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Discretization of continuous stochastic processes is needed to numerically simulate them or to infer models
from experimental time series. However, depending on the nature of the process, the same discretization scheme
may perform very differently for the two tasks, if it is not accurate enough. Exact discretizations, which work
equally well at any scale, are characterized by the property of invariance under coarse-graining. Motivated by
this observation, we build an explicit renormalization group (RG) approach for Gaussian time series generated
by autoregressive models. We show that the RG fixed points correspond to discretizations of linear SDEs,
and only come in the form of first order Markov processes or non-Markovian ones. This fact provides an
alternative explanation of why standard delay-vector embedding procedures fail in reconstructing partially
observed noise-driven systems. We also suggest a possible effective Markovian discretization for the inference
of partially observed underdamped equilibrium processes based on the exploitation of the Einstein relation.
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I. INTRODUCTION

How to properly represent continuous-time stochastic pro-
cesses by discrete-time descriptions is a central problem in
applied science. Models used in all areas of physics frequently
take the form of stochastic differential equations (SDEs), yet
the experimental observation of any real process produces
discrete sequences of data points. Moreover, numerical inte-
gration of any SDE requires to define transition probabilities
over finite time steps. Hence, finding a good discretization
scheme is key for both numerical integration and parametric
inference of continuous-time processes.

Since exact solutions are not available for arbitrary pro-
cesses, the general strategy is to resort to a Taylor-Itô
expansion of the integrated process. The lowest order ex-
pansion is the Euler-Maruyama scheme, which is (strongly)
convergent as τ 1/2, being τ the discretization time step [1].
This discretization scheme has been widely used in the lit-
erature, due to its simplicity and intuitive interpretation (it
amounts to estimating velocities as finite differences). How-
ever, it has also been observed that the Euler-Maruyama
approximation cannot be employed in the derivation of
parametric inference methods for second or higher-order pro-
cesses, as it leads to the extraction of inconsistent parameter
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estimators [2–10]. On the contrary, adopting higher-order
discretization schemes, consistent inference algorithms (both
Bayesian and non-Bayesian) can be designed.

The failure of the Euler-Maruyama discretization (Euler
for short) can be explained in the following terms: to learn
second or higher-order stochastic models, the dynamical in-
formation we need to extract from the fluctuations is of
higher order (in τ ) than the accuracy with which those are
reconstructed by the Euler scheme. Nonetheless, the correla-
tion functions that we reconstruct from an Euler simulation
faithfully reproduce those of the integrated continuous-time
process, at arbitrary order—provided that the simulation
time step (τsim) is sufficiently small, compared to the typical
time scales of the system (τobs). While this separation of scales
is possible in numerical simulations, state space inference
requires to discretize the process over the same time scales as
those over which we observe the correlations. The lack of such
separation of scales explains the bad performance of the Euler
discretization in parametric inference tasks, as opposed to
numerical integration, and suggests that as we “zoom out” our
lens for the observation of the process, the dynamics recovers
the correct statistical properties that were originally missing.

This property has motivated the introduction of data
augmentation techniques in parametric inference, like
Refs. [11,12], which consist in introducing and marginaliz-
ing additional intermediate states between pairs of observed
points. It also reminds us of what happens in statistical field
theory in the context of the renormalization group (RG). The
bare theory, which provides an effective description of the
system at the microscopic scale, might be incomplete; how-
ever, when we apply the RG procedure to get an effective
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theory at larger scales, this generates the missing terms and
yields a model that correctly describes the large scale statis-
tical fluctuations. More precisely, the augmentation strategy
of Refs. [11,12] or the “zoom out” operation described above
amount to temporal coarse-graining, which is reminiscent of
the coarse-graining implemented in Real Space RG, with time
steps playing the role of lattice spacings in the usual setting.

In this paper, we identify the formal framework to de-
velop this analogy with the RG approach, and we exploit
it to recognize different classes of discrete-time stochastic
processes based on their property of invariance under the
RG transformation. The condition of invariance under RG
amounts to requiring that, when the discretization interval τ

is small enough, integrating the process over a single step 2τ

or through a combination of two steps on intervals τ should
provide the same result.

We restrict our analysis to stationary Gaussian processes,
for which an explicit RG map can be easily derived. In the
space of these discrete-time models, Euler discretizations of
linear SDEs are a subset. The study of the RG map re-
veals an interesting structure, where the fixed points point
out classes of “natural” physical processes. They include
full observations of continuous Markov processes, or par-
tial observations of higher-dimensional processes inheriting
a non-Markovian structure. No intermediate situation can be
obtained. Higher-order Markov processes, whose transition
probabilities depend on two or more previous observations,
are not RG fixed points. This result underscores the lack
of finite-dimensional delay vector embeddings for stochastic
systems.

The paper is organized in the following way: in Sec. II we
consider as a starting point the linear damped Langevin equa-
tion, and illustrate in this simple case how an RG procedure
can be defined and applied to discretizations of the continuous
process. We derive the RG map, identify the fixed points,
and give their interpretation. We also discuss the possibility
of building effective Markovian embeddings and their limita-
tions, an issue relevant for inference purposes. In Sec. III we
extend the previous analysis to arbitrary higher-order linear
processes, and deduce more general conclusions. Finally, in
Sec. IV we summarize and discuss our results.

II. LINEAR SECOND-ORDER PROCESSES

A. A simple case

The shortcomings of the Euler scheme mentioned in the
Introduction are manifested for processes of second or higher
order. By nth order processes we mean that they are described
by nth order SDEs or, equivalently, that they are obtained from
the partial observation of n-dimensional stochastic processes,
whose structure is such that the noise is transferred from the
hidden coordinates to the single observed degree of freedom
(hypoelliptic diffusions). Partial observations of such noise-
driven systems break the Markovianity, introducing temporal
noise correlations and memory effects in the description of the
observed dynamics [13,14]. These features are not captured
by the Euler discretization scheme, which has the peculiar
property of reducing to a Markovian discrete-time model
when applied to this kind of systems.

The simplest example, for n = 2, is a linear damped
Langevin equation in which only the positional coordinates
are directly measured. Let us consider

dx = vdt, (1)

dv = −ηvdt − κxdt + σdW, (2)

with W (t ) a Wiener process. We assume that the coordinate x
is observed at a finite sampling rate τ−1, producing an infinite
time series denoted as {Xn, n ∈ N}. For this process, under
stationary conditions, an exact solution can be computed and
used in inference and simulation problems [15,16]; however,
we are interested here in understanding how discrete mod-
els are related to their continuous counterparts. We therefore
discretize Eqs. (1) and (2), i.e., we integrate the continuous
equations over a time interval of length τ and expand at the
first order in τ the resulting integral expressions (Euler). Elim-
inating the v variable, we obtain a discrete update equation for
the x coordinate that has the following structure:

Xn = ψXn−1 + θXn−2 + μεn, (3)

where ψ = 2 − ητ − κτ 2, θ = (−1 + ητ ), μ = στ 3/2 and
εn ∼ N (0, 1).

