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Nonequilibrium dynamics of adaptation in sensory systems
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Adaptation is used by biological sensory systems to respond to a wide range of environmental signals, by
adapting their response properties to the statistics of the stimulus in order to maximize information transmission.
We derive rules of optimal adaptation to changes in the mean and variance of a continuous stimulus in terms of
Bayesian filters and map them onto stochastic equations that couple the state of the environment to an internal
variable controlling the response function. We calculate numerical and exact results for the speed and accuracy
of adaptation and its impact on information transmission. We find that, in the regime of efficient adaptation,
the speed of adaptation scales sublinearly with the rate of change of the environment. Finally, we exploit the
mathematical equivalence between adaptation and stochastic thermodynamics to quantitatively relate adaptation
to the irreversibility of the adaptation time course, defined by the rate of entropy production. Our results suggest
a means to empirically quantify adaptation in a model-free and nonparametric way.
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I. INTRODUCTION

To make informed decisions, biological organisms sense
and internally represent their environment using sensory sys-
tems, often with accuracy approaching physical limits [1,2].
The response function of a sensory system maps input stimuli
onto output signals, whose nature depends on the encoding
system. For example, cells respond to environmental stim-
uli through biochemical signaling [3–5]. The fate of cells
in development is controlled by patterns of gene expression
[6]. Neural systems encode information using spikes, voltage
differences, and ionic currents [7–9].

A common challenge posed to these sensory devices is
the breadth of variation of external stimuli, which is often
much larger than the response range of the sensory system.
The activity of photoreceptors in the retina saturate over two
orders of magnitude, yet they must cope with light intensities
spanning ten decades [10]. E. coli can navigate gradients of
chemoattractant concentrations over five orders of magnitude
using the binary response of its rotary motors [11]. This is
possible because over short timescales, stimuli are typically
restricted to a much narrower distribution which depends on
the immediate surrounding environment, e.g., ambient light
level in vision or local concentration in chemical sensing. To
produce efficient responses, sensory systems must adapt their
response properties, as changes in the environment modify the
statistical properties of the stimulus [9,12].

Theories have been developed to understand general prin-
ciples of sensory adaptation and predict response properties,
in particular in the context of sensory neuroscience [13]. One
central idea is Barlow’s efficient coding hypothesis [14,15],
which posits that neural systems maximize information trans-
mission under the constraints of metabolic costs, dynamic
range, and internal noise [16–19]. Efficient coding predicts
that the dynamic range of the response function should be

matched to the distribution of inputs so as to make the
output distribution as balanced as possible, thus maximiz-
ing information [20,21]. As the distribution of input signals
changes with time, the response function should then adapt
accordingly. This argument rationalizes adaptation and makes
specific predictions about its properties, with successful ap-
plications in vision [13,22–24]. However, progress towards
a general theory is hindered by the multiplicity of systems
which differ in their constraints, costs, and relevant features
to be encoded [25,26].

A possible overarching principle of sensory adaptation lies
in its analogy to nonequilibrium statistical mechanics. When
a thermal system is driven out of equilibrium by an external
forcing, its energy landscape evolves and the system “adapts”
by following the new equilibrium with a delay, while losing
heat to the reservoir. The resulting dynamics is irreversible
and the dissipated work can be estimated using the measure
of entropy production, which quantifies irreversibility [27].
Similarly, sensory adaptation creates irreversible dynamics
that carries an intrinsic energetic cost, as was studied in the
case the E. coli chemotactic signaling network [28]. The main
result of this paper is to formalize the link between adaptation
and irreversibility by studying in detail analytically solvable
systems of sensory adaptation, where the mean or the variance
of the stimulus changes over time.

We first derive the dynamics of optimal adaptation from
principles of Bayesian inference (Sec. II). While previous
approaches have used Bayesian estimates to explain adap-
tation [24,26,29,30], their impact on the response function
either was not made explicit or was obtained by minimiz-
ing a loss function reflecting particular coding constraints.
By contrast, we derive the optimal response function from
the maximization of Shannon’s mutual information [19],
assuming a noiseless internal adaptation variable. A previ-
ous limitation of Bayesian update rules is that they usually
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assume discrete time, while both the stimulus and response are
continuous. We show that in the case of a varying mean, the
adaptation dynamics has a well-defined continuous-time limit,
which can be mapped onto a system of coupled Langevin
equations with nonlinear forces and position-dependent diffu-
sivities, allowing for an explicit analogy with nonequilibrium
statistical mechanics (Sec. III). We derive this mapping for
the classical case of a stimulus mean switching between two
values, but also for the case of a stimulus whose mean fol-
lows a random walk, which admits an analytical solution. In
that continuous limit, we obtain explicit expressions for two
quantities that characterize adaptation, accuracy and speed,
which are in a trade-off relationship (Sec. IV). To relax the
assumption of optimality, we also explore performance in the
case where the dynamical rules of the stimulus statistics are
not precisely known (Sec. V). The case of variance switch-
ing, which was treated in [29], is revisited with predictions
on how information transmission should drop and recover
following switching events (Sec. VI). Finally, we generalize
and formalize the analogy between sensory adaptation and
nonequilibrium statistical mechanism by proposing entropy
production (a nonparametric measure of temporal irreversibil-
ity) as a signature of adaptation (Sec. VI). We calculate it
explicitly in the case of adaptation to a changing mean and
discuss its general relevance to experimental recordings of
sensory neurons.

II. ADAPTATION AS INFERENCE

The first requirement to do efficient coding is to build a
good estimate of the statistics of the environment, e.g., the
mean and variance of the stimulus. To do so, the sensory
system only has access to stimuli experienced in the past. It
must integrate stimulus information far enough into the past
to collect enough statistics, but not too far, since stimulus
statistics themselves may change over time. This trade-off
reflects the need to adapt fast, in order to track the stimulus
statistics reliably, but not too fast, in order to build enough
evidence that changes actually occurred and not be prone to
random fluctuations of the stimulus. This task can be naturally
framed as an ongoing inference problem [24,26,31,32]. Its
optimal solution is given by a Bayesian formulation, which es-
timates the distribution of possible stimulus parameters given
the stimulus history [24,25,33]. Our approach postulates that
the sensory system has access to the raw stimulus, rather
than just the sensory response, to implement its adaptation
mechanism. In this view, the sensory system “compresses”
information by transforming the input into a noisy response,
but can adapt this compression scheme based on the stimulus
statistics, which it has access to through (unaltered) past stim-
uli. This is particularly relevant for the early processing of
visual information, which mostly proceeds in a feedforward
way. For instance, adaptation to the mean light level occurs
directly at the level of photoreceptors, with no feedback from
the retinal ganglion cells (the output of the retinal), and simi-
larly for contrast adaptation at the level of signal transduction
between photoreceptors and bipolar cells [34], although some
biochemical feedback internal to each cell plays an impor-
tant role [35]. This view stands in contrast with adaptation
mechanisms through direct feedback, whereby the response

function is adapted based on the knowledge of past sensory
responses only, with the input and intermediates masked [26].
We also assume that the processing linked to the adaptation
module is noiseless, which is a simplification with respect to
realistic biological adaptation mechanisms. While inspired by
aspects of visual processing, our approach does not aim to
model the details of the circuitry or biochemical pathways,
but rather takes a global view of the system as an input-output
relationship.

