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Signatures of irreversibility in microscopic models of flocking
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Flocking in d = 2 is a genuine nonequilibrium phenomenon for which irreversibility is an essential ingredient.
We study a class of minimal flocking models whose only source of irreversibility is self-propulsion and use the
entropy production rate (EPR) to quantify the departure from equilibrium across their phase diagrams. The EPR
is maximal in the vicinity of the order-disorder transition, where reshuffling of the interaction network is fast.
We show that signatures of irreversibility come in the form of asymmetries in the steady-state distribution of
the flock’s microstates. These asymmetries occur as consequences of the time-reversal symmetry breaking in
the considered self-propelled systems, independently of the interaction details. In the case of metric pairwise
forces, they reduce to local asymmetries in the distribution of pairs of particles. This study suggests a possible
use of pair asymmetries both to quantify the departure from equilibrium and to learn relevant information about
aligning interaction potentials from data.
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I. INTRODUCTION

Irreversibility is a distinguishing feature of active sys-
tems that enables remarkable collective phenomena not seen
at equilibrium. Examples include motility-induced phase
separation (MIPS), in which particles with strictly repul-
sive interactions segregate into dilute and dense phases
spontaneously [1], and flocking, in which polar systems
with short-ranged ferromagnetic interactions produce large-
scale collective motion, even in d = 2 [2,3]. These sys-
tems differ from their passive counterparts only in their
constituents’ self-propulsion, which can be viewed as a
source of effective interactions, e.g., the effective attrac-
tion seen in MIPS [4] or effective long-range alignment in
flocking.

The key ingredient for the emergence of such collective
phenomena is irreversibility. Self-propulsion can bring an
active system out of equilibrium by injecting energy at the
microscopic scale, even in the absence of alternative sources
of irreversibility, like nonreciprocity of interactions or time
delays [5–8]. Yet, if the dynamics obeys detailed balance, even
when particles are motile a Hohenberg-Mermin-Wagner-type
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theorem holds, preventing any spontaneous breakdown of the
rotational symmetry of an equilibrium system in two dimen-
sions [9]. Irreversibility is then a necessary condition for the
existence of 2D flocks exhibiting true long-range order.

The departure of active matter from equilibrium has be-
come a topic of considerable interest in recent years [10–15]
and can be quantitatively addressed using various mea-
sures for the breakdown of detailed balance, like effective
temperatures, violations of the fluctuation-dissipation theo-
rem [16–20], or entropy production [21–23]. Depending on
the scale of interest, this is done employing either agent-
based or field-theoretical descriptions. Most of the effort so
far has focused on MIPS models, especially in the phase-
separated state (see [24] for a review). Much less work, mainly
using fluctuating hydrodynamic models, has been done to
systematically quantify irreversibility in polar dry active
matter [25–27].

Nonetheless, it has been noted that polar active matter
has a stronger nonequilibrium character than apolar active
matter. For instance, it is known that, in contrast to scalar
field theories [28–30], activity is relevant (in the RG sense) for
continuous flocking models, such that the critical properties of
active polar systems are different from their passive counter-
parts [31–34]. Additionally, it has been shown that, in contrast
to MIPS models where only repulsive forces are present, when
nonconservative aligning torques are introduced pressure is no
longer a state function [35,36].
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In this paper, we quantify the departure from equilibrium in
a minimal agent-based model of flocking, akin to the standard
Vicsek model [37], where the system is described as an active
ferromagnet composed of self-propelled spins. We focus on
microscopic descriptions of flocks and study how they de-
part from equilibrium by means of the entropy production
rate [38,39]. We first use this quantity to measure the break-
down of the time-reversal symmetry across the phase diagram,
which we find is maximal in the vicinity of the order-disorder
transition, where reshuffling of neighbors is most efficient.
We relate irreversibility to asymmetries in the steady-state
distribution, the details of which depend on the interactions of
the model. We propose that signatures of irreversibility in the
steady-state distributions may then reveal relevant information
about aligning interaction potentials in biological polar active
systems.