Equation (3) is an autoregressive model of order two,
denoted AR(2) [17], and it is fully characterized by the condi-
tional probability P(Xn|Xn−1, Xn−2). Thanks to the Markovian
structure of the discrete process in Eq. (3), the probability of
the associated time series reads

P({Xn, n ∈ N}) =
∏
n�2

P(Xn|Xn−1, Xn−2)P(X0, X1). (4)

Under stationary assumptions, we can move the initial condi-
tion arbitrarily far in the past to neglect boundary terms. The
resulting P({Xn}) can be interpreted as the Boltzmann weight
of a configuration of spins on an infinite one-dimensional
lattice with first- and second-nearest-neighbor interactions.
The analogy will be helpful to derive an explicit RG map.

B. The RG construction

The failure of the Euler discretization Eq. (3) in inference
approaches signals that it misses some important information
about fluctuations on the local scale τ . The questions we
address are the following: is there a way, starting from Eq. (3),
to understand what ingredients are missing? Are there spe-
cific constraints on the coefficients of discrete equations like
Eq. (3), to ensure compliance with any continuous model?

We start our analysis by noticing that a good discretization
of the original continuous process must be so regardless of
the precise value of the time interval τ we consider (as long
as it is small enough, compared to the physical time scales
of the process). If we use the same scheme to integrate over
a single step 2τ or through a combination of two steps on
intervals τ , then the result should be the same. As we iterate
this argument many times, we compel the structure of the
discrete equations to remain unaltered at different scales. We
look indeed at the discrete process on scales that are larger and
larger than the original one, until the ratio between the charac-
teristic observation time scale and the discretization time step
becomes infinite (τobs/τsim → ∞). In this way, upon redefini-
tion of the time units, we approach the continuum limit. This
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FIG. 1. Sketch of the RG transformation for a time series. The
discretely observed coordinates {Xn} play the role of spin variables on
a lattice, with nearest neighbor and next-nearest neighbor coupling.
The time step τ is the lattice spacing. Model parameters, A0, are
transformed into Ã0 through coarse-graining, then rescaled to A1 as
we map τ → τ/2.

procedure allows us to check whether a given discrete scheme
is scale invariant, and therefore faithfully describes a reference
continuous equation, or—in case invariance is violated—how
the approach to the continuum limit occurs.

Let us formalize this idea using the language of the Renor-
malization Group. We explore the continuum limit through
a progressive increase in the number of steps contained in
a fixed time window. This is obtained by iterating the two
operations that make up the RG: (i) coarse graining and (ii)
joint rescaling of the time unit and of the parameters of the
model. The procedure is sketched in Fig. 1.

We apply the method to Eq. (3). Given the analogy of Euler
time series with linear spin chains, we adopt the strategy of
decimation to coarse grain [18–20]: the goal is to get rid of
half of the sites (e.g., odd ones) in the sequence generated by
Eq. (3), thus deriving effective update equations for the even
subseries. To implement this transformation, we take a suit-
able linear combination of neighboring update equations of
the form of Eq. (3):

Eqn(Xn) + ψEqn(Xn−1) − θEqn(Xn−2), (5)

which results into an update equation for the subseries:

Xn = ψ̃Xn−2 + θ̃Xn−4 + r̃n, (6)

with ψ̃ = ψ2 + 2θ , θ̃ = −ψ2. The structure of Eq. (6) looks
similar to the one of Eq. (3) with updated parameters. There
is, however, a crucial difference: unlike in the original process,
the random increment

r̃n = μ[εn + ψεn−1 − θεn−2] (7)

is now correlated across nearest neighbors: E[r̃nr̃n±2] �= 0.
This fact is better seen if we appropriately rewrite the ran-
dom increment as a different linear combination of Gaussian
variables:

r̃n = μ̃ε̃n + ν̃ε̃n−2, (8)

with ε̃i ∼ N (0, 1) new I.I.D. variables, and μ̃, ν̃ satisfying

E[r̃2
n ] = μ̃2 + ν̃2 = (1 + ψ2 + θ2)μ2, (9)

E[r̃nr̃n±2] = μ̃ν̃ = −θμ2. (10)

FIG. 2. Coarse-graining by decimation maps the ladder topology,
corresponding to our AR(2) model, to a fully connected net. The
new couplings are however not independent due to the nontrivial
correlation properties of the random contributions.

It can be verified that E[r̃l
nr̃l

n±2k] = 0 for k > 1. Thus,
Eq. (6) becomes

Xn = ψ̃Xn−2 + θ̃Xn−4 + ν̃ε̃n−2 + μ̃ε̃n, (11)

also known as ARMA(2,1) model [17]. General autore-
gressive moving-average processes of order (p, q), denoted
ARMA(p, q), are time series generated by update equations of
the form

Xn =
p∑

i=1

φiXn−i +
q∑

i=1

νiεn−i + μεn, (12)

with νi, μ ∈ R and εn ∼ N (0, 1) I.I.D. The autoregressive
(AR) part of the equation corresponds to the contribution
from the previous p states of the system; the moving average
(MA) part, of order q, corresponds to the second sum in the
right-hand side of Eq. (12), and is responsible for the time
correlation of random increments.

It is evident that, after coarse-graining, the process in
Eq. (6) is no longer Markovian, as its probability distribution
cannot be factorized into the product of single-step transi-
tion probabilities. Recalling the analogy with the spin chain,
RG creates, since the first iteration, infinite-range effective
couplings, even though we started with just first- and second-
nearest-neighbor bonds. This is indeed the effect of simple
decimation on the zigzag ladder topology, to which the AR(2)
process of Eq. (3) corresponds (Fig. 2). However, these emerg-
ing couplings are not independent, and the four parameters in
Eq. (11) are sufficient to characterize them.

To get a closed-form RG transformation, we need to en-
sure that further iterations of the decimation procedure do
not keep introducing novel higher-order terms. Luckily, the
ARMA(2,1) structure is stable, as an example of a more
general result that we discuss in the following (Sec. III). If
we call A = (ψ, θ, μ, ν) the set of parameters of a generic
ARMA(2,1) model, and Ã = (ψ̃, θ̃ , μ̃, ν̃) the parameters of
the coarse grained model obtained after decimation, then ap-
plying RG yields a well-defined map from A to Ã.

