
the mutual information with a parameterized family of transfer functions. Another
possibility, already considered in [Gaeta and Lacoume 1990] and [Comon 1994], is
to replace each marginal by a simple probability distribution with the same first
cumulants as the ones of the actual distribution. Very recently this approach has
been used also in [Amari 1996]. We consider here this expansion with a slight different
point of view, in order to relate this approach to the results of section 2.

The general idea is the following. We know that if we had Gaussian distributions,
every required computation would be easy. Now, if N is large, each field hi is a sum of
a large number of random variables, so that before adaptation (that is with arbitrary
synaptic efficacies), the marginal distribution for hi is a Gaussian. However, through
adaptation, each hi becomes proportional to one source σα - whose distribution is in
general not a Gaussian, and not necessarily close to Gaussian. Still, there is another,
and stronger, motivation for considering such an approximation. Indeed, the result
of section 2, which is that conditions on a limited set of cumulants are sufficient in
order to obtain factorization, strongly suggests to replace the unknown distribution
with a simple distribution having the same first cumulants up to some given order.

So let us consider the systematic close-to-Gaussian cumulant expansion of Ψi(hi)
[Abramowitz and Stegun 1972]. At first non trivial order, it is given by

Ψi(hi) ≈ Ψ1
i (hi) ≡ Ψ0(hi) [1 + λ

(3)
i

hi(h
2
i − 3)

6
], (65)

where Ψ0(hi) is the normal distribution

Ψ0(hi) ≡
1√
2π

exp(−h2
i

2
), (66)

and λ
(3)
i is the third (true) cumulant of hi:

λ
(3)
i ≡< h3

i >c . (67)

In the above expression (65) we have taken into account that, as explained in section
1, one can always take

< hi >= 0. (68)

and
< h2

i >c= 1. (69)
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In the cost function (64), that is

E = ln | J | +
∑

i

∫
dhiΨi(hi) log Ψi(hi) (70)

we replace Ψi(hi) by Ψ1
i (hi), and expand the logarithm ln[1 + λ

(3)
i

hi(h
2
i−3)

6
]. Then the

quantity to be maximized is, up to a constant,

E = ln | J | +
1

6

N∑
i=1

[λ
(3)
i ]2 (71)

Since optimization has to be done under the constraints (69), we add Lagrange mul-
tiplyers:

E(ρ) = E −
N∑

i=1

1

2
ρi(< h2

i >c −1) (72)

Taking into account (68), one then obtains the updating equation for a given synaptic
efficacy Jij:

∆Jij ∝ − dE(ρ)

dJij

dE(ρ)

dJij

= − JT −1
ij − < h3

i >c< (h2
i − 1)Sj > + ρi < hiSj > (73)

We now consider the fixed point equation, that is ∆Jij = 0. Multiplying by Ji′j and
summing over j, it reads:

δii′ = ρi < hihi′ >c − < h3
i >c< h2

i hi′ >c (74)

together with < h2
i >c= 1 for every i. The parameters ρi are obtained by writing the

fix point equation (74) at i = i′, that is

ρi = 1 + < h3
i >2

c . (75)

Note that, in particular, ρi > 0 for all i.
It follows from the result (20) of section 2, that the exact, desired, solutions are

particular solutions of the fixed point equation (74), giving a particular absolute
minimum of the cost function with the close-to- Gaussian approximation. However,
there is no guarantee that no other local minimum exists: there could be solutions for
which (74) is satisfied with non-diagonal matrices < hihi′ >c and < h2

i hi′ >c.
Remark: one may wonder what happens if one first performs whitening, computing

the h0, and then uses the mutual information between h0 and h. This is what is
studied in [Comon 1994] where at lowest order, the cost function (71) is found to be
the sum of the square of the third cumulants. This can be readily seen from equation
(71), where now J is the orthogonal matrix that takes h0 to h, and thus ln |J | is a
constant.
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4.5 Link with the BCM theory of synaptic plasticity