The optimal Bayesian estimator [24,29,36], also called
Bayesian filter, is defined as follows. At each time step n,
the model estimates the state of the environment given the
stimulus history P(yn|s j�n), where yn represents the state of
the environment at time n and s j�n is the vector of past stimuli
up until time n. In general, yn parametrizes the distribution of
stimuli at each time P(sn|yn). In this paper this distribution
will be assumed to be Gaussian and yn will then simply denote
its mean or variance. Bayes’s rule states that

P(yn|s j�n) = 1

�
P(sn|yn)P(yn|s j<n), (1)

where � = P(sn|s j<n) normalizes the distribution.
Assuming that the dynamics of the environment is Marko-

vian, one can write a recursive form

P(yn|s j�n) = 1

�
P(sn|yn)

∑
yn−1

P(yn|yn−1)P(yn−1|s j<n). (2)

This formula combines the new observation sn with the esti-
mate of yn−1 at the previous time step [29], taking into account
the way yn may have evolved. Prior knowledge of P(yn|yn−1)
is essential as it sets the timescale over which past samples are
discarded. Ignoring it, as was done in [24], leads to assuming
an infinite memory timescale and everlasting dependence on
initial conditions.

Armed with an estimate of the environment statistics,
the sensory system may use this knowledge to adapt its
response rn to the stimulus. Following previous proposals
[15,21,22,37], one may assume that the stochastic encoding
P(rn|sn) is chosen to maximize information transmission

I (sn, rn) =
∫

dsndrnP(sn)P(rn|sn) ln
P(rn|sn)

P(rn)
, (3)

where the form of the response function P(rn|sn) is set by
biophysical constraints. Alternative choices of objectives to
optimize include decoding accuracy, metabolic costs [38], or
the ability to infer the environmental variable yn itself [26].
The simplest assumption, which is equivalent to Laughlin’s
original argument [20], is to assume a constant Gaussian out-
put noise

rn = g(sn) + εn, (4)

where εn is a uncorrelated Gaussian noise of zero mean and
variance σ 2

ε and g(s) is a function constrained between 0
and rmax so that P(r|s) ∝ exp{−[r − g(s)]2/2σ 2

ε }. In the small
noise limit σε � gmax, the response function g(s) maximizing
the mutual information is the one that maximizes the en-
tropy of the response [21], which is realized by the uniform
distribution P(r) = 1/rmax for 0 � r � rmax, which in turns
gives P(r)dr ≈ P̂(s)ds, hence dr/ds = g′(s) = rmaxP̂(s), or
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FIG. 1. Sketch of the adaptation process. (a) Example of a stochastic stimulus st whose mean varies according to two environmental states
yt = + and −. After sufficient time in each state, the gain function of the sensory system is adapted to its statistics (phase A for state + and
phase B for state −). In addition, after each switch there is a transient phase during which the system adapts. (b) The sensory system combines
the raw stimulus st with an internal estimate xt of the environmental variable yt , computed from the past of st ′�t . (c) The sensory response rt ,
which is optimized to maximize information transmission based on the internal variable xt , reacts to sudden changes of the mean stimulus, but
then relaxes back to a basal value as the gain function adapts to the new state. (d) Changes in the gain function can be rationalized based on
the internal representation of the expected stimulus statistics (distribution of inputs), encoded by xt . When deep in the adapted phases A and
B, the assumed distribution of inputs matches the true statistics in each state [xt ≈ +1 matching P(s|y = +1) in blue and xt ≈ −1 matching
P(s|y = −1) in orange]. In the transient adaptation phase, new stimuli from the new state challenge the previous belief, which progresses to
the new adapted phase (intermediate colors). (e) Information theory dictates that the optimal gain function should be most sensitive where the
stimulus is expected [Eq. (5)], causing the system to shift its dynamic range around the new mean. This explains the form of the response in
(c).

equivalently

g(s) = rmax

∫ s

−∞
ds′P̂(s′), (5)

so that the response function’s sensitivity follows the assumed
statistics P̂ of the stimulus at time n, derived from the belief
about the state of the environment y,

P̂(s|s j<n) =
∫

dy P(s|y)P(y|s j<n), (6)

where for the rest of this section we drop the n index to
simplify notation. The mutual information being actually
transmitted can be rewritten as

I (s, r) = S[r] − S[r|s], (7)

with S[r] = − ∫
r dr P(r) ln P(r) and S[r|s] = − ∫

dsP(s|y)∫
P(r|s) ln P(r|s), where P(r) = ∫

ds P(r|s)P(s|y). For Gaus-
sian output noise, the second term is just the entropy of the
noise S[r|s] = 1

2 ln(2πeσ 2
ε ). In the same limit of small noise

that gave us the optimal encoding, the output is almost a
deterministic function of the input, so S[r] is approximately
obtained using P(r) ≈ P(s|y)ds/dr = r−1

maxP(s|y)/P̂(s), pro-
portional to the ratio of the true to the assumed stimulus

distributions. This resulting information transmitted is

I (s, r) = 1

2
ln

2πer2
max

σ 2
ε

−
∫

ds P(s|y) ln
P(s|y)

P̂(s)
, (8)

where in the second term we recognize a Kullback-Leibler
divergence or cross entropy, which is always non-negative.
The mutual information is maximized when the inferred
statistics of the environment exactly matches the true one,
P̂(s) = P(s|y). In that case, the Kullback-Leibler divergence
is zero and only the first term survives, the channel capacity,
which has an intuitive interpretation: It is the logarithm of the
number of distinct responses that can be resolved from each
other, given by the ratio of the output dynamic range rmax to
the resolution of the response σε . This number, which can also
be interpreted as a signal-to-noise ratio, encodes the resource
constraints of the sensory system and is the main determinant
of information transmission. However, an interesting feature
of (8) is that the information loss due to nonoptimal adaptation
encoded in the Kullback-Leibler divergence does not depend
on that resource parameter, making the analysis robust to that
choice.

The full adaptation scheme is summarized in Fig. 1 with
the example of a Gaussian stimulus whose mean switches be-
tween two values. Shortly after the mean changes [Fig. 1(a)],
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the system progressively updates its expected distribution of
stimuli as it accumulates more samples [Fig. 1(d)] and adapts
its response function [Fig. 1(b)] according to (5), as illus-
trated in Fig. 1(e). The resulting response dynamics [Fig. 1(c)]
shows epochs of strong upward and downward changes right
after each switching transition, followed by relaxation to in-
termediate values as the system adapts to its new response
function, closely mimicking experimental observations.

In the following we will study and solve particular cases
of adaptation to a Gaussian stimulus with varying mean or
variance.

III. ADAPTATION TO A VARYING MEAN

Let us start with the most intuitive and simple case: adap-
tation to changes in the mean of the stimulus. We will take
two very simple processes as case studies: a telegraph process,
in which the mean randomly switches between two values,
and an Ornstein-Uhlenbeck process, in which the mean varies
continuously around a fixed value. Discontinuous switches
such as those produced by the telegraph process are com-
monly studied in experiments on sensory adaptation, because
of the strong adaptive transient they trigger. The Ornstein-
Uhlenbeck process is interesting because of the analytical
insight it affords.

A. Two models of fluctuating mean

1. Telegraph process

We consider a system where the environmental parameter
yn switches between two values y− and y+ with probability k
at each time step. The sensory system has access only to the
sn, which we assume to be Gaussian distributed with mean yn

and fixed variance σ 2,

sn = yn + σηn, (9)

with 〈ηn〉 = 0 and 〈ηnηn′ 〉 = δnn′ , so that

P(sn|yn) = 1√
2πσ 2

e−(sn−yn )2/2σ 2
. (10)

We substitute this expression into (2) and use the fact that the
distribution of yn given the stimulus history s j�n is entirely
determined by its mean xn ≡ 〈yn〉|s j�n because of its binary
nature. Assuming y± = ±1 without any loss of generality, by
averaging (2) we then obtain an update equation for xn:

xn = sinh
( sn

σ 2

) + (1 − 2k)xn−1 cosh
( sn

σ 2

)
cosh

( sn
σ 2

) + (1 − 2k)xn−1 sinh
( sn

σ 2

) . (11)

For this estimator to be optimal, the variance σ 2 in (11) should
be equal to the true variance of the stimulus distribution.
This can be achieved, for instance, by a variance adaptation
mechanism, as we will see in Sec. VI. In Sec. V we will
also deal with the case where the system does not use optimal
parameters.