The second operation that completes the RG iteration is
rescaling the time step, 2τ → τ , and reabsorbing this change
of units through a redefinition of the parameters. The parame-
ters of our models are dimensionless, yet their dependency on
τ is what determines how to connect any discrete process to its
continuous-time counterpart. We express ψ, θ as asymptotic
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TABLE I. Fixed-point solutions of the RG recurrence relations up to third order in τ . We find four manifolds of fixed points, corresponding
to four types of processes, parametrized by the arbitrary constants u, s, z, and b. In addition to the reported ones, there are diverging fixed
points.

AR coefficients MA coefficients

Model ψ∗
0 θ∗

0 ψ∗
1 θ∗

1 ψ∗
2 θ∗

2 ψ∗
3 θ∗

3 α∗
0 β∗

0 α∗
1 β∗

1 α∗
2 β∗

2 α∗
3 β∗

3

A MA(0) 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0
B AR(1) 1 0 u 0 u2/2 0 u3/6 0 0 0 s 0 us 0 2u2s/3 0
C ARMA(2,1) −1 −1 u 2u −u2/2 −2u2 u3/6 (2u)3/6 0 0 4s s −8us −2us 32u2s/3 13u2s/6
D ARMA(2,1) 2 −1 u −u z −u2/2 u(6z − u2)/12 −u3/6 0 0 −2s s −2us us 4b − (2z + 3u2)s b

power series of τ , ψ (τ ) = ∑
k ψkτ

k and θ (τ ) = ∑
k θkτ

k , and
work, up to the desired order, with recursive relations for the
coefficients of the series expansion, ψk and θk . These coef-
ficients are now dimensional and get rescaled with the time
unit. The same idea can be applied to ν and μ by expanding
them in powers of τ 1/2. It is then convenient to reparametrize
the noise amplitudes as

α := Er2
n = μ2 + ν2; β := Ernrn±1 = μν, (13)

since their asymptotic series expansion involves integer pow-
ers of τ : α(τ ) = ∑

k αkτ
k , β(τ ) = ∑

k βkτ
k .

The physical dimension of each coefficient Ak ∈ {ψk, θk,

αk, βk} is now set by the order of the corresponding term in
the series expansion. Each of them gets rescaled, after coarse
graining, as Al+1

k = 2−kÃl
k , where l is an index counting the

RG iterations. This operation defines the RG map as a set
of recursive equations in an infinite-dimensional parameter
space, made up of the Taylor coefficients parametrizing the
four functions ψ l (τ ), θ l (τ ), αl (τ ), β l (τ ):

ψ l+1
k = 2−k

[
2θ l

k +
k∑

i=0

ψ l
i ψ

l
k−i

]
, (14)

θ l+1
k = −2−k

k∑
i=0

θ l
i θ

l
k−i. (15)

Similar equations (reported in Appendix A) for the coeffi-
cients αk and βk are obtained from the following definition
of the coarse-grained parameters α̃l (τ ) and β̃ l (τ ):

α̃l = [
1 + (ψ l )2 + (θ l )2

]
αl + 2ψ l (1 − θ l )β l , (16)

β̃ l = ψ l (1 − θ l )β l − θ lαl . (17)

Notice that since the recursion equations at order k only in-
volve lower orders, they can be solved recursively over k, and
can also be truncated to an arbitrary order while retaining a
closed form.

C. Fixed points

Our interest is in finding the fixed points of the recur-
sion relations defined above. RG fixed points capture indeed
the scale-invariant behavior of a system. Table I reports the
solutions for the parameters A∗ of the ARMA(2,1) model,
showing their coefficients A∗

k up to order k = 3. There are
four manifolds of fixed points in this space, corresponding to
different classes of stochastic processes. Their projection onto

the plane of leading order AR coefficients, ψ0 and θ0, is shown
in Fig. 3.

The first class of fixed points A corresponds to sequences
of independent random variables (ψ = θ = ν = 0). Fixed
points B are AR(1) processes, i.e., processes where only two
time points are involved and there is no memory in the noise
term: they can be interpreted as discretizations of linear first-
order SDEs of the form

dx = uxdt + √
sdW. (18)

By induction on the fixed-point equations for the Ak coef-
ficients (k ∈ N), it is possible to prove that the fixed-point
parameters of the B process are: θ∗(τ ) = β∗(τ ) = 0, ψ∗(τ ) =
euτ , α∗(τ ) = s

2 (e2uτ − 1).
In addition, there are two other fixed-point manifolds cor-

responding to ARMA(2,1) models, denoted by C and D. C
is not a continuous process, but evolves through finite jumps.
The AR coefficients, which appear in the deterministic part
of the equation, read ψ (τ ) = −e−uτ and θ (τ ) = −e−2uτ . The
process has a three-branched phase diagram, and evolves in
time jumping from one branch to the next one—approaching
the origin or moving away from it depending on the sign of
u. This structure is invariant under the RG transformation we
defined, but it is precisely determined by the details of the

FIG. 3. Fixed-point manifolds of the RG map, projected on the
plane of leading autoregressive coefficients ψ0, θ0. The interior of
the triangle is the basin of attraction of fixed point A. The equal sides
are the basin of attraction of point B. The basins of points C and D
are contained in the basis of the triangle (plus vertex on the top for
D). The Euler AR(2) process has coordinates (2, −1) in this plane.
Color-shaded trajectories represent the solution of recurrence rela-
tions from three sample initial conditions. Arrows show the direction
of (discrete) moves and should not be interpreted as continuous flow
lines.
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decimation procedure. If the coarse graining was implemented
differently, for instance by trimming two points out of three,
then the same type of process would not be a fixed point.

Finally, the D class represents the discretization of a par-
tially observed two-dimensional process of the form:

dx = vdt + σxdWx, (19)

dv = −ηvdt − κxdt + σdWv, (20)

of which Eq. (1) is a particular case [21]. The (ψ, θ ) coef-
ficients of fixed point D reconstruct a second derivative at
leading order, and the effect of linear drift at first order (with
u = −η in Table I). The variable s = −σ 2

x in Table I encodes
noise added to the x variable, and is zero in inertial models
like Eq. (1).

