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Abdracl. Kecent studies of the information capacity in a sparsely coded memory net has 
led to some contradictory results. In the Willshaw model. where the couplings are binary 
(0 or I), the maximal quantity of information that can be stored is In 2 - 0.69 bits per 
synapse. On the other hand a calculation 2 la Gardner for (0, I) couplings gives an upper 
bound for the maximal capacity of about 0.29 bits per synapse. 

In this paper I consider two possible sources forthir discrepancy. The first one is that 
the criterions for defining the maximal capacity are different (with or without a constraint 
of perfect errorless storage). The second one is a difference in the choice o f  the probability 
distribution of the random patterns used to  compute this capacity. 

This analysis shows in particular that for the Willshaw model the maximal information 
capacity is much larger when the number of active neurons is exactly the same in every 
stored pattern, than when it is given only in average. In addition I give an argument 
showing that this result may be generic, e.g., valid for any activity level and independent 
of the learning rule. 

1. Introduction 

In the evaluation of the performance of neural networks in associative tasks, many 
aspects of the sparse coding limit have been studied, for both attractor neural networks 
and simple perceptron type networks [ 1-1 11. The regime of interest is when the number 
M of active neurons, in each pattern to be learned, is negligible with respect to the 
total number of neurons N (in the large-N limit), the coding rate f =  M / N  being of 
order In N/N. Although the maximal number of such random patterns that can be 
stored with real valued synapses diverges with N as (N/ln N ) * ,  the total amount of 
information stored per synapse tends to a finite limit, i, = 1/(2 In 2) = 0.721 (bits per 
synapse) [12]. The general picture is that, when the coding rate goes from to 0, the 
maximal information capacity, in bits per synapse, decreases from 2 to 1/(2 In 2). 
However, in the sparse coding limit simple learning rules, of the Hebb type, give very 
good performance and in some cases the maximal theoretical capacity i, can even be 
reached [ 111. 

One of the most interesting rules was introduced long ago by Willshaw et a/ [I]. 
In the sparse coding limit it allows the storage of up to In 2 ~ 0 . 6 9 3  bits per synapse, 
which i s  very ciose io i, - 0.72i. and moreover ihk perforiiiarice is obtained with 
binary couplings ( 4  =0,  1). Recently the maximal capacity for +1  couplings has been 
computed by the replica techniques [13], and the calculation has been extended to 
other choices of discrete couplings [14,15]. In the case of (0, 1) couplings in the sparse 
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coding limit, the maximal capacity is found [I41 to be around 0.29, much smaller than 
In 2. 

Several reasons for this discrepancy are conceivable. 
(i) The replica calculation is not reliable, possibly only in the sparse coding limit 

where the coding rate f is taken of order In N/ N. 
(ii) The replica analysis may be reliable, but it gives results which are expected to 

be true with probability one, and it might be that the Willshaw model is atypical (think 
of number theory: almost all real numbers are transcendental, but essentially every 
number one can exhibit is not). 

(iii) The critical capacities computed so far with the replica method are associated 
with the requirement of exactly no error, whereas the maximal capacity of the Willshaw 
model is reached in a regime where the number of errors is non-zero, but the noise to 
signal ratio is vanishing in the large-N limit. 

(iv) The analysis done for the Willshaw model requires, in fact, that the number 
of active neurons is exactly the same in every pattern, and the fluctuations are neglected. 

In the present paper I propose to have a closer look at the Willshaw er a1 model 
by considering, in sections 2 and 3, the role of the implicit or explicit assumptions- 
evoked in cases (iii) and (iv) above-that were made in the analysis presented in [ll]. 
Possible extension of the results to non-zero coding rate is discussed in section 4. In 
section 5 ,  I show that the results obtained in sections 2 and 3 provide a solution for  
the paradox, and raise new questions. 