2. Autoregressive (Ornstein-Uhlenbeck) process

Another simple example of stochastic dynamics for the
mean is given by an autoregressive process, which we also
call Ornstein-Uhlenbeck process by abuse of language, as it

reduces to it in the continuous time limit (discussed later),

yn+1 = ayn + σ ′η′
n, (12)

where η′ is a Gaussian white noise, 〈η′
n〉 = 0, 〈η′

nη
′
n′ 〉 = δnn′ ,

and a < 1. Again we assume that signals are distributed ac-
cording to a Gaussian of mean yn and variance σ 2, sn =
yn + σηn, with 〈ηn〉 = 0, 〈ηnηn′ 〉 = δnn′ , and 〈η′

nηn′ 〉 = 0.
Since the elements of the recursion are Gaussian, we as-

sume a Gaussian ansatz for the posterior:

P(yn|s j�n) = 1√
2πu2

n

e−(yn−xn )2/2u2
n . (13)

Plugging it into (2) yields recursive equations for the mean
and variance of the posterior of yn, which are equivalent to a
Kalman filter [39]:

xn = aσ 2xn−1 + [
σ ′2 + a2u2

n−1

]
sn

σ 2 + σ ′2 + a2u2
n−1

, (14)

u2
n = σ 2

[
σ ′2 + a2u2

n−1

]
σ 2 + σ ′2 + a2u2

n−1

. (15)

The dynamics of the variance (15) does not depend on the
mean or the stimulus, so it converges to a fixed point u2 at
steady state.

B. Continuous-time limit

Our adaptation dynamics was derived at discrete times,
using a Bayesian estimator and exploiting the Markovian
property of the system. We now take the limit of continuous
time to obtain stochastic differential equations. Denoting by δt
the time step between two observations, the continuous time
is defined as t = nδt , with δt → 0. As we take this limit, we
must scale the various parameters of the dynamics to ensure
that all the relevant quantities remain finite.

For both types of environmental dynamics, the stimulus
variance may scale with δt as

σ 2 = θ

δt
. (16)

This scaling allows us to write the stochastic term in (9)
as the discretization of a Gaussian white noise ξ (t ): σηn =
(
√

θ/δt )
∫ tn+δt

tn
dt ξ (t ), with 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 =

δ(t − t ′). In the continuous-time limit this gives

s(t ) = y(t ) +
√

θξ (t ). (17)

In the telegraph process, the switching probability between
two infinitesimal time steps should scale with δt . We define
k = δt/2τ . The switching rate is (2τ )−1, so τ is the correlation
timescale of the process.

Similarly, a continuous Ornstein-Uhlenbeck (OU) process
may be obtained from the autoregressive process (12) in the
δt → 0 limit with the scalings a = 1 − δt/τ and σ ′2 = 2Dδt ,

dy

dt
= − y

τ
+

√
2Dξ ′(t ), (18)

where ξ ′(t ) is a Gaussian white noise, τ is a relaxation time,
and D may be interpreted as a diffusion coefficient in stimulus
space. We set it to D = 1/τ , so the variance of y is 1. With
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these choices, the first two moments of y(t ) are the same for
both the telegraph and OU processes,

〈y(t )〉 = 0, 〈y(t )y(t ′)〉 = e−|t−t ′ |/τ . (19)

With these scalings, the adaptation dynamics are described
in the δt → 0 limit by stochastic differential equations (with
Itô convention). For the telegraph process, Eq. (11) becomes

dx

dt
= − x

τ
+ 1 − x2

θ
s = − x

τ
+ 1 − x2

θ
y + 1 − x2

√
θ

ξ . (20)

For the OU process, Eq. (14) becomes

dx

dt
= −

√
1 + 2τ/θ

τ
x + u2

θ
s

= −
√

1 + 2τ/θ

τ
x + u2

θ
y + u2

√
θ
ξ, (21)

where the posterior variance

u2 = Var[y(t )|{s(t ′ � t )}] = 2

1 + √
1 + 2τ/θ

(22)

is obtained from the fixed-point condition (15). The adaptation
dynamics for the OU process thus follows an exactly solvable
Gaussian process described by the coupled equations (18) and
(21).

Two timescales τ and θ govern the adaptation dynamics of
both processes (20) and (21); τ is the timescale over which the
environment varies, while θ gives the typical timescale over
which the state variable y and the fluctuations of the stimu-
lus

√
θξ have equal contributions: 〈[(1/T )

∫ T
0

√
θξ (t )dt]2〉 =

θ/T ∼ 〈y2〉 = 1 for T ∼ θ . The adaptation dynamics is ex-
pected to depend crucially on the ratio between these two
timescales

α = θ

τ
, (23)

which can be viewed as an inverse signal-to-noise ratio and is
the main control parameter of adaptation. A low α means low
stimulus fluctuations and thus precise adaptation, while high
α means high fluctuations and thus poor adaptation.

The information transmitted under the optimal scheme de-
scribed in the preceding section is given by (8) with

P̂(s) = 1√
2π (σ 2 + u2)

exp

[
− (s − x)2

2(σ 2 + u2)

]
(24)

for the OU process and

P̂(s) = 1√
2πσ 2

[
1 + x

2
e−(s−1)2/2σ 2 + 1 − x

2
e−(s+1)2/2σ 2

]
(25)

for the telegraph process. In the OU case the expression for
the information simplifies to

I (s, r) = 1

2
ln

2πer2
max

σ 2
ε

− 1

2
ln

[
1 + u2

σ 2

]
− 1

2

(x − y)2 − u2

σ 2 + u2
.

(26)
Figure 2 shows numerical simulations of the optimal adap-

tation dynamics (20) and (21) for the two processes, as well

as the expected sensory response and information rate under
the assumption of optimal information transmission (3)–(6).
For the telegraph process, the response shows typical adaptive
behavior, with fast changes in the response following a switch,
followed by a slower relaxation to the baseline. The informa-
tion rate drops right after each switch and climbs back up to
its maximum as the system adapts its response function to the
new statistics.

IV. ACCURACY AND SPEED OF OPTIMAL ADAPTATION

To study the adaptation dynamics of (20) and (21), we
focus on two fundamental properties: the speed of adaptation,
measured by the typical time it takes for the system to adapt
to the changing environment, and the accuracy of adaptation,
measured by the discrepancy between x and y.

A. Adaptation time

We formally define the adaptation time as the time t = tA
at which the cross-correlation function

C(t ) = 〈y(t0)x(t0 + t )〉 (27)

reaches its maximum

tA = arg maxtC(t ). (28)

This defines the time delay after which the adaptation variable
x is maximally aligned with the state variable y, i.e., the time
it takes for x to “catch up” with y.

We first compute this adaptation time numerically (Fig. 3)
for both processes and for different values of the control
parameter α, using the Euler-Maruyama method [40]. In gen-
eral, the adaptation timescale tA grows with the timescale
of switching τ . This suggests that sensory systems should
modify their dynamics of adaptation as a function of what
their expected rate of change is. Such meta-adaptation of the
relaxation timescale has indeed been observed in the context
of mean adaptation to the mean [24].

Two broad regimes can be distinguished. In the low signal-
to-noise regime α � 1, tA scales linearly with τ : The optimal
adaptation timescale is proportional to the timescale of the
environment. However, in the well-adapted regime α � 1,
this scaling breaks down and adaptation happens much faster
than the rate of change of the environment would suggest. In
that regime, it is the reliability of the observed signals that
drives how fast the system adapts, so small values of θ lead to
fast adaptation.