Inertial models are of special interest. In this case, since
s = 0, noise contributions are determined by third-order co-
efficients. If we start with the Euler model Eq. (3) as an
initial condition for the RG recurrence relations, whose noise
coefffcients are α0

k = σ 2δk,3, β
0
k = 0, then the associated RG

flow, on the plane of MA parameters, reads

αl
3 = σ 2

(
2
3 + 1

3 4−l
)
, β l

3 = σ 2
(

1
6 − 1

6 4−l
)
. (21)

Upon renormalization, the Euler time series Eq. (3) falls into
class D, with b = σ 2/6 and s = 0. While the initial model is
strongly convergent as τ 1/2, the resulting fixed point is at least
convergent as τ 3/2. The asymptotic values (α∞

3 , β∞
3 ) are those

we would obtain if we applied a higher-order discretization
scheme like [22] to Eq. (1) in the first place. A more exhaus-
tive analysis of fixed point D and of its parameters can be
found in Appendix B.

To summarize the analysis performed so far, we have
shown that the Euler discretization of the inertial equation we
considered is not invariant upon RG transformations. This
encapsulates the fact that Euler does not appropriately de-
scribe the statistical properties of the continuous model on
the original discretization scale. We also showed that, as RG
progresses, Euler leads to effective discrete models that are, on
the contrary, invariant. This convergence occurs exponentially
fast—see Eq. (21)—and explains why numerical simulations
performed with the Euler scheme work. Finally, we note that
higher-order discretizations of Eqs. (1) and (2) already possess
an ARMA(2,1) structure and are therefore invariant upon RG
transformations. This explains why they provide good algo-
rithms for local (in time) inference approaches, in contrast to
Euler.

D. Effective Markov description

Although we discussed that Euler-based maximum likeli-
hood inference approaches for stochastic dynamical systems
are inconsistent, numerical and analytical evidence [2–5,23]
hints at a possible effective Markov discretization of the form
of Eq. (3) for generalized Langevin equations at equilibrium.
Such discretization neglects noise correlations, but employs a
rescaled damping coefficient η′ = (2/3)η. In other words, the
information missed by the Euler scheme at the discretization
scale τ can be effectively reabsorbed into a single rescaling
factor.

For linear processes, this behavior can be interpreted as
following from the Einstein relation, which imposes a well-

known relationship between the drag coefficient and the noise
amplitude (through temperature and mass) [24,25]—see Ap-
pendix D. In our case, this relation involves the parameters ψ1

and α. If we select the fixed-point value of the diagonal entry
of the noise covariance matrix, α∗

3 = (2/3)σ 2, instead of the
Euler value α0

3 = σ 2, and neglect off-diagonal elements, then
we find that we must also rescale η by 2/3 by imposing the
Einstein relation. In Appendix D we show how this effective
Euler-like discretization can be derived in the simple case of a
linear Langevin equation like Eq. (1). Of course, this effective
Markov description can only be used for maximum likelihood
inference at the scale of τ . The effective discretization gives,
by construction, consistent maximum likelihood estimators,
but cannot be iterated in simulations to reproduce the pro-
cess on longer scales. Because of the convergence of the
Euler-Maruyama integration algorithm, the simulated process
would be the underdamped Langevin model with a damping
coefficient equal to η′ = (2/3)η.

In the context of continuous processes, the idea of building
an effective Markov model that reproduces the statistics of
a non-Markov linear model (only at the stationary level) has
been recently investigated in Ref. [26].

III. GENERALIZATION TO ARMA(p, q) PROCESSES

The RG procedure we detailed for ARMA(2,1) models can
be generalized to arbitrary ARMA(p, q) processes, defined
by Eq. (12). Decimation of the time series can be done by
combining p neighboring equations of the form of Eq. (12),
in a similar way as in Eq. (5) (see Appendix C). This decima-
tion step yields a new update equation with an ARMA(p, q̃)
structure, where

q̃ =
⌊ p + q

2

⌋
, (22)

and 
·� denotes the rounding down operation. The condition of
invariance under RG imposes that fixed points satisfy q̃ = q,
implying q = p or q = p − 1.

This result leads to two important observations. First,
it shows that purely autoregressive models of order p � 2,
AR(p)=ARMA(p,0) (i.e., models with no memory in the
noise), cannot be stable points and thus cannot be exact dis-
cretizations of stochastic differential equations of second or
higher order. As a consequence, for partially observed pro-
cesses (p � 2) a Markov description of the dynamics (q = 0)
is impossible. Second, the sharp selection of q reveals that
longer memory than p is irrelevant in the RG sense.

Our finding is related to the nonexistence of exact
delay-vector embeddings for noise-driven systems. Em-
bedding approaches consist of stacking a finite number
of subsequent points to define a new dynamical variable
X = (Xn−p+1, . . . , Xn)—known as delay vector [27,28]—and
assuming that it follows a Markov dynamics. An equiva-
lent approach is to estimate the derivatives of the observed
stochastic process through differences of subsequent mea-
surements: the Euler discretization is a simple example of
this procedure. In both cases, the Markov dynamics of the
embedded process is described by AR(p) models. In con-
clusion, although the delay-vector method is standard in
deterministic contexts, it cannot be directly extended to
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stochastic processes, as partial observation sets strong limi-
tations to phase space reconstruction for stochastic dynamical
systems [29–33].

IV. CONCLUSION

In this work we investigated the connection between dis-
crete and continuous descriptions of stochastic Gaussian
processes. Using an RG approach, we studied how the proper-
ties of given discretization schemes change as we change the
observation scale of the process, from the original discretiza-
tion step, up to to the continuum limit τ/τobs → 0. We started
our analysis focusing on the simple case of a linear damped
Langevin equation, and then generalized the procedure to
higher-order processes. In this broader framework, we defined
an RG map on the space of ARMA(p, q) models, i.e., a class
of generative models for Gaussian processes, and identified
exact discretizations of continuous-time stochastic processes
through its fixed points.

The issue relates to the embedding problem and is espe-
cially relevant for the design of parametric inference methods.
A possible suggestion that can be drawn from our analysis is
to abandon the Markov setting in favor of descriptions with
correlated noise, by introducing an additional noise delay for
any new coordinate in the delay vector. The RG construc-
tion shows indeed that time correlations in the noise terms
are spontaneously generated to match the original dimen-
sion of the partially observed dynamical system. Consistently,
inference algorithms that take into account the right noise
correlations since the beginning correctly estimate the param-
eters of the underlying continuous model, without the need of
augmentation techniques [2–6].