Let us now consider a possible stochastic implementation of the gradient descent (73).
Since there are products of averages, it is not possible to have a simple stochastic
version, where the variation of Jij would depend on the instanteneous activities only.
Still, by removing one of the averages in (73) one gets the following updating rule:

∆Jij = ε { JT −1
ij − ρi hiSj + < h3

i >c h2
i Sj } (76)

where ε is a parameter controling the rate of variation of the synaptic efficacies.
The parameters ρi can be taken at each time according to the fixed point equation
(75). It is quite interesting to compare the above updating equation (76) with the
BCM theory of synaptic plasticity [Bienenstock etal 1982]. In the latter, a qualitative
synaptic modification rule was proposed in order to account for experimental data on
neural cell development in the early visual system. This BCM rule can be seen as a
non linear variant of the Hebbian covariance rule. One of its possible implementations
reads, in our notation:

∆Jij = ε γi { − hiSj + Θih
2
i Sj } (77)

where γi and Θi are parameters possibly depending on the current statistics of the cell
activities. The particular choices Θi =< h2

i >, γi = 1 or Θ−1
i have been studied with

some detail [Intrator and Cooper 1992, Law and Cooper 1994]. The two main features
of the BCM rule are: (i) there is a synaptic increase or decrease depending on the post
synaptic activity relatively to some threshold Θi which, itself, varies according to the
cell mean activity level; (ii) at low activity there is no synaptic modification. Since
ρi is positive, the rule we derived above is quite similar to (77), with a threshold Θi

equal to
<h3

i >c

ρi
. The main difference is in the constant (that is activity independent)

term JT −1
ij . This term plays a crucial role: it couples the N neural cells. One should

note that in fact the BCM rule has been mostly studied for a single cell, and only
crude studies of its possible extension to several cells have been performed m[Scofield
and Cooper 1985]. One should note also that in our formulae we have always assumed
zero mean activity (< Sj >= 0, hence also < hi >= 0); if this were not the case,
the corresponding averages have to be subtracted (Sj → Sj− < Sj > for every j,
hi → hi− < hi > for every i).

Finally we note that, if the third cumulants are zero, one has to make the expansion
up to fourth order. The corresponding derivation and the conclusions are similar:
apart from numerical factors, essentially the square of the third cumulant in the cost
is replaced by the square of the fourth cumulant, and one gets again a plasticity rule
similar to (76), that is with the same qualitative behaviour as the BCM rule.

23



5 Adaptive algorithms from cost functions based

on cumulants

5.1 A gradient descent based on Theorem 1

Among the algorithms using correlations at equal time, only algebraic solutions (dis-
cussed in section 3) and the recently proposed deflation algorithm [Delfosse and
Loubaton 1995], which extracts the independent components one by one, guaran-
tee to find them in a rather simple and efficient way. All other approaches suffer from
the same problem: empirical updating rules based on high moments, as the Herault-
Jutten algorithm, and gradient methods based on some cost function (most often
a combination of cumulants), may have unwanted fixed points (see [Comon 1994,
Delfosse and Loubaton 1995] and ref. therein).

We point out that, whatever the algorithm one is working with, the conditions
derived in section 2 can be used in order to check whether a correct solution has
been found. Clearly, one can also define cost functions from these conditions, by just
taking the sum of the square of every cumulant which has to be set to zero. We thus
have a cost function for which, in addition to having only good solutions as absolute
minima, the value of the cost at an absolute minimum is known: it is zero. Of course
many other families of cumulants could be used for the same purpose. The possible
interest of the one we are dealing with is that it involves a small number of terms.
However this does not imply a priori any particular advantage as far as efficiency is
concerned.