To gain analytical insight into these different scalings, we
first consider the OU process, for which the cross correlation
can be calculated analytically

C(t ) = e−t/τ

[
1 − 2

1 + √
1 + 2/α

e−(
√

1+2/α−1)t/τ

]
, (29)

yielding

tA
τ

= α(1 + √
1 + 2/α)

2
ln

(
2
√

1 + 2/α

1 + √
1 + 2/α

)
. (30)

For large α, this expression becomes at leading order tA ∼
τ/2, confirming the linear scaling observed in that regime.
For small α, we get tA ∼ √

τθ/2 ln(2), meaning that the
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FIG. 2. Adaptation dynamics for two mean-varying processes: the telegraph process and the Ornstein-Uhlenbeck process. (a) and (b) The
state variable y(t ), the mean of the stimulus, varies over time with unit variance and correlation timescale τ . (c) and (d) Perceived stimulus
s(t ) = y(t ) + √

θξ (t ). (e) and (f) Mean value of the state variable x = ∫
dy y P(y|{s(t ′ � t )}) inferred by the system from past observations.

(g) and (h) Sensory response obtained with the optimal gain function r = g(s), derived by optimizing information transmission. (i) and (j)
Information (3) actually transmitted per time bin (δt = 10−3 and σε = 0.01). Angular brackets denote averages over 500 repetitions of the
state variable evolution. The parameter is α = 0.1.

adaptation scale is the geometric mean of the environmental
timescale and the noise timescale. Such a scaling, which was
previous derived in the context of Bayesian filtering for con-
centration sensing [41], results from a trade-off between the
requirements to integrate information about the stimulus for as
long as possible (tA  θ ), but not too long to avoid including
out-of-date information (tA � τ ).

While the adaptation dynamics for the telegraph process
does not have an analytical solution, we may approximate tA
by the typical time x takes to cross 0 following a switch. This
allows us to cast the problem as a first-passage calculation.

We start by writing the Fokker-Planck equation describing the
density evolution of (20) as a function of time

∂ρ

∂t
= − ∂

∂x

[(
− x

τ
+ 1 − x2

θ
y

)
ρ

]
+ ∂2

∂x2

(
(1 − x2)2

2θ
ρ

)
,

(31)
whose steady-state solution at constant y reads

ρeq(x|y) = N

(1 − x2)2

(
1 + x

1 − x

)y

exp

(
− α

1 − x2

)
, (32)

where N is a normalization constant.
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FIG. 3. Time of adaptation to the mean stimulus tA. The adaptation time is defined as the time at which the cross correlation between the
true and inferred state variables is maximum (28). It is shown as a function of the environmental timescale τ for (a) the telegraph process
and (b) the Ornstein-Uhlenbeck process. The results are obtained numerically for the telegraph process and analytically for the OU process
(30). The insets show the rescaled adaptation time tA/τ as a function of the control parameter α for both simulations (circles) and analytical
predictions [Eq. (35) for the telegraph process, valid for α � 1, and Eq. (30) for the OU process].

In the α � 1 limit, x is typically close to y and its differ-
ence with it is of order α, 1 − yx = O(α), as can be checked
by solving dρeq/dx = 0. Suppose that at the time t = 0 of
a switch from y = +1 to y = −1, x = x0 is drawn from the
steady-state distribution ρeq(x|y = +1) [Eq. (32)]. We define
T (x0) as the mean first-passage time of x from x0 to 0, with
x = +1 acting as a reflecting boundary. This time is given by
[42]

T (x0) = 2θ

∫ 0

x0

dx

ψ (x)

∫ x

−1
dx′ ψ (x′)

(1 − x′2)2
, (33)

where

ψ (x) =
(

1 − x

1 + x

)
exp

(
− α

1 − x2

)
. (34)

The adaptation time is then tA ≈ 〈T (x0)〉x0∼ρeq (x|y=+1).
Examining Eq. (20) in the small-α regime, we see that

when x is close to +1, the 1 − x2 terms scales with α, meaning
that x has sluggish dynamics dominated by the timescale τ .
When x finally gets away from +1, the dynamics accelerates
according to the fast timescale θ , quickly reaching zero. This
motivates us to use the change of variable x = 1 − α/2v and
expand in α to obtain (see the Appendix)

tA
τ

� α

4
{ln2(α) + [2γe − 2 ln(2) + 1] ln(α) + C} + o(α),

(35)

where γe is Euler’s constant and C ≈ 7.59 is a numerical
constant. We checked the validity of this expression against
simulation results [Fig. 3(a)].

The leading order in α scales as

tA ∼ θ

4
ln2

(τ

θ

)
. (36)

This sublinear scaling with τ stands in contrast with the the-
oretical results of Wark et al. [24], which reported a linear
one. This difference is explained by the fact that in [24], the

inference system assumed a vanishing switching rate. This
leads to the absence of a well-defined steady state, requiring
one to evaluate the adaptation scale over simulations of finite
durations, with a dependence on initial conditions.

This scaling is also much more faster with θ than the
square-root scaling obtained for the OU process. This is be-
cause the OU process assumes that the mean changes all the
time, instead of by discontinuous jumps, making adaptation
faster.

B. Accuracy

We introduce two definitions of accuracy adapted to each
case. For the telegraph process, which admits only two val-
ues for the state variable y = ±1, we define the discrepancy
as the probability for the posterior to be wrong Pwrong =
(1 − 〈xy〉)/2, long after the adaptation transient. For the OU
process, whose state variable is continuous, it is more nat-
ural to define the discrepancy of adaptation as the standard
error between x and y: �2 = 〈(y − x)2〉 [although note that
Pwrong = 〈|ŷ − y|2〉/4, where ŷ is drawn from the posterior
P(ŷ|st ′�t ) = 1+x

2 δ(ŷ − 1) + 1−x
2 δ(ŷ + 1), can also be viewed

as a mean-square difference].

1. Ornstein-Uhlenbeck process

Since the OU process is Gaussian, all moments can be
calculated exactly. We can rewrite �2 = 〈(y − x)2〉 = 〈y2〉 +
〈x2〉 − 2〈yx〉. We already know 〈y2〉 = 1 and calculate 〈x2〉 =
〈yx〉 = 1 − α(

√
1 + 2/α − 1), from which we get

�2 = α(
√

1 + 2/α − 1) = u2. (37)

(Note that this error is equal to the uncertainty computed by
the Bayesian inference system u2 consistent with its optimal-
ity.) In Fig. 4(b) we plot this result and check its validity by
comparing it to numerical integration of (18) and (21). In the
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FIG. 4. Accuracy of adaptation to the mean stimulus as a function of rescaled stimulus variance α = θ/τ . (a) Accuracy in the telegraph
process, defined as the value of the probability of being in the wrong state Pwrong = (1 − 〈xy〉)/2. Circles are obtained by numerical simulation
and the line is the analytical approximation given by (41) for α � 1. (b) Accuracy in the Ornstein-Uhlenbeck process, defined as the posterior
mean-square error �2 = 〈(y − x)2〉. Circles are from numerical simulations and the line is the analytical prediction given by (37). In both
panels the dashed line shows chance prediction (Pwrong = 1/2 and �2 = 1).

limit of perfect adaptation α � 1 we get, at leading order,

�2 ∼ (2α)1/2. (38)

The expression for the accuracy allows us to compute the
average information between stimulus and response (26),

I (s, r) ≈ 〈I (s, r)〉 = 1

2
ln

2πer2
max

σ 2
ε

− 1

2
ln

[
1 + u2

σ 2

]
. (39)

The comparison between numerics and this expression is
shown in Fig. 5(b). In the α � 1 regime, information ap-
proaches channel capacity, i.e., the maximal value allowed by
the output noise, I (s, r) ≈ Imax = 1

2 ln[2πe(rmax/σε )2].