2. Zero error versus zero noise-to-signal ratio 

For simplicity, I will consider only the case of the simplest architecture that is a 
perceptron architecture with N inputs and only one output (figure I ) .  Each neuron 
(input or output) can be in an active ( V =  1) or quiescent ( V = O )  state. The output V 
is computed from the input { V,, j = 1, . . . , N] by the standard rule 

where the 4 are the couplings and 0 is the threshold (to avoid ambiguities I chose the 
convention sgn(0) = I ) .  The task to be performed by this net is to learn a set of p 
associations 

{ V,” , j=1 , .  . . , NI+ V” p = 1, . . . , p .  (2) 

Figure 1. Percepmn type network with N input neurons and one output neuron. 
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The patterns are chosen at random, with f and f' as coding rates for the inputs and 
outputs respectively: the mean number of active neurons in each input pattern is 
M = Nfand the mean number of patterns with an  active output is p+=pf' .  As in [ l l ]  
I will call a 'firing' pattern a pattern with an active desired output ( V'= 1). The coding 
rates are low, and in particular i f f = f '  the regime of interest i s f = I n  N /  N [l]. The 
performance of the net is evaluated through the quantity of information stored in bits 
per synapse. If retrieval is perfect, 

i = ( p / N ) s ( f ' )  (3) 

s(+) In2 = -4  In $ - ( I - + )  In( l -+)=  -+ In + (4) 

where s ( . )  is the mixing entropy in bits: 

for + small. In case of errors, with pI and p 2  patterns firing among those which should 
fire and those which should not, respectively, 

i = (p /N)[s ( (p ,  + p J l p )  -f 's(p,/p+) - (1 - f ' b ( ~ d ( ~ - ~ + ) ) l .  ( 5 )  

With the Willshaw prescription the couplings are 0 or 1, and the coupling I, takes 
the value 1 if for at least one ofthe patterns which should fire (V" = 1) the corresponding 
input neuron is active ( V r  = 1). Let me first recall the analysis done in [ l l] .  As shown 
in [ I l l  it is convenient to study the properties of the Willshaw model as a function of 
q, the fraction of activated synapses. After learning p patterns: 

( 6 )  q = 1 -(1 - f f ' ) "  = 1 -exp(pff'). 

8 = M = N j  (7) 

In the retrieval stage the threshold !3 is bel to the number of active input neurons: 

Hence every firing pattern is safely retrieved, hut there might be errors on the other 
patterns: p , = p + .  O<p,<p-p+=(l-f ' )p .  If p2/p is negligible compared tof ' ,  that 
is if the noise-to-signal ratio, p 2 / p f ' .  is zero, the information stored is equal to its 
maximal value (3). The critical capacity is reached when this ratio becomes of order 
unity. Now an input pattern with M active neurons can produce a + I  output only if 
the M couplings linked to these M neurons are non-zero. Hence the probability [ for 
one error is 

< = q M  (8) 

so that the mean number of errors is 

P2 = q M ( l  - f ' ) p =  P P .  (9)  

q h ' / f ' =  1 (10) 

Hence the critical capacity is given by 

At this threshold, using the expression ( 6 )  for q which gives pf f '=  -In(l - q ) ,  the 
critical quantity of information (3) can be written 

ic=lnqIn( l -q) / ln2 .  (11) 

Now if instead of the criterion of vanishing noise-to-signal ratio one asks for the 
limit of no errors, criterion (10) is replaced by 

qMp = 1. (12) 
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Then the information stored io can be written 

io = (-lnf'jln p ) i < ( q ) .  (13) 

The most interesting case is f =  f', where the expression (6) for q gives -In f / ln  p = 
i + O ( l / l n p ) .  That is, the information stored is simply half the information that can 
be stored by allowing for errors: 

(14) - 1 .  
0 -  2 1 . ( q ) .  

The maximal quantity that can be stored in the regime of exactly no error is thus 

In 212 - 0.346 ( 1 5 )  

(I will comment on this value in the last section). The curves C and CO defined by 
( 1 1 )  and (14) respectively are plotted in figure 2. When the number of stored patterns 
increases, the fraction q of activated synapses increases, and i increases according to 
(3),  until reaching the curve Co. Up to that point no error is made. Then if q increases 
further i still increases according to (3) (with neglibible corrections, and there is no 
discontinuity in i, or in its derivatives, when crossing CO), until it reaches curve C. 
From CO to C the number of errors in the background increases from a finite number 
up to a number of order Njln N. In the error-full regime, that is if p and thus q 
increase further, the point ( i ,  q )  remains on this curve i =  i , (q) (see [ l l ] ) .  