For illustrative purpose, we consider with more detail a gradient descent for a
particular choice of cost based on our Theorem 1 in section 2. Specifically, we ask
for the diagonalization of the two point correlation and of the third order cumulants
< hi h2

i′ >c. Here again we use the reduction to the search for an orthogonal
transformation, as explained in section 1. We thus consider the optimisation of the
orthogonal matrix. The cost is then defined by

E =
1

2

∑
i6=i′

< hi h2
i′ >2

c − 1

2
Tr[ρ(OOT − 1N)] (78)

where ρ is a symmetric matrix of Lagrange multipliers, and hi has to be written in
term of O (see (15) section 1.2):

hi =
N∑

α=1

Oi,α h0
α (79)

the h0
i being the projections of the inputs onto the principal components, as given by

(13).
The simplest gradient descent scheme is given by

Oi,α

dt
= − ε

dE
dOi,α

(80)
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where ε is some small parameter. From (78) one derives the derivative of E with
respect to Oi,α:

dE
dOi,α

=
∑

i′( 6=i)

[
< hi h2

i′ >c < h0
αh2

i′ >c + 2 < hi′ h2
i >c < hi′hih

0
α >c

]
−

∑
i′

ρi,i′ Oi′,α (81)

One can either adapt ρ according to dρ
dt

= −εdE
dρ

, or choose ρ imposing at each

time OOT = 1N , which we do here. The equation for ρ is obtained by writing the
orthonogonality condition for O, (O + dO)(OT + dOT ) = 1N , that is:

O dOT + dO OT = 0. (82)

Paying attention to the fact that ρ is symmetric, one gets

ρi,i′ =
1

2

∑
k( 6=i′)

[
< hi h2

k >c < hi′h
2
k >c + 2 < hk h2

i >c < hkhihi′ >c

]

+
1

2

∑
k( 6=i)

[
< hi h2

k >c < hi′h
2
k >c + 2 < hk h2

i′ >c < hkhihi′ >c

]
(83)

Replacing in (81) ρ by its expression (83), multiplying both sides of (81) by Oi′,α for
some i′ and summing over α, and using (79), one gets the rather simple equations for
the projections of the variations of O onto the N vectors Oi:∑

α

Oi′,α
dOi,α

dt
= − ε

∑
α

Oi′,α
dE

dOi,α

≡ − ε ηi,i′ (84)

where:

ηi,i′ =
3

2

[
< h3

i′ >c < hi h2
i′ >c − < h3

i >c < hi′ h2
i >c

]
+

∑
k

< hkhihi′ >c

[
< hk h2

i >c − < hk h2
i′ >c

]
(85)

From the above expression, one can easily write the (less simple) updating equa-
tions for either O (multiplying by Oi′,α and summing over i′), or J (multiplying by[
OΛ

− 1
2

0 O0

]
i′,j

and suming over i′).

One should note that the Lagrange multiplier ρ ensures that, starting from an
arbitrary orthogonal matrix O(0) at time 0, O(t) remains orthogonal. In practice,
since this orthogonality is enforced only at first order in ε, an explicit normalization
will have to be done from time to time This is an efficient method used in statistical
mechanics and field theory [Aldazabal et al 1985].

Although we derived the updating equation from a global cost function, one may
also derive an adaptative version. One possibility is to use the approach considered
in the preceding section: in each term containing a product of averages, one average
< . > is replaced by the instantaneous value. The remaining average is computed
as a time average on a moving time-window. An alternative approach is to replace
each average by a time average, taking different time constants in order to obtain an
estimate of the product of averages -and not the average of the product.