2. Telegraph process

Because Pwrong is a steady-state property, it only depends
on the control parameter α. We computed it by simulating a
telegraph process y(t ) with switching rate 1/2τ and by inte-

grating (20) numerically [Fig. 4(a)]. For small α, adaptation
is very accurate, while for α � 1 it is very poor, with Pwrong

quickly reaching chance level approximately equal to 1
2 .

In the well-adapted phase α � 1 (τ  θ ), adaptation is
fast compared to the switching of the state variable. After
each transition, following an adaptation transient, the system
quickly reaches the steady state of (20) with fixed y, given
by (32). While the moments of ρeq(x|y) cannot be calculated
analytically, its expression simplifies in the small-α limit.
With the change of variable x = y(1 − αu), we obtain the
distribution of u at leading order in α,

ρeq(u) ≈ 1

4u3
e−1/2u, (40)

from which we deduce 〈u〉 ≈ 1
2 and thus

Pwrong = 1 − 〈xy〉
2

= α〈u〉
2

≈ α

4
. (41)

FIG. 5. Average information transmission as a function of the adaptation parameter α = θ/τ : difference �I between the mutual in-
formation (8) averaged over time 〈I (s, r)〉 and the channel capacity Imax = 1

2 ln[2πe(rmax/σε )2] for (a) the telegraph process and (b) the
Ornstein-Uhlenbeck process. Circles are from numerical simulations and the line is the analytical prediction given by (39).
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FIG. 6. Optimal adaptation vs OU adaptation in the telegraph process. (a) Example of adaptation of a telegraph process given by y (red
line), using an optimal estimator (blue line), and using a (nonoptimal) OU estimator (purple line). (b) Average response of the adaptive system
based on a gain function derived from an optimal estimator (blue) or from the OU estimator (purple). The parameter in (a) and (b) is α = 0.1.
(c) Accuracy of adaptation measured by � = √〈(y − x)2〉 using the optimal (blue) and OU (purple) estimators. (d) Information transmission
using the optimal (blue) or OU (purple) estimators. (e) Rescaled adaptation time as a function of the control parameter α using optimal (blue)
and OU (purple) estimators. Note the crossover between the OU and optimal estimators around α = 10−3 as the fastest adapting estimator.

This analytic prediction agrees very well with the simulation
[see Fig. 4(a)]. This error is estimated assuming that the sys-
tem has adapted, so long after the adaptation transient t  tA.

However, while Pwrong is the error long after the adaptation
transient, it is not equal to the average error including during
the adaptation transients. To get that average error, we can
approximate the error to 1 for 0 < t � tA and to Pwrong for t >

tA. Since the average time between switches is 2τ , we obtain

Pwrong,av ≈
(

1 − tA
2τ

)
Pwrong + tA

2τ

≈ α

8
[ln2(α) + (2γe − 2 ln(2) + 1) ln(α) + C + 2].

(42)

Note that this scaling of the error with α is smaller than
for the OU process (37). In the switching process, in the
α � 1 limit the system adapts almost perfectly to the value
of y after a transient lag. By contrast, in the OU process the
state variable changes constantly, causing a permanent lag in
the adaptation and thus a larger error. Figure 5(b) shows how
transmitted information depends on α, in particular how it
quickly converges to the maximal transmissible information
as α goes to 0.

V. NONOPTIMAL ADAPTATION

So far we have assumed that the sensory system knows per-
fectly the statistics of the environmental dynamics, including
its timescale τ , mean, and variance, and type of dynamics.
In realistic situations, however, the system may not know the
statistics of the environment precisely or may have evolved to

best respond to stimuli with particular statistics (e.g., natural
ones), while the experimental stimulus was designed using
artificial statistics (e.g., mean switching between two values).
In this section we explore the impact of maladapted (nonopti-
mal) adaptation dynamics, where the inference system makes
wrong assumptions about the environmental dynamics.

A. Misrepresented dynamics

We first consider adaptation when the sensory systems
misrepresents the nature of the dynamics. We assume that the
true dynamics follows a switching mean (telegraph process),
while the Bayesian system assumes an Ornstein-Uhlenbeck
dynamics. This leads to integrating the OU dynamics (21),
but with y switching between −1 and +1 with rate (2τ )−1.

Such an adaptation scheme is illustrated Figs. 6(a) and
6(b). The error [in the sense of the OU process, �2 = 〈(x −
y)2〉] may be calculated analytically and is identical to the
case where y would actually follow an OU process with the
same time constant [Eq. (37)]. This is due to the fact that
in both cases the solution to (21) can be formally written as
y(t ) = ∫ t dt ′e−(t−t ′ )/τ ′

(τ ′/θ )u2s(t ′), with τ ′ = τ/
√

1 + 2/α,
and that both the telegraph and the OU process have the same
first two moments (19). However, it does much worse that the
optimal adaptation scheme (20), as can be seen from Fig. 6(c)
and confirmed by the scaling at small α of the adaptation
time [α ln2 α � α1/2; see (38)]. The impact of this nonoptimal
adaptation can also be seen, to a lesser extent, on mutual
information [Fig. 6(d)].

For the same reason cited above, the adaptation timescale
tA is identical to that of the OU process (30). We observe
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a broad range of parameters where adaptation with the OU
assumption is faster than the optimal adaptation scheme
[Fig. 6(e)]. We can understand this intuitively by noting that
the OU assumption assumes constant change and thus will be
quicker to react to sudden changes. The flip side is that even
when the mean is stable between switches, it overestimates
the uncertainty and tends to conservatively adapt less well
[Figs. 6(a) and 6(b)].

B. Wrong parameters

We next consider the case where the type of dynamics is
correctly assumed by the Bayesian system, but its parameters
are wrongly estimated. The assumed values of the two param-
eters are off by a factor r and l , respectively: τassumed = rτ
and θassumed = lθ . The resulting adaptation dynamics for both
processes (20) and (21) are modified by substituting these
assumed values

dx

dt
= − x

rτ
+ 1 − x2

lθ
y + 1 − x2

l
√

θ
ξ, (43)

dx

dt
= −

√
1 + 2r/lα

rτ
x + u2

lθ
y + u2

l
√

θ
ξ (44)

for the telegraph and OU processes, respectively, with u2 =
2/(1 + √

1 + 2r/lα). On the other hand, the dynamics of y
[Eq. (17)] [and switching with rate (2τ )−1 for the telegraph
process and Eq. (18) for the OU process] are unchanged, with
the true parameters τ and θ .

For the OU process the problem is still solvable and the
accuracy can be calculated as

�2 = u2 1 + lr + β(lr + r + l − 1) + β2(l − r)

2l (1 + βr)
, (45)

with β = (1 + 2r/lα)−1/2, which reduces to

�2 ∼ 1 + lr

2
√

lr
(2α)1/2 � (2α)1/2 (46)

in the well-adapted regime α � 1. The adaptation time can
similarly be computed as

tA
τ

= βr

1 − βr
ln

2

1 + βr
, (47)

which scales as tA ∼ (rτ lθ/2)1/2 in the α � 1 regime, i.e.,
the geometric mean of the two assumed timescales, as in the
optimal case. In the α  1 regime, the adaptation timescales
like τ (also like the optimal case): tA ∼ τ [r/(r − 1)] ln[(1 +
r)/2]. These results indicate that while underestimating the
noise and switching period leads to faster adaptation, doing
so hurts the accuracy of the inference.

