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Abstract

We address the problem of blind source separation in the case of a time
dependent mixture matrix. For a slowly and smoothly varying mixture matrix,
we propose a systematic expansion which leads to a practical algebraic solution
when stationary and ergodic properties hold for the sources.

Resumé
Nous considérons le probléeme de la séparation aveugle de sources dans le cas
d’une matrice de mélange variant lentement et continuement avec le temps.
Nous proposons un développement systématique conduisant & une solution
algébrique dans le cas ou les sources satisfont & certaines conditions de
stationarité et d’ergodicité.
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Introduction

The problem of source separation arises in many different field, both in signal process-
ing (speech, radar,...) and in neural computation (”coktail-party” effect, separation
of odors,...). In all these cases one has to separate different independent ”sources”
(voices, odors,...) that appear linearly superposed (mixed) when gathered by a set of
sensors. Although the data have a linear structure, the difficulty of the task is that the
”mixture matrix”, that is the set of coefficients in the linear superposition, is unknown
- hence the name of ”blind source separation” (BSS). Since the early proposals of
Herault and Jutten [10] and of Bar-ness [2], a lot of effort have been devoted to the
search of efficient algorithms for performing BSS (see, e.g., [7, 5, 6, 8, 11, 12, 3, 13, 1]).
In the standard case, the mixture matrix is a constant (it does not change with time).
Then the linear structure of the data allows to perform BSS by applying some con-
stant linear filter to the output of the array of sensors, which is computed from some
analysis of the statistics of these outputs.

In the present paper we address the issue of BSS for time-dependent mixture ma-
trices. This more complicated situation may arise if, e.g., the sources are moving with
respect to the data collecting system [10]. Clearly, with no other prior knowledge, one
cannot expect in that case to separate the sources at each instant of time. However,
through some adaptive procedure, one may hope to obtain good performances in aver-
age, or a reasonable prediction of the mixture matrix based on previous observations.
In this paper we propose such an approach to blind source separation with a time
dependent mixture matrix for the particular situation where the following properties
are expected to hold: (i) the time dependency of the mixture matrix is smooth and
slow as compared to the typical time scale of the sources; (ii) the source dynamics
satisfy some stationary and ergodic properties. More precisely we will propose a sys-
tematic expansion leading to an algebraic solution based on the measure of a limited
number of correlations between a well chosen set of combinations of input data.

1 Blind Source Separation: A Reminder

1.1 Linear mixtures of independent sources

The standard paradigm of BSS is the following. The input data are assumed to be
a linear mizture of independent sources. More precisely, at each time ¢ the observed
data S(t) is an N dimensional vector given by

S;i(t) = f: M;a0u(t), j=1,..,N (1)

(in vector form S = M) where the o, are N statistically independent variables, of
unknown probability distributions, and M is an unknown N x N matrix, called the
mizture matriz. In the simplest case, M is time independent.

By hypothesis, all the source cumulants are diagonal, in particular the second



order cumulant at equal time K9 is of the form:
Koy =< 04(1)0p(t) >c= dupKy, (2)

where g5 is the Kronecker symbol. Without loss of generality, one can always assume
that the sources have zero average:

<0,>=0, a=1,.,N (3)

(otherwise one has to estimate the average of each input, and substract it from that
input).

Performing BSS means finding the linear filter, that is a N x N matrix J, such
that the N-dimensional filter ouput h

gives a reconstruction of the sources: ideally, one would like to have J = M. How-
ever, as it is well known and clear from the above equations, one can recover the
sources only up to an arbitrary permutation, and up to a multiplicative factor of
arbitrary sign for each source. In particular, this means that the cumulant K° is arbi-
trary: one can always assume the sources to have unit variance, K(?’a =1l,a=1,..,N.

As it is usually done in the study of source separation, one assumes that the num-
ber of sources is known (there are N observations, e.g. N captors, for N independent
sources), and one assumes M to be invertible. The difficulty comes from the fact that
the statistics of the sources are not known, the mixture matrix is not known and is
not necessarily (and in general it is not) an orthogonal matrix.