Nonetheless, we also showed that, up to a parameter
rescaling, effective discretizations based on second-order
Markov models—AR(2)—can still be used for the inference
of damped equilibrium processes. This observation raises the
question of whether there exist alternative (e.g., variational)
RG transformations exist that can map AR(2) models into
other AR(2) processes, allowing for an effective memoryless
description of Gaussian processes.

How to extend these results to nonlinear processes also
remains an open question.
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APPENDIX A

In this Appendix we look in greater details at the fixed
points of the recursive equations. Our starting point are
Eqs. (14)–(17). Since the recursive equations for ψ, θ are
independent of those for α and β, it is convenient to start with
the coefficients of the autoregressive (AR) part of the model,
and later focus on the stochastic (MA) contribution.

1. AR coefficients

From Eqs. (14) and (15), at each order k of the series
expansion, we obtain a two-dimensional map from which the
fixed points for the considered coefficients, (ψ∗

k , θ∗
k ), can be

extracted. Notice that higher-order recurrence relations are
only coupled to lower order ones, so one can solve them
iteratively. Here we are just interested in the study of the fixed
points.

The recursive relations at the leading order (k = 0) read

ψ l+1
0 = (

ψ l
0

)2 + 2θ l
0, (A1)

θ l+1
0 = −(

θ l
0

)2
. (A2)

As it is evident from Eqs. (14) and (15), only at this order
the system is nonlinear; at any subsequent order the map is
linear. There are four fixed points for the nonlinear recurrence
relations Eqs. (A1) and (A2):

A. (ψ∗
0 , θ∗

0 ) = (0, 0). This is a process with null autore-
gressive part. Moving average contributions are specified by
the recurrence relations for the MA coefficients.

B. (ψ∗
0 , θ∗

0 ) = (1, 0). This fixed point corresponds to a
first order process of the form Xn = Xn−1 + rn, i.e., an
ARMA(1,q) process; the moving average order q will be
determined by the recurrence relations for αk and βk .

C. (ψ∗
0 , θ∗

0 ) = (−1,−1). This is an ARMA(2,q) process,
of the form Xn = −Xn−1 − Xn−2 + rn. Here again, the random
contribution will be specified by the recursion relations for αk

and βk .
D. (ψ∗

0 , θ∗
0 ) = (2,−1). This model is a specific case of

an ARMA(2,q) model, known as ARIMA(1,1,q) model [17].
Thanks to the specific value assumed by the coefficients of the
AR part, one can indeed rewrite the process as (1 − L)2Xn =
rn, where L is the lag operator: LXn = Xn−1. So (1 − L) is
the discrete differencing operator and {(1 − L)Xn} = {V̄n} is
the reconstructed velocity series. We leave once again the
value of q unspecified for the moment, as it is determined
by the analysis of the recurrence relations for the MA coef-
ficients.

Notice that only the fixed point A is an asymptotically
stable point, whose basin of attraction is the interior of the
triangle in Fig. 3. The other points are unstable, at least in
some directions.

We are especially interested in the class of discrete-time
models represented by point D, since, at the leading order,
the model can be considered as a discretized version of a
second-order SDE of the kind ẍ = ξ , with ξ (t ) a Gaussian
noise (white or colored, depending on the MA coefficients).
Higher-order contributions can modify the coefficients ψ and
θ in front of Xn−1 and Xn−2, but they will not affect the
interpretation of such a process as a discretization of a second-
order SDE. The only difference will be in the addition of
position- or velocity-dependent linear forces.

Proceeding to the next order, k = 1, the study of the fixed
points reveals that their number and their nature (i.e., the kind
of dynamical models they correspond to) is left unchanged.
The AR coefficients of the A fixed point are still constrained to
zero (ψ1 = θ1 = 0) while a new free parameter (u in Table I)
appears at order k = 1 for the other fixed points. The new
parameter accommodates the arbitrariness of what can be
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interpreted as a linear force in the overdamped case B, or a
damping force in case D.

Let us now examine what happens at order k = 2. Given
the recurrence relations:

ψ l+1
2 = 1

4

[
2ψ l

0ψ
l
2 + (

ψ l
1

)2 + 2θ l
2

]
, (A3)

θ l+1
2 = − 1

4

[
2θ l

0θ
l
2 + (

θ l
1

)2]
, (A4)

the fixed points, at this order, are expanded as follows:
A. (ψ∗

0 , θ∗
0 , ψ∗

1 , θ∗
1 , ψ∗

2 , θ∗
2 ) = (0, 0, 0, 0, 0, 0).

B. (ψ∗
0 , θ∗

0 , ψ∗
1 , θ∗

1 , ψ∗
2 , θ∗

2 ) = (1, 0, u, 0, u2/2, 0).
C. (ψ∗

0 , θ∗
0 , ψ∗

1 , θ∗
1 , ψ∗

2 , θ∗
2 ) = (−1,−1, u, 2u,−u2/2,

−2u2).
D. (ψ∗

0 , θ∗
0 , ψ∗

1 , θ∗
1 , ψ∗

2 , θ∗
2 ) = (2,−1, u,−u, z,−u2/2).

Compared to the previous fixed points, we have here an
additional arbitrariness on ψ∗

2 . The novel free parameter
z accounts for an x-dependent force in the second-order
continuous-time SDE, of which the fixed-point model D
can be considered a discretization. Indeed the discretization

picture above keeps holding, even if the ARIMA(1,1,q)
structure is lost in favor of an ARMA(2,q) one, when
ψ∗

2 �= u2/2. For points B and C, on the contrary, no new
free parameter appears and the values of ψ2 and θ2 are fixed
by the values of lower order coefficients. In these cases, the
dimension of the fixed-point manifold does not change by
moving from k = 1 to k = 2.

Of course the study of the fixed points can be developed to
any desired order, but the discussion we made so far is already
sufficient to characterize their autoregressive nature. Indeed,
it can be proven by induction that the AR order of the fixed
points is left unchanged at subsequent orders in the expansion.

2. MA coefficients

Recurrence relations for the MA coefficients μ and ν or,
equivalently, for the parameters α and β, depend on those
of the AR coefficients as shown in Eqs. (16) and (17). The
great advantage of working with α and β is that, when the AR
coefficients ψ and θ are fixed, their recurrence relations are
linear:

α̃l
k = (

1 + ψ2
0 + θ2

0

)
αl

k + 2β l
kψ0(1 − θ0) +

k−1∑
i=0

[
αl

i

k−i∑
j=0

(ψ jψk−i− j + θ jθk−i− j ) + 2β l
i ψk−i(1 − θ0) − 2β l

i

k−i−1∑
j=0

ψ jθk−i− j

]
.