For the telegraph process, the equilibrium accuracy may be
computed using the same method as described earlier:

Pwrong = αl

4r
. (48)

For the adaptation time, we obtain

tA
τ

∼ αl2

2(l − 1)
ln(1/α) for l > 1 (49)

∼ αl l2�(l + 1)

2(1 − l )

(
l2

2r

)l−1

for l < 1 (50)

≈ α

4
{ln2(α) + [1 + 2γe − 2 ln(2)

+ ln(r)] ln(α) + O(1)} for l = 1, (51)

where �(x) is the Gamma function.
Underestimating the switching rate (r < 1) allows a

slightly faster adaptation, but at the cost of a lower equi-
librium accuracy. Likewise, overestimating the noise (l > 1)
also speeds up the response, but again at the expense of
accuracy.

VI. ADAPTATION TO VARYING VARIANCE

A. Optimal adaptation dynamics

We now turn to the case of variance switching, where the
sensory system tries to evaluate the variance of a random
stimulus of fixed mean. The variance follows a telegraph
process, alternating a between high-value σh and a low-value
σl . There are many examples of this type of adaptation
[7,34,43,44] and it has been much studied experimentally
[18,22–24,29,45]. As in the case of adaptation to the mean,
we start with discrete time. At each time step, the variance
switches with probability k. This defines a correlation time
τ = 1/ ln(1 − 2k) of the underlying telegraph process. The
stimulus is sn = s0 + ynηn, where yn is the varying variance
(equal to σh or σl ) and ηn is normally distributed (〈ηn〉 = 0
and 〈ηnηn′ 〉 = δnn′). We set s0 = 0, σl = 1, and σh = r with-
out loss of generality. The posterior probability of being in
the low-variance phase given previously observed stimuli,
Pl

n = P(yn = σl |s j �=n), is then given by the recursive relation
obtained from (2):

Pl
n =

[
1 + 1

r

kPl
n−1 + (1 − k)

(
1 − Pl

n−1

)
(1 − k)Pl

n−1 + k
(
1 − Pl

n−1

)e−s2
n (r−2−1)/2

]−1

.

(52)

A major difference with the case of adaptation to the mean
is that this equation does not admit a well-defined continuous-
time limit. Intuitively, this is because learning the amplitude
of white noise is much faster than learning its mean. During
any observation time �t , the observer has access to an infinite
number of independent samples. However, each sample is
infinitely noisy. For the mean, these two infinities compensate
exactly, but for the variance the high value of the noise is not
an issue since the goal is to estimate its magnitude. As a result,
in the continuous-time limit, the system can adapt instantly
to the variance, as it receives an infinite amount of signal. A
solution to this problem could be to replace the white noise
in the stimulus by a colored noise with a finite correlation
timescale τs so that the number of independent samples during

054404-10



NONEQUILIBRIUM DYNAMICS OF ADAPTATION … PHYSICAL REVIEW E 106, 054404 (2022)

FIG. 7. Example of the variance adaptation process. (a) Typical stimulus received by the sensory system, made of normally distributed
signals with switching variance. (b) True value of the variance (red) versus the assumed one (blue) based on past signals. (c) Mean response
obtained by optimizing the expected information transmission based on the posterior distribution of variances. Switching is hardly detectable
in that response, as it affects transiently the variance but not the mean of the response. (d) Average information transmitted per time bin, in bits
(σε = 0.01). Note the asymmetry between the two types of switches.

time �t scales as �t/τs. However, keeping with discrete time
has a similar effect with τs = δt .

B. Speed and accuracy of variance adaptation

The dynamics of optimal adaptation can be studied by
simulating (52) numerically. Figure 7 shows an example of
input signal, inferred variance, optimal output response, and
information transmission as a function of time.

The dynamics is characterized by an asymmetry in the
adaptation to the two states [Fig. 7(b)]. This is due to the
fact that the high-variance state is able to produce signals of
low amplitude with high probability, while the low-variance
state is very unlikely to produce large amplitudes. When in
the low-variance state, the system receives few misleading sig-
nals, while in the high-variance state, frequent low-amplitude
signals confound the posterior. The flip side is that the
system adapts faster to switches towards the high-variance
state, as already noted [29], because that state produces
unlikely signals under the low-variance hypothesis. This
asymmetric behavior is reflected in the dynamics of infor-
mation transmission, which experiences a stronger drop after
a low-to-high transition than after a high-to-low transition
[Fig. 7(d)]. Notably, these predictions agree with experiments
in the fly visual system, where this asymmetry in the loss

of information transmission following variance switches was
observed [23].

As in the case of adaptation to the mean, we can define the
accuracy of adaptation as the probability that the posterior is
wrong and the adaptation time tA as the delay n maximizing
〈yn0 Pl

n0+n〉. In Fig. 8 we plot these two quantities, as well as
the transmitted information, given by (8), as a function of
the two parameters of the model: the switching rate τ and
the variance ratio r = σh/σl . The error decreases with the
switching period τ , as the system has more time to adapt, as
well as with the variance ratio r. The trend here depends also
on the value of r. The adaptation time varies sublinearly with
τ . It is approximately linear at small τ and levels off without
saturating at larger τ . The larger the variance ratio r, the nar-
rower the linear region. The loss in information transmission
due to imperfect adaptation �I follows the same dependence
on τ as the error. However, its dependence with respect to
the variance ratio r is reversed. The higher that ratio, the
easier it is to distinguish between the two stimulus statistics,
but errors are more costly in terms of information transmis-
sion because of the larger discrepancy between the assumed
and actual dynamic ranges. Conversely, smaller differences
between the two environments lead to less inefficiency
in their encoding, despite a higher error in distinguishing
them.
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FIG. 8. Accuracy and speed of adaptation to variance switching. (a) Accuracy of the optimal adaptation dynamics for three different values
of the variance ratio r = σh/σl , as a function of the inverse of the switching timescale τ , which plays a similar role to α in mean switching.
The lower the r, the larger the estimation error. (b) Adaptation time as a function of the switching timescale τ . The dependence is linear for
very short times and then displays strong sublinear behavior. (c) Information transmission as a function of 1/τ . Note that while a large ratio
between the two variances induces a lower error in (a) (because they are easier to distinguish), this error has a larger impact on information
transmission, so that information loss is overall larger.

Experiments in the fly [23] and vertebrate [24] visual sys-
tem suggest a linear relationship between the adaptation time
and the switching timescale, although this linear assumption
was not compared against alternative scalings. Our theory
predicts that such a linear regime is only expected when the
switching period is relatively short compared to the typical
time between independent samples, which is also the regime
where adaptation is poor.

VII. ENTROPY PRODUCTION AS A SIGNATURE
OF ADAPTATION

A. Motivation and definition

So far we have studied the adaptation dynamics of ide-
alized sensory systems, focusing on the trade-off between
precision and speed. However, these notions require prior
assumptions about what adaptation should look like and do.
In the example of switching between environmental states,
the adaptation time course is expected to look like relaxation
dynamics. By contrast, for a continuous change such as the
OU process, adaptation is much harder to see by eye. Can we
measure adaptation in a way that makes minimal assumptions
about what the response is adapting to or about the nature of
the environmental changes?

To define such a quantity, we exploit the connection
between adaptation and the dissipative dynamics of a thermo-
dynamic system under an external drive [28,46], as suggested
by the form of the adaptation dynamics (20) and (21), where
the adaptation variable x(t ) is driven out of equilibrium by
an external stimulus y(t ). In this type of dynamics, the im-
portance of nonequilibrium effects is commonly measured
by the rate of entropy production [47], which quantifies the
irreversibility of the observed joint time courses of x(t ) and
y(t ), and is defined formally as the relative entropy between
the forward and backward trajectories of the dynamics. Our
goal is to calculate that entropy production in the systems
studied so far and to relate this quantity to the degree of
adaptation.