1.2 BSS From Time Correlations

A lot of work has been done in order to define efficient BSS algorithms (see, e.g.,
[10, 7, 5, 6, 8, 11, 12, 3, 13, 1]. We will not at all make a review of known algorithms.
For our purpose, it will however be convenient to consider one particular technique,
namely the algebraic approach based on time correlations [9, 14, 4, 11, 13].
We thus assume that the 2nd order cross cumulant matrix K(7) for some time
delay 7 > 0,
K(T)ap =< 04(t) ob(t — 7) >, (5)

has non zero diagonal elements:
K(T)ap = 0ap Kaa(T) (6)

Then J diagonalizes Cy and C(7) simultaneously, where Cj is the 2nd order cumulant
at equal times,
Cy =< SST > .= MK°M” (7)

and C(7) is the 2nd order cumulant of the inputs at time delay 7:

C(r) =< S(t) ST(t — 7) >e = M K(r) MT. 8)
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Finding J is then an easy to solve algebraic problem [9, 14, 4, 11, 13]. One possible
way for computing J is to first perform the principal component analysis of the data
(diagonalization of Cp), which determines J up to an orthogonal matrix [6]. This
orthogonal matrix is then obtained as the one which diagonalizes the matrix C(7)
projected onto the principal components (see e.g. [13] for details).

2 Time dependent mixtures

2.1 Formulation of the Problem

Let us consider now the case of a time-dependent mixture matrix, M = M(t), which
is a smoothly and slowly varying as compared to the typical time scale of the sources.
More precisely, we assume that there exists some time scale T' such that, on any time
window of size T', one has a sufficient statistics of the sources (that is their cross-
cumulants estimated by averages over this time window are null), and the mixture
matrix is almost constant: the norm of the matrix dM/dt is small compared to 1/7.
Here and in the following, average (at time t) of a quantity A will thus mean an
average over the time window [t — T, t], and we will compute it as

< A@) >r= | ! d%' Alt— 1), )

Hence, we have for example

Co = <S(t)ST(t) >=<M@t)at)e" )M (t) >,

<S(t)Ss"(t) > = OT d%'M(t-t’)a(t-t’)ch(t—t')MT(t—t'), (10)

and
C(r) = <S()S"(t—17) >=<M(t)ot)o(t — )M (t —7) >
<s@st-7> = [ WMo -1)oTt -7 - M -7 - 1)(11)

2.2 Optimal constant filter

If the time dependency of M is very weak, one can try an adiabatic approximation: for
each time window [t—T, t] one can compute a time independent filter matrix J;. That
is, on that particular time window, one analyses the data as if they were generated by
some linear mixture with a time independent mixture matrix. The subscript ¢ added
to J is a reminder that J, computed in this way, is associated to this particular time
interval [t — 7T, t] (since the true mixture matrix is evolving with time, the constant
matrix Jp that will be computed from data of a different time interval [¢' — T, t'] will
be different). One may ask J; to perform source separation in average over that time
window [t—T, t] (e.g. one can ask for the outputs of the filter to have cross-cumulants
as small as possible when these cumulants are computed from time averages over this
time window).



One possibility would be to compute the filter matrix as the one which minimizes
some convenient criterium measuring the quality of source separation. This is not
what we will do, since here and in the following we want to make an explicite use of
the hypothesis that the mixture matrix is slowly varying. A convenient choice is then
to compute J; as the common set of left eigenvectors of the two cumulants Cy and
C(7), exactly as one would do it if M was time independent (see section (1.2)). But,
in order to use the same technique as for a constant M, one has to deal with two
symmetric matrices. However C(7) may not be a symmetric matrix due to the time-
dependency of M (and this asymmetry is in fact a signature of the non constancy of
the mixture matrix). One can rather compute J; from the diagonalization of Cy and
C*(7), where C*(7) is the symmetric part of C(7):

C*(r) = 5 [C(r) + C(n)"]. (12)

N —

The strategy for computing J; is then as follows (as shortly explained in section (1.2)
and detailed in [13]). One first perform the principal component analysis, which means
computing the orthogonal matrix € such that Co = Q7 AQ where A is the diagonal
matrix whose diagonal elements are the eigenvalues of Cy. Then J; is searched for as
J, = (’JA’%Q, where O is another orthogonal matrix. This matrix is chosen as the one
which diagonalizes the matrix C*(7) after projection onto the principal components,
that is the matrix A~2QC*(7)QTA~2. In such a way J,CoJ7” and J,C*(r)J7 are
diagonal matrices, which is the desired result.

In addition we will see that this way of computing a constant filter matrix is
precisely what we need for the expansion we propose in the next section.

2.3 Towards a systematic expansion

In order to get a better estimate of the mixture matrix (or of its inverse) for a given
time window [t — T, t], one may try to estimate M(t — t') for ¢’ between 0 and 7 in
a linear expansion in t'. Instead of computing one matrix J;, one will then compute
two matrices. More generally, performing an expansion up to some given order £ in
t'/T, one will have to compute k£ + 1 matrices. In term of the assumptions presented
in section (2.1), as we will show in the next section such an expansion will lead to
performing BSS on [t — T, t] up to a given order in TdM/dt.