25



5.2 From feedforward to lateral connections

We conclude with a general remark concerning the choice of the architecture. In all the
above derivations, we worked with a feedforward network, with no lateral connections.
As it is well known, one may prefer to work with adaptable lateral connections, as
it is the case in the Herault-Jutten algorithm [Jutten and Herault 1991]. One can
in fact perform any given linear processing with either one or the other architecture
- it is only the algorithmic implementation which might be simpler with a given
architecture. Let us consider here this equivalence. A standard way to use a network
with lateral connections is the one in [Jutten and Herault 1991]. One has a unique link
from each input Si to the output unit i, and lateral connections L between output
units. The dynamics of the postsynaptic potentials ui of the output cells is given by

dui

dt
= −

∑
i′
Li,i′ ui′ + Si (86)

If L has positive eigenvalues, then the dynamics converge to a fixed point h given by
L h = S. As a result, after convergence, the network gives the same linear processing
as the one with feedforward connections J given by

L = J−1. (87)

In the particular case considered above, one gets the updating rule for Lj,i′ = J−1
j,i′

by multiplying (84) by
[
OΛ

1
2
0O0

]
i,j

and summing over i.

For a given adaptive algorithm derived from the minimization of a cost function,
one can thus work with either the feedforward or the lateral connections. It is clear
that, in general, updating rules will look different whether they are for the lateral
or feedforward connections. However, it is worth mentioning that, if we consider the
updating rule after whitening (which is to assume that a first network is performing
PCA, providing the h0

α as input to the next layer), then the updating rule for the
feedforward and the lateral connections are essentially the same. Indeed, the feedfor-
ward coupling matrix allowing to go from h0 to h is an orthogonal transformation O;
hence the associated lateral network has as couplings the inverse of that orthogonal
transformation, that is its transposed, OT .

6 Possible extensions to non linear processing

There has been already works proposing redundancy reduction criteria for non lin-
ear data processing [Nadal and Parga 1994, Haft et al 1995, Parra 1996], and for
defining unsupervised algorithms in the context of automatic data clustering [Hinton
et al 1995]. Here we just point out that all the criteria and cost functions discussed
in the present paper may be applied to the output layer of a multilayer network for
performing Independent Component Analysis on nonlinear data. Indeed, if a multi-
layer network is able to perform ICA, this implies that, in the layer preceeding the
output, the data representation is a linear mixture. The main questions are then how
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many layers are required in order to find such a linear representation, and is it always
possible to do so ?

Assuming that there exists at least one (possibly non linear) transformation of the
data leading to a set of independent features, we suggest two lines of research. The first
one is based on general results on function approximation. It is known that a network
with one hidden layer with sufficiently many units is able to approximate a given
function with any desired accuracy (provided sufficiently many examples are available)
[Cybenko 1989, Hornik et al 1991, Barron 1993]. Then there exists a network with one
hidden layer and N outputs such that the ith output unit gives an approximation of
the particular function which extracts the ith independent component from the data.
Hence we know that it should be enough to take a network with one hidden layer. A
possible approach is then to perform gradient descent onto a cost function defined for
the output layer which, if minimized, means that separation has been achieved (we
know that the redundancy will do). If the algorithm does not give good results, then
one may increase the number of hidden units.

Another approach is suggested by the study of the infomax-redundancy reduction
criteria [Nadal and Parga 1994]. It is easy to see that the cost function (64) has a
straightforward generalization to a multilayer network where every layer has the same
number N of units. Indeed, if one calls Jk the couplings in the kth layer, and cki(hki)
the derivative of the transfer function (or the marginal distribution, see section 4.2)
of the ith neuron in the kth layer, the mutual information between the input and the
output of the multilayer network can be written as

EL =
∑
k

ln | Jk | +
∑
k

∑
i

< log cki(hki) > (88)

Hence the cost EL is a sum of terms, each one tending to impose factorisation in
a given layer. This allows an easy implementation of a gradient descent algorithm.
Moreover, this additive structure of the cost suggests a constructive approach: one
may start with one layer; if factorisation is not obtained, one can add a second layer,
and so on (one should note however that the couplings of a given layer have to be
readapted each time one adds a new layer).