If P(�N
0 ) is the probability of a given trajectory � =

{z0, . . . , zN } in discrete time, where z = (x, y) is the variable
describing the state of the system, the entropy production of
the trajectory � is defined by [48]

SN
tot (�) = ln

P
(
�N

0

)
P(R

(
�N

0

)
)
, (53)

where R(�) is the time reversal of �. While in early work
entropy production was defined in terms of heat loss and dissi-
pation and shown to be equal to (53) in the case of Markovian
dynamics with local detailed balance [46,49], here we take
(53) as a definition, following the modern view of stochastic
thermodynamics. For a Markov system, one has P(�N

0 ) =
p(z0)

∏N−1
n=0 wzn+1zn , where wzz′ is the transition probability

from z′ to z, so at steady state the average entropy production
per time step reads

1

N
SN

tot (�)
N→∞−−−→ δS =

∑
zz′

wzz′ pz′ ln
wzz′

wz′z
, (54)

where pz is the steady-state distribution of z defined by
the implicit equation pz = ∑

z′ wzz′ pz′ . Taking the continuous
limit, we can define an entropy production rate Ṡ = δS/δt
as δt → 0.

When the statistics of stimuli do not vary and are reversible
in time, no adaptation occurs in an optimal estimator and we
expect the temporal statistics of the response to be temporally
reversible. When the statistics of stimuli change (abruptly or
continuously), the response statistics are transiently poorly
adapted and require time to relax to their efficient encod-
ing state, similar to the relaxation of the equilibrium of a
thermodynamic system after a change in an external control
parameter (temperature, displacement, force, etc.), thus lead-
ing to the production of entropy.

The measure of adaptation through entropy production pro-
vides a means to detect and quantify adaptation in any sensory
system, in a parameter-free manner and without having to
know the fine details of the encoding strategy. In the following
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FIG. 9. Entropy production rate in mean adaptation processes: (a) telegraph and (b) Ornstein-Uhlenbeck models of mean adaptation. Points
are obtained by the numerical simulations, while the curves are analytical predictions given by (62) for the telegraph case and (59) for the OU
case. The lower the parameter α, the better the adaptation and the larger the entropy production, which diverges with α → 0.

we quantify the production of entropy in the models of mean
and variance adaptation studied above.

B. Adaptation to mean

We start with the OU process, for which entropy produc-
tion may be calculated analytically (see Fig. 9). We start with
the Gaussian transition probabilities, with z′ = (x(t ), y(t ))
and z = (x(t + δt ), y(t + δt )),

wzz′ = P(yt+δt |yt )P(xt+δt |xt , yt ) (55)

P(yt+δt |yt ) ∝ exp −
[
yt+δt − yt

(
1 − δt

τ

)]2

4 δt
τ

, (56)

P(xt+δt |xt , yt ) ∝ exp −
[
xt+δt − xt

(
1 − δt

τ ′
) − δt

θ
yt

]2

4Dxδt
, (57)

with Dx = u4/2θ . Plugging these expressions into (54) gives

δS =
√

1 + 2/α − 1

τ

C(δt ) − C(−δt )

2Dx
, (58)

where we recall C(t ) = 〈y(t0)x(t0 + t )〉. Expanding at small
δt yields the entropy production rate

Ṡτ =
√

1 + 2/α − 1, (59)

which diverges as proportional to α−1/2 in the regime of
good adaptation (α � 1) and decays to zero when the signal
is too poor to allow for adaptation (α  1). We note that
Ṡ is nonzero in the stationary state, reflecting the fact that
the system is constantly trying to keep up with changes in
the stimulus statistics. It thus shares some features with �I
(Fig. 5), which quantifies the effect of the delay in keeping
up, with the difference that it can be computed without a priori
knowledge of the channel capacity Imax.

To calculate the entropy production during the period
of a switch in the well-adapted regime (α � 1), we may
exploit the analogy with statistical thermodynamics. After
each switch, the energy landscape changes from U+(x) =
− ln ρeq(x|y = 1) to U−(x) = − ln ρeq(x|y = −1) (and vice
versa), which are given by the steady-state distributions (32).

During the adaptation transient, the system relaxes to its new
equilibrium, lowering its energy by dissipation. The heat thus
dissipated is exactly equal to the total entropy produced dur-
ing this transient. Assuming that the system has completely
adapted to the previous epoch prior to each switch (which is
valid for α � 1), we may write the entropy production rate
as the mean entropy production per switch, divided by the
average time between switches:

Ṡ = 1

2τ
[〈U−(x)〉x∼ρeq (·,y=+1) − 〈U−(x)〉x∼ρeq (·,y=−1)], (60)

Ṡτ =
〈
ln

1 + x

1 − x

〉
x∼ρeq (·,y=+1)

. (61)

In the small-α regime, we can compute this expression at
leading order

Ṡτ = 1 − γe + 2 log(2) − log(α), (62)

which again diverges for α → 0, but this time logarithmically.
In the α → ∞ limit, the system never adapts and the dynam-
ics is in effective equilibrium Ṡτ → 0.

C. Variance switching

Since we have no analytical solution or continuous-time
limit for the case of a switching variance, we take recourse to
numerical estimates of (54). The results, shown in Fig. 10,
express a picture similar to that for the mean switching
case. When the switching period is large, the system is well
adapted, spending most of its time in the equilibrium state, but
dissipating heat during each adaptation transient. The average
amount of entropy production per switching cycle does not
generally saturate at large τ and also grows with the variance
ratio r, as expected.

Taken together, these results suggest that entropy pro-
duction provides a good signature of adaptation. It is larger
when adaptation is more precise and when the environmental
changes causing adaptation are more important.
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FIG. 10. Entropy production in adaptation to variance switching.
The average entropy production rate δSτ is plotted as a function of
the inverse correlation time for three different values of the variance
ratio r = σh/σl . Note that the entropy production is rescaled by 1/τ .

VIII. DISCUSSION

We have studied a theoretical scheme in which sensory
adaptation is cast as an inference problem. As noted before
[24,26,29], the solution to this problem can be described in
terms of Bayesian filters. In this work we have focused on
simple solvable models of adaptation to sudden or continu-
ous changes to the stimulus statistics. The resulting Bayesian
adaptation dynamics couples the sensory response function to
the state of the environment in a noisy manner, allowing for
their study in terms of stochastic thermodynamics. This ex-
plicit analogy to nonequilibrium systems allowed us to relate
adaptation and dissipation (entropy production) in a precise
mathematical sense. This correspondence stems from the de-
lay between changes in the statistics of the stimulus and the
response of the adaptation mechanism, leading to irreversible
dynamics.

In the case of a switching stimulus mean, these dynamics
reduces in the continuous-time limit to coupled stochastic
differential equation, which we can solve analytically. We
computed the speed and accuracy of adaptation and showed
that they both depend on a single parameter α controlling
the ratio between the noise and the environmental timescale.
When α is small, the system has enough time to adapt rel-
ative to the environment’s speed of change. In this regime
adaptation is accurate, meaning that the response function
is optimally tuned to the current environment statistics. For
large α, however, the environment changes too quickly for the
system to garner information and the response does not adapt,
instead ignoring received signals and using an effectively con-
stant response function (x ≈ 0).

We found that, in the fidelity regime, the timescale of
adaptation always scales sublinearly with the environmental
timescale. However, the precise scaling depends of the precise
model of the environment: logarithmic for abrupt changes in
the stimulus mean (telegraph process) and square root for
continuous ones (Ornstein-Uhlenbeck process). Since these
are two extremes of one-dimensional stochastic process, we
expect other types of environmental dynamics to have scalings
that fall within that range. Most experiments studying visual
adaptation have reported linear scalings in adaptation to both
the mean and variance [23,24], although alternative scaling

laws were not tested. In our model, a strict linear scaling is
approached only in the limit of low fidelity, where adaptation
is very poor. This suggests that these sensory systems are
actually not optimal for these simplified stimulus statistics,
but have instead evolved under other constraints, such as
metabolic or biophysical constraints, and for efficiency under
a broad range of complex stimulus contexts.