Figure 2. Willahaw prescription rule: information stared a6 a function of the proportion 
q of non-zero synaptic efficacies. Below the curve (C) is the domain accessible in the 
regime of vanishing noise-to-signal ratio [ I l l .  Below the curve (CO) is the domain accessible 
in the regime of strictly zero error. The dotted line give a typical trajectory that would be 
followed in a learning experiment where the number of stored patterns i s  progressively 
increased. 

.- 
3. The role of fluctuations 

The analysis of section 2 neglects the fluctuations in the number of active input neurons: 
they are valid for patterns chosen at random with a number of active neurons M 
exactly equal to NJ However, one would expect to have, in the large N limit, the 
same results for a number of active neurons fixed on average only. This is not the case. 

\ 
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In fact, the results of section 2 have been obtained with the tacit hypothesis that 
the correlations between synapses can be neglected. We will see that it  is these 
correlations which cannot be neglected if the number of active inputs fluctuates. In 
the following 1 reconsider the calculation of the probability for one error, paying 
attention to the precise choice of the distribution for the input patterns. 

There are p+ =pf' patterns with a + 1  output, and only these matter for the learning 
stage. After learning, the number of activated synapses is L=q,N.  In the large-N 
limit the distribution for q,  is sharply peaked around its average value q =  
1 - (1  -f)" + = I  -exp(-p+f), so we can consider that L = 9N. For the retrieval stage, 
we set the threshold 0 at M = Nfas before, so that every firing pattern will be correctly 
retrieved. Now we need to evaluate the typical number p2 of errors made on patterns 
which should not activate the output neuron. The probability [ for an error on one of 
these patterns is the probability that at least 8 = M input neurons, among the L neurons 
connected to the output with an activated synapse, are active in that pattern. 

First I consider the case where the number of active neurons is exactly M. Then 

where 

N !  
CE = 

M !  ( N  - M ) !  

For large L and N this gives 

L'a expfNUn 9-[(1 - x ) l x l  In(1 - x ) + [ ( l  -f)l.fl In(] - f ) }  (17) 

where 

x = f / 9 .  (18) 
Forf  and x small (that is M << L, which means that the number of stored patterns p+ 
is large), 

L'a expfNUn q+O(f ) l .  (19) 
Thus the correlations are negligible if N f 2  is small, but N f  large: this was also the 
condition found in [ 1 1 1  for the case of a Hebb model. 

Now if for every pattern the activity of each input neuron is taken 1 or 0 with 
probability f; ( 1  - f ) ,  the probability for one error is: 

L'= 1 c;f"(l-f)'-". (20) 
">" 

For large L (L  = q N ) ,  this gives, using the Stirling formula, and omitting non-exponen- 
tial prefactors, 

[=  d t  exp L[-t ln(t/f)- (1 - f) In((1- 1)/(1 - f ) ) ]  (21) J r' 
where x = f / 9  as above. This integral is dominated by the smallest value of I, t = x, 
that is: 

[a expfN{ln q- [ ( l -x ) /x ]  ln( l -x) / ( l - f ) l .  (22) 

For f small, 

ia expfN[ln 9 + 1 - 9 + O W 1  (23) 
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instead of la expfN In q = q'. To try to understand better this result one may find it 
useful to reformulate the preceding calculation in the following way. The probability 
(20) is a sum of strictly decreasing terms, and is dominated by its first term: 

M M  l = C ,  f ( 1 - f ) L - M  

One can rewrite the RHS as a product of three terms: 
l=  C N f  M M  (1 - f ) N - M .  {C?/CE}. (1-fj-CN-L) 

The first term in parentheses is of order 1 in the large-N limit: it expresses the fact 
that in the large N limit the number of active neurons is almost surely M = Nf: The 
second term in parentheses is equal to the probability (16) for a fixed number of active 
inputs. The last term gives the correction, that is 1-q in (23). The origin of the 
diiierence between (i6j  and (23) is that in the present case, even though the number 
of active neurons is almost surely NA one does not care for the activities of the N - L 
neurons for which the coupling is 0 (if had been the probability for having at least 
M among L active neurons and all the other neurons inactive, the two choices of 
patterns distributions would have given the same result). 

We can now express the condition (10) for vanishing noise-to-signal ratio, which 
gives here the maximal capacity: 

(24) i, In 2 = l n ( l  -q)[ln(q)+ 1-41, 

Its maximum i, is reached at q* = 0.389. . . and its value is: 

i, = 0.236. . . . (25) 

Thus, in the case of a fluctuating number of active inputs, the general picture, as 
described at the end of the preceding section, is the same, with the expression for i, 
being given by (24) instead of (11). The maximal capacity is strongly diminished, to 
about one third of the maximal capacity in the non-fluctuating case. 