(A5)

β̃ l
k = β l

kψ0(1 − θ0) − αl
kθ0 −

k−1∑
i=0

αl
i θk−i +

k−1∑
i=0

β l
i

[
ψk−i(1 − θ0) −

k−i−1∑
j=0

ψ jθk−i− j

]
. (A6)

We analyze the behavior of these parameters for each of
the four fixed-point classes we found above.

At the leading order we have a homogeneous system:

αl+1
0 = (

1 + ψ2
0 + θ2

0

)
αl

0 + 2ψ0(1 − θ0)β l
0, (A7)

β l+1
0 = ψ0(1 − θ0)β l

0 − θ0α
l
0. (A8)

The single fixed point of such system is the origin (α∗
0 , β

∗
0 ) =

(0, 0), unless the coefficients θ0 and φ0 take values that
render the fixed-point equations linearly dependent. This hap-
pens only for class A, where the condition (ψ∗

0 , θ∗
0 ) = (0, 0)

leaves α∗
0 as a free parameter, while β∗

0 = 0. As a result,
q = 0, and this fixed-point model is just a sequence of I.I.D.
Gaussian variables. For autoregressive models (i.e., fixed
points B, C, and D), the condition (α∗

0 , β
∗
0 ) = (0, 0) tells us

that τ -independent noise contributions are prohibited. This
feature enables us to interpret these models as discretizations
of SDEs [34].

Moving to a first-order expansion (the lowest nontrivial
one for the last three fixed points), the recursion relations
Eqs. (A5) and (A6) take the form of a 2D affine map. For
the four fixed points we find

A. MA(q): (α∗
0 , β

∗
0 , α∗

1 , β
∗
1 ) = (s, 0, 0, 0), s ∈ R.

B. ARMA(1,q): (α∗
0 , β

∗
0 , α∗

1 , β
∗
1 ) = (0, 0, s, 0), with

s a real parameter. As expected, even at this order

q = 0 and the process reduces to a simple AR(1)
model.

C. ARMA(2,q): (α∗
0 , β

∗
0 , α∗

1 , β
∗
1 ) = (0, 0, 4s, s), s ∈ R.

We have a manifold of fixed points, represented by a line on
the plane of first order covariance coefficients.

D. AR(I)MA(2,q): (α∗
0 , β

∗
0 , α∗

1 , β
∗
1 ) = (0, 0,−2s, s).

Again, we have a line of fixed-point solutions. The
corresponding process can be interpreted as the first order
discretization of a partially observed SDE. More details can
be found in Appendix B.

At second order, the structure of the MA part of the fixed
points remains almost the same: A and B remain memoryless
processes (q = 0), and no new parameters appear for C and D.
Therefore we report directly the result for k = 3, the last order
where arbitrariness can be introduced to modify the structure
of the fixed points:

A. MA(0): (α∗
0 , β

∗
0 , α∗

1 , β
∗
1 , α∗

2 , β
∗
2 , α∗

3 , β
∗
3 ) = (s, 0, 0, 0,

0, 0, 0, 0).
B. ARMA(1,0): (α∗

0 , β
∗
0 , α∗

1 , β
∗
1 , α∗

2 , β
∗
2 , α∗

3 , β
∗
3 ) = (0, 0,

s, 0, us, 0, 2
3ψ2

1 s, 0).
C. ARMA(2,1): (α∗

0 , β
∗
0 , α∗

1 , β
∗
1 , α∗

2 , β
∗
2 , α∗

3 , β
∗
3 ) = (0, 0,

4s, s,−8us,−2us, 32
3 u2s, 13

6 u2s).
D. AR(I)MA(2,1): (α∗

0 , β
∗
0 , α∗

1 , β
∗
1 , α∗

2 , β
∗
2 , α∗

3 , β
∗
3 ) =

(0, 0,−2s, s,−2us, us, 4b − (2z + 3u2)s, b). For this
nontrivial fixed point, the recurrence relations at
this order are linearly dependent, admit infinitely
many fixed-point solutions. We parametrize them by
taking β∗

3 = b.
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APPENDIX B

This section is devoted to a more detailed discussion of
the fourth fixed point, which, due to its physical meaning,
we think deserves a special focus. We have already high-
lighted that, at leading order, the AR coefficients reproduce
a second time derivative through the double differencing op-
erator �2 = (1 − L)2, with L the lag operator: LXn = Xn−1.
This fact gives to the model an “integrated process” nature at
leading order, also known as ARIMA(1,1,1) [17]. Since the
relation

lim
τ→0

ψ − ψ∗
0

τ
= − lim

τ→0

θ − θ∗
0

τ
(B1)

also holds, this integrated process structure is kept up to O(τ ).
Deviations from it occur at higher order and are due to the
presence of linearly x-dependent forces.

The fixed-point model is indeed the consistent discretiza-
tion of a general class of partially observed continuous-time
processes of the form:

dy = Aydt + BdW, (B2)

where y = (x, v)�, W = (Wx,Wv )�, with Wx(t ) and Wv (t )
independent Wiener processes and

A =
(−λ 1

−κ −η

)
, BB� =

(
σ 2

xx σ 2
xv

σ 2
vx σ 2

vv

)
. (B3)

Notice that setting A12 = 1 does not imply a loss of gener-
ality: compared to A12 = a ∈ R \ {0}, it just corresponds to a
rescaling of the time unit, which does not alter the process (the
only caveat is that a < 0 would revert the time direction). The

case A12 = 0 is not of interest for us, as it would decouple
the dynamics of the unobserved degrees of freedom from
that of the observed ones. The entries in the drift matrix A
must satisfy the stability condition, i.e., assuming that time
evolves in the positive direction, (t � 0), it must be negative
semidefinite. Finally, we have σ 2

xv = σ 2
vx for the symmetry of

the diffusion matrix.
Partial observation of the process in Eq. (B2) yields a

Gaussian process described, at the continuous level, by a
generalized Langevin equation (GLE), and, at the discrete
level, by an ARMA(2,1) model. The GLE can be obtained
by integrating the continuous equation for the v variable and
plugging it into the first one in Eq. (B2):

dx(t ) =
{

e−ηtv(0) − κ

∫ t

0
dt ′e−η(t−t ′ )x(t ′) +

∫ t

0
[B21dWx(t ′)

+ B22dWv (t ′)]
}

dt − λx(t ) + B11dWx(t )

+ B12dWv (t ). (B4)

This equation contains a parametric dependence on the initial
condition v(0), which can be removed during discretization as
in Refs. [3,22]:

Xn − (e2Aτ )12

(eAτ )12
Xn−1 −

[(
e2Aτ

)
11 − (e2Aτ )12

(eAτ )12

(
eAτ

)
11

]
Xn−2

= rn, (B5)

with

rn =
∫ tn

tn−2τ

(
eA(2τ−s)

)
11[B11dWx(s) + B12dWv (s)] − (e2Aτ )12

(eAτ )12

∫ tn−τ

tn−2τ

(
eA(τ−s)

)
11[B11dWx(s) + B12dWv (s)]

+
∫ tn

tn−2τ

(
eA(2τ−s))

12[B21dWx(s) + B22dWv (s)] − (e2Aτ )12

(eAτ )12

∫ tn−τ

tn−2τ

(
eA(τ−s))

12[B21dWx(s) + B22dWv (s)]. (B6)

Equation (B5) corresponds to an ARMA(2,1) process, since Eq. (B6) implies that E[rnrm] = αδn,m + βδn,m±1.
It is possible to explicitly work out the calculation to find the mapping from (A, BB�) to (ψ, θ, α, β )—and hence find the

relation between Eq. (B3) and the variables parametrizing the fixed point D in Table I. Let us start by performing a small τ

expansion for the AR coefficients:

ψ = (e2Aτ )12

(eAτ )12
 2 − (η + λ)τ + 1

2
τ 2

(−2κ + η2 + λ2
) + 1

6
τ 3

(
3κ (η + λ) − η3 − λ3

)
, (B7)

θ = (
e2Aτ

)
11 − (e2Aτ )12

(eAτ )12

(
eAτ

)
11 = −e−(η+λ)τ  −1 + (η + λ)τ − 1

2
τ 2(η + λ)2 + 1

6
τ 3(η + λ)3. (B8)

Identifying the coefficients ψ0 . . . ψ3 and θ0 . . . θ3, we deduce that the model parameters in Eq. (B3) and the fixed-point
parameters of process D in Table I are linked by the following relation:

u = −(λ + η); z = −κ + 1
2 (η2 + λ2). (B9)

The algebra for the derivation of α and β is more laborious but not complicated. The results are

α  2σ 2
xxτ − 2σ 2

xx(η + λ)τ 2 + 2
3

[
σ 2

vv + 2ησ 2
xv + σ 2

xx(−κ + 3η2 + 3ηλ + 2λ2)
]
τ 3, (B10)

β  −σ 2
xxτ + (η + λ)σ 2

xxτ
2 + 1

6

[
σ 2

vv + 2ησ 2
xv + σ 2

xx(2κ − 3η2 − 6ηλ − 4λ2)
]
τ 3. (B11)

Hence, we can deduce

s = −σ 2
xx, (B12)

b = 1
6

[
σ 2

vv + 2ησ 2
xv + σ 2

xx(2κ − 3η2 − 6ηλ − 4λ2)
]
. (B13)
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Notice that the mapping given by Eqs. (B9) and (B13) is
noninvertible. Because of the partial nature of the observation,
multiple models are mapped to the same ARMA process. In
other words, there is no bijection between the continuous-time
Markovian description of the dynamical system and its exper-
imental non-Markovian observation. A unique reconstruction
of a set of first order SDEs is impossible. Extracting the
parameters of an underlying continuous-time Markov model
from time series analysis is therefore an arbitrary task, which
postulates the choice of suitable hidden variables.

A subclass of models contained in fixed point D is given
by inertial processes, which take the form

dx = vdt, (B14)

dv = −ηvdt − κxdt + σvvdWv. (B15)

They are obtained by setting λ = σ 2
xv = 0 and σ 2

xx = 0. This
condition implies that there are no O(τ 1/2) stochastic contri-
butions to the observed process: s = 0 in Table I. Because of
the absence of these contributions, applying a Euler discretiza-
tion to Eq. (B15) gives rise to an AR(2) model.

We can take this inconsistent discretization of the second-
order SDE as an initial condition for the RG recurrence
relations of MA coefficients. Since s = 0, we have null αk

and βk up to k = 3. Third-order recurrence relations are in
this case

αl+1
3 = 1

8

[
6αl

3 + 8β l
3

]
, β l+1

3 = 1
8

[
αl

3 + 4β l
3

]
. (B16)

Solutions lie on parallel lines α3 + 2β3 = c, with c a
constant fixed by the initial condition (α0

3, β
0
3 ) = (σ 2

vv, 0).
The intersection with the fixed-point line, α∗

3 = 4β∗
3 ,

identifies in our parameter space the model which is reached

by repeatedly coarse-graining the starting discrete-time
model.

Thanks to linearity, one can also compute how the asymp-
totic point is approached. The solution of Eq. (B16) is

αl
3 = 4−l 1

3

[
α0

3 − β0
3

] + 2
3

[
α0

3 + 2β0
3

]
, (B17)

β l
3 = 4−l

[
2
3β0

3 − 1
6α0

3

] + 1
6

[
α0

3 + 2β0
3

]
, (B18)

so the discrete model converges in an exponentially fast
way to a consistent scheme which is strongly convergent as
O(τ 3/2). There is then an “asymptotic upgrade” of the order
of convergence of the scheme, at least in the linear case.

APPENDIX C

In this Appendix we show how the memory selection rule
q = p or q = p − 1 emerges from the condition of invariance
under RG of general ARMA(p, q) processes. Given the gen-
erative model

Xn =
p∑

i=1

φiXn−i +
q∑

i=1

νiεn−i + μεn, (C1)

with εn ∼ N (0, 1), decimation of the time series is performed
through the linear combinations,

Eqn(Xn) +
p∑

i=1

(−1)i+1φiEqn(Xn−i ), (C2)

which generalizes Eq. (5). Notice that this combination only
depends on the AR order p. The resulting discrete-time model
reads

Xn =
p∑

i=1

[1 + (−1)i]φiXn−i +
p∑

i=1

(−1)i+1φi

p∑
k=1

φkXn−k−i + μ0εn +
q∑

j=1

μ jεn− j +
p∑

i=1

(−1)i+1φi

[
μ0εn−i +

q∑
k=1

μkεn−i−k

]
︸ ︷︷ ︸

r̃n

.

(C3)
The second sum in Eq. (C3) can be rewritten, with a rearrangement of terms, as

p∑
i=1

(−1)i+1φi

p∑
k=1

φkXn−k−i =
p∑

i=1

(−1)i+1φi

p∑
k=1

φkXn−k−i =
p∑

i=1

(−1)i+1

⎛
⎝φ2

i Xn−2i + 2


 p−1
2 �∑

k=i

φiφ2k+1Xn−2k−2

⎞
⎠. (C4)

Equation (C4) shows that, after the decimation, one maintains an autoregressive part of order p. The picture is not modified by
the first sum, which only contributes up to an AR order 
p/2�.