7 Conclusion

In the present paper we have presented several new results on Blind Source Sepa-
ration. Focusing on the mathematical aspects of the problem, we obtained several
necessary and sufficient conditions which, if fulfilled, guarantee that separation has
been performed. These conditions are on a limited set of cross-cumulants, and can be
used either for defining an appropriate cost function, or just in order to check, when
using any BSS algorithm, that a correct solution has been reached. Next we showed
how algebraic solutions can be easily understood, and for some of them generalized,
within the framework of the reduction to the search for an orthogonal matrix.

Eventually we discussed adaptive approaches, the main focus being on cost func-
tions based on information theoretic criteria. In particular, we have shown that the
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resulting updating rule appears to be, in a loose sense, Hebbian and more precisely
quite similar to the type proposed by Bienenstock, Cooper and Munro in order to
account for experimental data on the developement of the early visual system [Bi-
enenstock etal 1982]. We also showed how some cost functions could be conveniently
used for non linear processing, that is for, say, a multilayer network.

In all cases, we payed attention to relate our work to other similar approaches.
We showed how the reduction to the search for an orthogonal transformation is a
convenient tool for analysing the BSS problem, and finding new solutions. This, of
course, does not mean that one cannot perform BSS without whitening, and indeed
there are interesting approaches to BSS in which whitening is not required [Laheld
and Cardoso 1994].
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Appendix A: proof of Theorem 1

Let us consider a matrix J for which (20) is true. First we use the fact that J diag-
onalize the two point correlation. Hence, with the notation and results of section 1,
we have to determine the family of orthogonal matrices X such that, when

h = XK0 −1/2σ (1)

the k-order cumulants in (20) are zero. Using the above expression of h, we have for
any k-order cumulant in (20):

< h
(k−1)
i hi′ >c=

N∑
a=1

(Xi,a)
(k−1)Xi′,aζ

a
k (2)

where the ζa
k are the normalized k-cumulants

ζa
k =

< σk
a >c

< σ2
a >

k/2
c

, a = 1, ..., N (3)

A.1 The case of N non zero source cumulants

We first consider the case when for every a, ζa
k is not zero.

Since we want the k-order cumulants to be zero whenever i 6= i′, we can write

∆iδi,i′ =
N∑

a=1

(Xi,a)
(k−1)Xi′,aζ

a
k (4)

for some yet indeterminate constants ∆i. Using the fact that X is orthogonal, we
multiply both sides of this equation by Xi′,a = XT

a,i′ for some a, and sum over i′. This
gives

∆iXi,a = (Xi,a)
(k−1)ζa

k (5)

There are now two possibilities, for each pair (i, a): either Xi,a = 0, or Xi,a is non
zero (and then ∆i as well), and we can write

X
(k−2)
i,a = εi,a

∆i

ζa
k

(6)

where εi,a is 1 or 0. For k odd, one has then

Xi,a = εi,a[
∆i

ζa
k

]
1

k−2 (7)

We now use the fact that X is orthogonal; first for each i the sum over a of the X2
i,a

is one, hence for at least one a εi,a is nonzero - and it follows also that for every i ∆i

is non zero. Secondly, for every pair i 6= i′,
∑

a Xi,aXi′,a = 0. Then, from (7), we have∑
a

εi,aεi′,a(ζ
a
k )

2
k−2 = 0 (8)
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The l.h.s. is a sum of positive terms, hence each of them has to be zero. It follows
that for every a either εi,a or εi′,a is zero (or both). The argument can be repeated
exchanging the roles of the indices i and a, so that it is also true that for each pair
a 6= a′, for each i either εi,a or εi,a′ is zero (or both). Hence X is a matrix with, on
each row and on each column, a single nonzero element, which, necessarily, is then
±1: X is what we called a sign-permutation, and this completes the proof of part
(i) of the theorem for the case where the k-order cumulants are non zero for every
source.