II. STOCHASTIC THERMODYNAMICS
OF THE VICSEK MODEL

We consider a continuous-time variant of the original 2D
Vicsek model, where the system is described as a set of
interacting active Brownian particles (ABPs) performing ro-
tational but not translational diffusion, which self-propel at a
fixed speed v0 and align to each other through short-ranged
ferromagnetic interactions. The stochastic equation of motion
reads

dxi = v0e(θi ) dt, (1)

dθi = Fi(X,�) dt +
√

2D dWi, (2)

where Wi(t ) is a set of independent Wiener processes for 1 �
i � N , e(θ ) = (cos θ, sin θ ) is the orientation vector in d = 2
and Fi(X,�) is the torque that reorients the ith particle. Since
we are interested in quantifying the effect of self-propulsion
alone, we assume the torques are symmetric, ensuring that the
action-reaction principle holds. In this way, the only source
of irreversibility is particle motility. We note that models typ-
ically employed to simulate flocks, like the standard Vicsek
model [37,40] or topological variants with fixed number of
interacting neighbors [41–43], involve nonreciprocal interac-
tions, generating additional irreversible phase space currents.
Therefore we choose

Fi(X,�) = −∂HXY (�; n(X))
∂θi

, (3)

where

HXY (�; n) = −J

2

∑
i j

ni j cos(θi − θ j ) (4)

is the Hamiltonian of an XY model defined on a graph with
a given adjacency matrix n. Contrarily to the classical XY
model, n is not constant but depends on time [through the X
variables, Eq. (1)].

The dynamics described by Eqs. (1)–(2) is Markovian in
the phase space of the N-body system, whose general coor-
dinate is z = (X,�), where X = (x1, . . . , xN ) is the set of
particle positions and � = (θ1, . . . , θN ) is that of velocity
directions. We recall the definition of the average entropy pro-
duction as the Kullback-Leibler divergence between the path

probability of a stochastic trajectory z(t ), for 0 < t < τ , and
its time-reversed z†(t ). For a general Markov process, where
p[z(t )] = p[z(t )|z(0)]p0[z(0)], the average entropy produc-
tion is decomposed as follows, in the absence of external
driving:

S (τ ) = DKL
{

p[z(t )]||p[z†(t )]
} = Shk (τ ) + �S0. (5)

We denote by Shk = 〈log p[z(t )|z(0)]〉 − 〈log p[z†(t )|z†(0)]〉
the housekeeping entropy production [44], with 〈·〉 the aver-
age over the ensemble of (forward) trajectories, and by �S0 =
〈log p[z(0)]〉 − 〈log p[z†(0)]〉 the variation in the Shannon en-
tropy of the initial conditions of forward and backward paths.
Let Ṡ be the entropy production rate (EPR), defined from (5)
as

Ṡ = lim
τ→∞S (τ )/τ. (6)

In order to compute this quantity for the process in
Eqs. (1)–(2), we need to identify the parity under time re-
versal (T) of all the state variable coordinates. Positions are
time-reversal symmetric, i.e., x(t ) �→ x†(t ) = x(τ − t ), while
we assume e(θ ) is time-reversal antisymmetric, e[θ (t )] �→
e[θ (t )]† = −e[θ (τ − t )], so that the angular degrees of free-
dom acquire a global π offset: θ†(t ) = θ (τ − t ) + π . Let us
notice that, in the absence of a translational diffusion term in
Eq. (1), this choice for the parity of v0e(θ )—typically iden-
tified as the self-propulsion—is mandatory, since it must be
interpreted as a physical velocity. Adopting, on the contrary, a
T-even prescription would lead to a diverging EPR, due to the
deterministic nature of Eq. (1) (see Appendix A 1).