Thus Eq. (C3) can be rewritten as

Xn =

p/2�∑
i=1

2φ2iXn−2i +
p∑

i=1

(−1)i+1

⎛
⎝φ2

i Xn−2i + 2


 p−1
2 �∑

k=i

φiφ2k+1Xn−2k−2

⎞
⎠ + r̃n, (C5)

where it is possible to recognize a structure of the following kind:

Xn =
p∑

i=1

φ̃iXn−2i + r̃n. (C6)

The process corresponds to an ARMA model with the same autoregressive order as the original one (p), but now each jump
covers a time interval of doubled amplitude.
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Further manipulation of the sums in Eq. (C3) allows us to find formal expressions for the AR coefficients of the coarse grained
process, φ̃i=1...p:

φ̃1 = 2φ2 + φ2
1 ,

φ̃i = 2φ2i + (−1)i+1φ2
i + 2φ2i−1

∑i−1
k=1(−1)k+1φk for 2 � i � 
 p

2 � − 1,

φ̃i = (−1)i+1φ2
i for 
 p

2 � + 1 � i � p.

(C7)

The coarse-grained coefficient φ̃
p/2� takes a different form depending on p being even or odd:

p odd : φ̃
p/2� = 2φ2
p/2� + (−1)1+
p/2�φ2

p/2�, (C8)

p even : φ̃
p/2� = 2φ2
p/2� + (−1)1+
p/2�φ2

p/2� + 2φ2
p/2�−1


 p−1
2 �∑

k=1

(−1)k+1φk. (C9)

Let us now restart from Eq. (C3) and focus on the
random term rn. Since linear combinations of Gaussian vari-
ables are still Gaussian, one can properly redefine the εm’s
and rearrange the coefficients in front of them to rewrite
r̃n = ∑q̃

i=0 μ̃iεn−2i, where

q̃ =
⌊ p + q

2

⌋
. (C10)

We deduce there are only two invariant scenarios for
ARMA(p, q) processes: q = p or q = p − 1. This fact tells
us that partial (discrete) observation of continuous-time pro-
cesses let memory emerge: each hidden degree of freedom
increases by one the order of both the AR part and the MA
part of the discrete model, thus introducing color.

APPENDIX D

In this Appendix we motivate the exploitation of the
seemingly universal 2/3 rescaling factor in effective Markov
models discussed in the main text, and provide a physical
interpretation for it, working out the reference problem of an
integrated Ornstein-Uhlenbeck (OU) process.

The integrated OU process is the simplest example of
second-order SDE for which the Euler-related inconsistency
appears. It is described by Eq. (1) with κ = 0, where we sup-
pose we can only observe (with infinite accuracy) the inertial
degree of freedom, at a sampling rate τ−1. Let us recall the
notation for the time series of empirical observations {Xn}n∈N ,
and for the time series of reconstructed velocities {V̄n}n∈N ,
where

V̄n = (Xn+1 − Xn)

τ
. (D1)

Let us also introduce the series of real velocities {Vn}n∈N ,
corresponding to the one we would obtain if we were able
to measure directly the velocity degree of freedom. Because
the evolution of the v variable is described by an independent
first-order SDE when κ = 0, the time series {Vn}n∈N is de-
scribed by an AR(1) process. On the contrary, the evolution
of the x variables is non Markovian and expressed, at the
continuous level, via a generalized Langevin equation. Conse-
quently, the time series {V̄n}n∈N inherits a nonzero MA order,
ending in an ARMA(1,1).

Nonetheless, we may ask whether it is possible to describe
it with an effective AR(1) process, which would correspond

to an effective AR(2) process for the {Xn}n∈N series. Let us
write a putative AR(1) model for the series of reconstructed
velocities:

V̄n − (1 − α)V̄n−1 = σεn, (D2)

where εn ∼ N (0, 1) I.I.D. and α, σ are parameters to fix.
The goal is to find an effective memoryless discrete model
for {V̄n}n∈N that reproduces correctly the sufficient statistics
used by Bayesian and non-Bayesian parametric inference ap-
proaches. The common characteristic of these approaches is
that of being derived from a Taylor-Itô expansion in the small
τ limit. They just exploit local dynamical information to learn
the laws governing the evolution of the system, typically car-
ried by the first few elements of the autocovariance of the time
series.

In the case of AR(1) models, a sufficient statistics
corresponds to the set S1 = {E[V̄ 2

n ],E[V̄nV̄n+1]}, i.e., the au-
tocorrelation functions at equal times and at a distance of
one time step [35]. We impose on the observables S1 the two
following consistency conditions:

i. The stationary distribution of V̄n is the Maxwell
Boltzmann distribution at temperature T (kB = 1):

E[V̄ 2
n ] = T . (D3)

ii. The relation between the reconstructed acceleration
Ān = (V̄n+1 − V̄n)/τ and the reconstructed velocity V̄n is the
one we can exactly compute for the integrated Ornstein-
Uhlenbeck process:

E[Ān|V̄n] 
τ→0

− 2
3ηV̄n. (D4)

A detailed derivation is in Ref. [2]. From this relation we
immediately derive the condition to impose on the observables
of interest:

E[V̄n+1V̄n] = (
1 − 2

3ητ
)
E[V̄ 2

n ]. (D5)

The self-correlation function E[V̄nV̄n+k] of an AR(1) pro-
cess of the form of Eq. (D2) is explicitly known:

E[V̄nV̄n+k] = (1 − α)|k|σ 2

1 − (1 − α)2
. (D6)

Taking its value at k = 1 and using Eq. (D3) in Eq. (D5)
yields the expected result α = (2/3)ητ . Computing the self-
correlation of the reconstructed velocities at k = 0 and
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imposing equipartition from Eq. (D3), we set the value of σ :

σ 2 = T
[
1 − (1 − α)2

] 
τ→0

2T α. (D7)

This is the celebrated Einstein relation.
In conclusion, it is possible to describe the sequence of

measurements of an integrated OU process as an effective

AR(2) series with a rescaled damping coefficient η′ = (2/3)η.
This result is intuitive and could have been grossly derived by
imposing the Einstein relation [which comes from Eq. (D3)
alone], and selecting only the main diagonal of the covariance
matrix of random increments to cancel color, thus implying
σ 2 = 2/3(2T ητ ).
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