Remark: for k even, there is a sign indetermination when going from X
(k−2)
i,a to

Xi,a. Hence one cannot write that
∑

a Xi,aXi′,a is a sum of positive numbers. In fact,
taking k = 4 and N even, one can easily build an example where the conditions (20)
are fulfiled with at least one solution X which is not a sign permutation. For instance
let N = 4 and ζa

4 = z for every a. Then the equations (20) are fulfilled for X defined
by:

X =
1

2


1 1 1 −1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1

 (9)

A.2 The case of L < N non zero source cumulants

Now we consider the case where only L < N k-order cumulants are nonzero (and
this will include the case of only one source with zero cumulant). Without loss of
generality, we will assume that they are the first L sources (a = 1, ..., L). We have
to reconsider the preceding argument. It started with equation (4) in which, now,
the r.h.s can be considered as a sum over a = 1, ..., L. It follows that a particular
family of solutions is the set of block-diagonal matrices X, with a L× L block being
a sign-permutation matrix, followed by a (N −L)× (N −L) block being an arbitrary
(N − L) × (N − L) orthogonal matrix. We show now that these are, up to a global
permutation, the only solutions.

Since the k-cumulants are zero for a > L, we have now the following possibilities
for each i:

1. ∆i = 0 and Xi,a = 0, a = 1, ..., L;

2. ∆i 6= 0, Xi,a = 0, a > L, and for a = 1, ..., L (6) is valid with at least one εi,a

non zero.

By applying an appropriate permutation, we can assume that it is the first ` indices,
i = 1, ..., `, for which ∆i 6= 0. Hence X has a non zero upper-left ` × L block, X1,
which satisfies all the equation derived previously (in particular X1X1T = 1N , but
with i = 1, ..., ` and a = 1, ..., L; and a non zero lower-right (N − `)× (N −L) block,
X2, for which the only constraint is X2X2T = X2TX2 = 1N . It follows from the
discussion of the case with non zero cumulants that X1 has a single non zero element
per line and per column, which implies that this is a square matrix: ` = N , and this
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completes the proof. In addition, if only one source has zero k-order cumulant, then
the X2 matrix is just a 1×1 matrix, whose unique element is thus ±1. Hence, in that
case, it is in fact all the N sources which are separated.

Appendix B: proof of Theorem 2

In the first part of the proof, we proceed exactly as in Appendix A. We reduce the
problem to the search of an orthogonal matrix X such that, when

h = XK0 −1/2σ (10)

the k-order cumulants in (21) are zero. Using the above expression of h, we have for
any k-order cumulant in (21):

< h
(k−m)
i hm−1

i′ hi′′ >c=
N∑

a=1

(Xi,a)
(k−m)Xm−1

i′,a Xi′′,aζ
a
k (11)

where the ζa
k are the normalized k-cumulants as in (3). Now we write that these

quantities are zero whenever at least two of the indices i, i′, i′′ are different:

∆iδi,i′δi′,i′′ =
N∑

a=1

(Xi,a)
(k−m)Xm−1

i′,a Xi′′,aζ
a
k (12)

for some yet indeterminate constants ∆i. Using the fact that X is orthogonal, we
multiply both sides of this equation by Xi′′,a for some a for which ζa

k is non zero, and
sum over i′′. This gives

∆iXi′,aδi,i′ = (Xi,a)
(k−m) (Xi′,a)

(m−1)ζa
k (13)

Now, either Xi′,a = 0, or Xi′,a 6= 0 and then

∆iδi,i′ = (Xi,a)
(k−m) (Xi′,a)

(m−2)ζa
k (14)

At this point the proof differs from the one of theorem 1, and is in fact simpler.
For i 6= i′ the r.h.s. of the above equation is 0. Because Xi′,a 6= 0 and k is strictly
greater than m, we obtain Xi,a = 0. Hence, for every a such that ζa

k 6= 0, there is at
most one i for which Xi,a 6= 0. Since X is orthogonal, this implies that its restriction
to the subspace of non zero ζa

k is a sign permutation.
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