The above strategy requires to store the data during the time window [t — T, ]
in order to compute the optimal filter matrix for that time window [t — T, ¢]: this
implies an off line processing. Let us however comment briefly on the use of such
an approach for online processing. One may use as a prediction for J,,r the result
of the computation done on the previous window [t — 7T, t]. Then it is clear that,
for instance, the optimal constant filter matrix J;,7 will be obtained from the linear
expansion performed on [t — T, t]. More generally, one may compute J for the time
window [t, t+ T] at order k in ¢'/T from an expansion at order k + 1 on [t — T, t].

We now come back to the (off line) processing of data for one given window,
dealing with the linear expansion.



3 First Order Expansion

3.1 Linear approximation within a time window

The hypothesis on the slow evolution of the mixture matrix means that, at first order,
M(t — t') for ¢’ within 0 and T can be written as

tl

M(t—t)=M] — 7

M, (13)
where MY and M; = T dM/dt are two unknown matrices to be determined from
statistics on the time window [t — T, t]. What we want to do is to see whether one
can measure a limited number of correlations of the input data in order to determine
M and M;. Let first consider the 2nd order cumulant matrix at some time delay
7, C(7) as defined in (11) (note that C(7 = 0) = Cp). Replacing M given by (13),
taking 7 smaller than 7', with the averages defined as in (9), we have

T gyt
<S(t)ST(t—7) > :/ T AIM ot —t)oT(t — 7 — ') MY
0

tl
- TM% ot—t)el(t—1—1) M7
tl
- TMg ot—t)e"(t —1—1) M
- %M? ot —t)o (t—7 —) M7 } (14)

and one gets

C(r) = MKO(r)MT — MyKD (r)M{"
- MKO(OMT — ZMIKO(r)My” (15)

where the K*)(7) are the generalized source cumulants:

Toqt ()"
K®(r) = T (T) ot—t)oeT(t—7—-1)
0

_ l OT d%la(t—t')] l OT d%' <%)k a'T(t—T—t')]. (16)

Note that K(O'(7) = K(7). One can see from the last term in the r.h.s of (15) that
C(7) is indeed not symmetric for non zero 7. From the above equations, it appears
that measuring Co and C(7) will not be sufficient in order to estimate M? and
M}, since we have K(l)(T) as an additional unknown. However, measuring, say, <
£ S(t—t)ST(t — 7 —t') >, will not help, since this average will depend on a new
source cumulant, namely K@ (7).



3.2 A Tractable Case

We now make use of the assumption that the sources are generated according to some
stationary and ergodic process (at least up to the second order statistics), together
with the hypothesis that the time window 7' is large compared to the typical time
scale of this process.

Let us consider some quantity A(t) of interest, such as the vector o (t) or the
matrix o (t)o? (¢t — 7), and the integral

20 = [ Tl ae-v) (17)

0

where f(u) is any positive function defined on [0, 1], such as f(u) = u* for k integer.
A being a random variable, we can consider its average value and the fluctuations
around it. From ergodicity we have:

<Z>:<A>/01duf(u) (18)

where the average < A > does not depend on the time ¢ (stationarity).
Now let us consider the fluctuations around the mean as characterized by the
second cumulant:

T T
<ZP>=<2?>-<Z>= / dty f(ty) / dty f(ta) < A(t—t1)A(t — t2) >c
0 0
(19)
From the stationarity hypotheses the 2nd order cumulant matrix Cy =< A(t —
t1)A(t — t2) >, is a function of the time difference alone:

<At —t)A(t —ty) >e= Culv=t, — 1 (20)

One then has
2>, = / du f(u / du' f(u') Ca[T(u—u')] (21)

In order to characterize the typical time scale of the process, we make the more
explicit hypotheses that for some a and A, positive and finite numbers, the norm of
the correlation matrix is bounded according to

for any v, |Calv]| < a \If[%] (22)

where ¥(z) = ¥(—z) is some function which goes quickly to zero as |z| goes to
infinity, e.g.,
U(z) = exp—|zf* (23)

for some r > 0. We may also assume that A is taken as the smallest value for which
(22) holds. Hence we have

<Z*>.< a/ du f(u /duf |u—u|) (24)



Our hypothesis for 7" means that 7" is large compared to A;
T >> A (25)