Our results on mean switching mostly hold true in the
case of variance switching, including the sublinear scaling of
adaptation time with environmental timescale. In that case, the
continuous-time limit is not straightforward. We thus focused
on the dynamics in discrete time using numerical simulations.
We found an asymmetry in the adaptation dynamics, with a
larger drop in information transmission following an increase
of variance than a decrease, consistent with experimental ob-
servations in the fly visual system [23].

Optimality is only a guiding principle and not an assump-
tion for what the system does. We also studied the effect of
optimizing response properties when stimulus statistics are
misrepresented. We found that while assuming continuous
change is more conservative, the corresponding adaptation
strategy fares just as well when the actual dynamics is
discontinuous. Mischaracterizing the parameters of the en-
vironmental statistics affects the precision and speed of
adaptation, tipping the balance between the two, but not their
scaling with α.

To explore the impact of adaptation on the coding strategy,
we assumed that the system changes its response function to
optimize the expected information transfer. This relies on the
implicit assumption that the sensory system also outputs the
adaptation variable x in addition to the response r. However,
realistic coding strategies may combine the two together into
a single response, as, for instance, in the case of variance
coding, where the response encodes both stimulus fluctuations
and its variance through the mean response [23]. How to
efficiently compress these different signals into a single noisy
response remains to be studied.

A main contribution of this paper is a mathematically pre-
cise link between adaptation and dissipation. This analogy
emerges from the form of the dynamical Bayesian equa-
tions (20) and (21), where adaptation resembles relaxation to
equilibrium. We showed that a high degree of adaptation, as
determined by its speed and accuracy, can be quantified by the
degree of deviation from equilibrium and reversibility. This
measure of adaptation through entropy production could give
a systematic way to detect and quantify adaptation in any sen-
sory system, in a parameter-free manner and without having
to know the fine details of the encoding strategy. In particular,
it could be applied to recordings of populations of neurons
in a variety of sensory systems in response to changes in the
stimulus statistics, using increasingly available multielectrode
recordings [50] or two-photon calcium imaging techniques
[51,52]. Adaptation has mostly been studied at the level of
single neurons, because of its evident manifestation in terms
of spiking rates of individual neurons. However, more subtle
adaptive changes could occur in the way multiple neurons
encode information collectively through their interactions or
shared variability, which would be missed by traditional meth-
ods. For instance, Hopfield networks [53] encode information
in the collective state of many neurons, and it has been argued
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that similar principles may govern the encoding of visual
information in the retina [54]. In that case both the output x
and the adaptation variable y could be implicitly encoded in
the collective activity. The signatures of entropy production
proposed here could be useful for detecting adaptation in such
combinatorial codes.

Other sources of irreversibility, including in the stimulus
statistics themselves or through the inherent irreversibility of
the biophysical processes that implement the response, may
confound this analysis and would have to be corrected for.
Still, the relation between adaptation, time, and accuracy pro-
vides a testable hypothesis that could be explored in future
experiments. It should also be emphasized that this dissipation
may not directly correspond to actual energy consumption in
the system, although it always provides a lower bound. In
neural systems, energy consumption from electrical activity
far outweighs dissipation estimated by the irreversibility of
measurable quantities. On the other hand, the two may be
surprisingly close for molecular systems. Previous work by
Lan et al. [28] used entropy production to estimate energy
consumption in the context of adaptation in E. coli chemo-
taxis, showing that the system realizes a near-optimal trade-off
between energy, speed, and accuracy. By contrast, our pro-
posal is to use entropy production as an intrinsic definition
of adaptation in sensory systems, independently of energetic
considerations.

Our framework could be expanded to account for meta-
adaptation [55], which describes the possibility that the
system dynamically learns the hyperparameters of the stim-
ulus statistics (e.g., θ , τ , and σ ) from the past stimulus. A
similar form of meta-adaptation has been proposed and ex-
plored in the context of evolutionary adaptation [56], where
microbial populations are assumed to adapt their composition
not only to environmental changes, but also to the statistics
with which that environment changes, using a strategy of
Bayesian filtering similar to that employed here. Combining
all hyperparameters into a collective variable �, we could
write a recursive equation similar to (2) assuming a Markovian
dynamics for �:

P(yn,�n|s j�n) = 1

�
P(sn|yn)

[ ∑
yn−1,�n−1

P(yn|yn−1,�n−1)

× P(kn|�n−1)P(yn−1,�n−1|s j<n)

]
. (63)

In this scheme the sensory system learns both the parameters
of the stimulus statistics and the hyperparameters that govern
their own dynamics. Such meta-adaptation is needed to ex-
plain how sensory systems dynamically adapt their adaptation
speed to the environmental timescale [23,24], on a longer
timescale than adaptation itself. This hypothesis is consis-
tent with the fact that changes in the world occur on many
timescales [57] and is also suggested by the wide range of
timescales in visual adaptation even at the level of the retina,
from seconds to hours. Future experimental and theoretical
work should determine the relevance of this theory in biolog-
ical sensory systems.
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APPENDIX: MEAN FIRST-PASSAGE TIME
AFTER A SWITCH

We start with (33) to operate the change of variables x =
1 − α/2w and x′ = 1 − α/2v. In the limit α � 1, we assume
that w and v are small for the dominating contribution of the
integral. Because of the 1 − x2 prefactor in the attraction term
towards y, the dynamics of x is initially “stuck” in the previous
belief, x ∼ 1. Once it reaches a value 1 − O(1), it quickly (in
time approximately equal to θ ) reaches 0, before continuing
on to its next state approximately equal to −1.

The change of variable gives

T (x0) ∼ θ

2

∫ w0

α/2
dw ew2/(w−α/4) w − α

4

w2

×
∫ +∞

w

dv e−v2/(v−α/4) v2(
v − α

4

)3 , (A1)

where w0 = (α/2)/(1 − x0) is of O(1) in α. The internal
integral in (A1) can be rewritten as the sum of three parts

≈
∫ +∞

w

dv e−v

v
+

∫ +∞

w

R(v)e−vv

+
∫ +∞

w

v2(
v − α

4

)3 e−v

[
exp

(
−α

4

1

v − α
4

)
− 1

]
, (A2)

with R(v) = v2/(v − α
4 )3 − 1/v.

The first term on the right-hand side in (A2) is by defini-
tion equal to the special function E1(w) ≈ w − γe − ln(w) +
O(w) (related to exponential integral). Its contribution to (A1)
is dominated by the behavior at small w → α/2 where the in-
tegral diverges when α → 0. As we will see, it also dominates
the second and third terms, yielding

T (x0) ≈ θ

2

∫ w0

α/2
dw ln(1/w) − γe

w − α
4

w2

≈ θ

4
{ln2(α) + [2γe − 2 ln(2) + 1] ln(α) + O(1)}.

(A3)

What remains to show is that the second and third terms in
(A2) contribute at most O(1) to the result. The second term’s
contribution to (A1) is bounded by

θ

2
e2w0

∫ w0

α/2

dw
(
w − α

4

)
w2

[
8 2w

α
− 3

2
(
2 2w

α
− 1

)2 + ln
2w
α

2w
α

− 1
2

]

= θO(1). (A4)

As for the third term, it is approximately −α
4∫ +∞

w
w3

(w− α
4 )4 e−w ∝ α ln( 1

w
) and will thus contribute

O(θα ln(1/α)) = O(θ ) to the result.
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[19] G. Tkačik and W. Bialek, Information processing in liv-
ing systems, Annu. Rev. Condens. Matter Phys. 7, 89
(2016).

[20] S. Laughlin, A simple coding procedure enhances a neuron’s
information capacity, Z. Naturforsch. C 36, 910 (1981).
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