4. Genericity of the Willshaw model 

From the results of section 2 one may ask whether the difference in the capacities IS 

a specific feature of the Willshaw model and/or of the sparse coding limit. In this 
section I will leave aside the Willshaw model and come back to the question of the 
theoretical upper limit for the storage capacity. I will show that the results obtained 
by the replica techniques implies that one should expect different optimal capacities 
for the two distributions of patterns whatever the coding rate 1: 

If the patterns were chosen at random but with exactly the same number M = Nf 
of active neurons for all the patterns, then one would get the same maximal capacity 
for 0 , l  couplings and for +1 couplings. Indeed, consider the p inequalities which have 
to be solved in the former case: 

I* = 1,. . . , p .  (26) 

If we make the change of variable 

4 + y = q - 1 = * 1  (27) 
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the inequalities (26) can be rewritten 

where the new threshold 0’ does not depend on the pattern /L: 

Note that this is true for any value of the coding rate f: 

the probability distribution 
In the replica calculations [12-141, the learned patterns are randomly chosen, with 

and thus the number of active neurons is fixed only on average. The computed optimal 
capacities for *1 couplings and 0,1 couplings are indeed different: for f=f‘= i, 
aC = 0.83 in the first case [ 131 and 0.59 in the second case [ 141. 

Could one compute directly the optimal capacity for patterns with exactly the same 
number of active neurons? This is not clear since, a priori, the replica method cannot 
distinguish between the two types of distributionst a constraint such as 

would be taken into account by introducing a field h:  

and one would be back to the same formulation as for the usual distribution (30). This 
equivalence of the two distributions in the large-N limit is similar to the equivalence 
in  statistical mechanics between the micro-canonical and the canonical free energies 
in the thermodynamic limit. 

5. Discussion 

I have considered two possible sources of discrepancy between the maximal capacity 
estimated from the computation ri la Gardner [I61 and the maximal capacity of the 
Willshaw model. The maximal capacity for 0 , l  couplings (and an adjustable threshold) 
is, in the sparse coding limit, less or equal to 0.29 [ 161. This is still below the maximal 
capacity of the Willshaw model in the first case I have considered: the capacity is 
io=0.346 if the criterion is no error at all. It suggests that the maximal capacity might 
be reached in the error regime. For unbiased patterns (f=f’= i), this can be shown 
to be true [17]. For biased patterns, a replica calculation of the minimal number of 
errors has been done [ 161. This can be generalized to the computation ofthe information 
capacity for arbitrary coding rates, and it is presently under study [18]; preliminary 
results indicate that, although for finite coding rates the maximum is indeed reached 

t I thank M MCzard for this remark 
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in the error regime, in the sparse coding limit the maximum is the one obtained in the 
error-free regime. 

The value 0.29 is, on the other hand, above the value i, = 0.236 obtained in the 
Willshaw model when one allows for fluctuations in the number of active neurons. 
Note, however, that from the replica calculation at several values off the numerical 
extrapolation a t f = O  is very hard to get [141, (the value 0.29 is only an upper bound) 
and thus we do  not know exactly how 0.236 compares with the theoretical limit. 

It was remarkable that the In 2 capacity of the Willshaw model was so close to the 
optimal capacity 1/(2 In 2) as computed by E Gardner for continuous couplings. I 
have shown that this comparison was in fact inadequate: In 2 should be compared 
with the (unknown) capacity for patterns with exactly the same number of active 
neurons. The capacity ofthe Willshaw model for a fluctuating number ofactive neurons 
remains however remarkably good, when compared to the relevant upper limit, the 
one for 0 , l  couplings. 

As shown in section 4, the effects of the choice of the patterns distribution on the 
capacity is likely to be generic. Clearly it would be interesting to find a general method 
to compute directly the maximal capacity for patterns with exactly the same number 
of active neurons. 

The present analysis has been made for a perceptron architecture. It would be 
interesting to study the case of an attractor neural networks: when errors are allowed, 
the capacity might be different due to the dynamics which can emplify the errors. 
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