At lowest order, that is in the limit % — 00, < Z? >, vanishes, so that Z is a non
fluctuating quantity: it is almost surely equal to its mean value < Z >. In replacing
Z by < Z >, one is in fact neglecting terms (at worst) of order \/g . More precisely,
for % large one can write

v = 2 asw +[3] 800 (26
with 4 the Dirac distribution and
a= /O:o dx ¥(z), B= /O:o dx U(z)2? (27)
As a result,
\<ZQ>C|~%W/O1 du f(u)> (28)

In the above derivation we have been working with A as a function fo ¢ alone. In
the case of a quantity such as A = o (t)o” (t—7), A is in fact a function of ¢ and ¢ —7.
One can make exactly the same analysis as above, in which one will get expressions
with, e.g., ¥(%|u — v’ — %|). Hence the derivation will apply as well if the limit of
large % is taken at a given value of 7. This is equivalent to state that the scaling
regime of interest is

A << 71<<T (29)

A

so that one can neglect terms of order 7

T
order -

even when taking into account terms of

3.3 Solution at first order

According to the above discussion one can replace, under the integrals defining the
cumulants K®*)(7), the source terms by their average, that is:

T gy ()" 1
<00 = [ 7 (7) K00 = K0 (30

As a result, correlations at a time delay 7 involve only K(© (7). Moreover, one sees
that the only products of matrices that appear for a given 7 are M?K(O) (r)MY,
MYK O (7)M}T and MK (7)MYT. Since K° = K((0) is arbitrary as explained in
section (1.1), we need to measure only three combinations of correlations. Denoting
by C)(7) the cumulants

T g g
o) = | d%%su—t') ST(t—r— )

0

- l OT d?tlS(t—t’)] l/OT d?t,%,ST(t—r—t’) : (31)



and adding a subscript + (resp. —) to denote the symmetric (resp. antisymmetric)
part of a matrix, one obtains easily the following relations:

4Cy — 6 CoY = MIK'MT (32)
37 T
(4+ %) C(r) = 6(1+ ) CVH(r) = MK (r)M}" (33)
and
_ 3T T
C(r) + ?{c+(7) — 2CWH(n)} = T M KO (r)M{" (34)

The matrices MY and K% (1) are obtained from the first two equations (32) and (33),
where the data appear on the r.h.s. in the form of two symmetric matrices: to get MY
and K (1) one can then use exactly the same techniques as those used in order to
obtain the matrices M and K(7) for a time independent mixture, see section (1.2).
Eventually, M} is easily computed from equation (34).

Two final remarks.

e One should note that the Lh.s. of equations (32,33,34) are cross-correlations of
particular combinations of the input data: one can then measure these correla-
tions directly, instead of computing separately each matrix appearing in these
equations.

e as a definition of the average < . >, one may use instead of (9), any similar
definition such as

< A(t) >= /0 Tt () At — ). (35)

where W(t') is sufficiently zero for ¢’ larger than T'. The above derivation can be

/ k
easily adapted, provided ¥ is such that the numerical factors [;° dt’ ¥(¢') (%)

do depend on k - if not, all the correlations C(7), CY)(7) give the same equation,
and thus one cannot combine them to get formulae similar to (32 - 34). Note that
this excludes in particular the choice < A(#) >= [5° % exp(—t'/T) A(t—t').

Conclusion

In this paper we considered the problem of BSS with a time varying mixture. We
showed that, under some assumptions on the statistics of the sources, when the mix-
ture matrix is slowly varying it is possible to obtain a solution making use of tech-
niques derived for time independent mixtures. We proposed a systematic expansion,
and we presented in detail the evaluation of the first order expansion. The validity of
the expansion can be checked a posteriori: one has to check that the first order term
M}, which is in fact T dM/dt, is indeed small, and whether the outputs do appear
independent on any time window of size T. As we explained it, the expansion at a

10



given order k, performed on a given time window [t — T, t], can be used either for
off line processing - that is in order to process the data of that time window -, or for
on line processing, predicting the mixture matrix at order k£ — 1 for the next time
window.

It is cumbersome, but not difficult, to derive the equations at any order - one has
just to follow the same strategy, expanding the mixture matrix up to the required
order within a time window, as explained in section (2.3).

For simplicity, we have worked with second order cumulants at equal time and
at some delay 7 (1 < T). It would be interesting to adapt our method to other
approaches to BSS. For example, one may use criteria based on higher cumulants at
equal time which have been proposed for performing BSS in the case of a constant
mixture matrix [7, 6, 13]. With averages defined as time-window averages as above
(section (2.1)), one has to perform the necessary expansions of the cumulants under
consideration. Again, the zeroth order will be given by the solution of the system as
if M was constant.

Numerical simulations remain to be done in order to test the efficiency of the
proposed expansion.
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