Provided that orientations are T-odd, the first equation is
perfectly reversible and does not contribute to Ṡ . We can
therefore eliminate the positional degrees of freedom and
transform them into external parameters controlling the tem-
poral evolution of n(t ) = n[X(t )]. In this way, the reference
framework becomes that of a quasistatically driven Langevin
process, with state variables �(t ) and a set of time-varying pa-
rameters n(t ) [45,46]. We remark that no separation of scales
between the dynamics of n(t ) and �(t ) is explicitly assumed,
but the protocol n(t ) can be considered as “effectively qua-
sistatic” in the sense that, as we verified numerically, it ensures
that the many-body system is in the same stationary state at the
beginning and at the end of its evolution. This property lets the
system behave as if it was in local equilibrium [47] and will
be crucially exploited later.

Introducing the Onsager-Machlup action of the process
[48] into the formula of the housekeeping EPR and assuming
stationarity, we obtain (see Appendix A 1)

Ṡ = 1

D

∑
i

〈θ̇i(t ) ◦ Fi(t )〉

= − J

D

∑
i j

〈θ̇i(t ) ◦ ni j (t ) sin [θi(t ) − θ j (t )]〉, (7)

where ◦ indicates the Stratonovich prescription. According to
the definition of stochastic heat of Langevin processes [49],
Eq. (7) can also be interpreted as Ṡ = D−1〈d̄q/dt〉, with d̄q
the infinitesimal amount of heat dissipated into the medium
(conventionally positive). The parameter D corresponds to
both the rotational diffusion coefficient of the ABP and the
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temperature of the heat bath that the active ferromagnet is in
contact with. We recall that the stochastic heat we consider
is not a physical heat, and the EPR as defined here is not the
physical entropy: only when dealing with real thermodynamic
systems and baths, an identification with the produced physi-
cal entropy is possible.

Another expression for the EPR can be obtained by notic-
ing that to write Eq. (7) we exploited the ergodicity of the
dynamics. Reintroducing an explicit time average allows us to
integrate by parts (see Appendix A 2), yielding

Ṡ = lim
τ→∞

〈−HXY (�(τ ); n(τ )) + HXY (�(0); n(0))〉
Dτ

− J

2D

∑
i j

〈ṅi j (t ) ◦ cos [θi(t ) − θ j (t )]〉. (8)

The first term in Eq. (8) is proportional to the rate of change of
the system’s internal energy and vanishes under the assump-
tion of stationarity. The second term corresponds to the work
done on the system per unit time, divided by D. This inter-
pretation is sound within the “external protocol” framework
described above, where

d̄wresh = − J

2

∑
i j

dni j (t ) ◦ cos [θi(t ) − θ j (t )]

=
∑

i j

dni j (t ) ◦ ∂HXY (�; n)

∂ni j
(t ) (9)

represents the infinitesimal work of fictitious reshuffling
forces which rewire the adjacency matrix. When the system
is in a steady state, the average internal energy is constant,
so the EPR includes only contributions from this irreversible
work.

The fact that the dissipated heat coincides with the irre-
versible work of the external (fictitious) forces is typical of
systems satisfying the local detailed balance condition [47].
Although there is no a priori general reason for this condition
to be valid for a Vicsek-like model, the equality between
Eq. (7) and the second term of Eq. (8) has been numerically
verified in the whole phase diagram of all the variants of the
model we studied [inset in Fig. 1(i) for Model I]. For the class
of models described by Eqs. (1)–(2) the equality of Eq. (7) and
Eq. (8) follows indeed from the combination of the Hamilto-
nian structure of the aligning force (see Appendix A 2), and
the stationarity of the system [according to which the first term
of Eq. (8) vanishes].

Generalizations of the EPR formulas to d > 2 are obtained
in Appendix A 3.

III. NUMERICAL RESULTS

Let us now parametrize the connectivity matrix n(X) and
use the formulas above to compute the EPR from numerical
simulations of the model. We implement two variants of the
Langevin-Vicsek model in Eq. (1)–(2) with short-range ferro-
magnetic interactions. In the first one (Model I) we model a

metric pairwise alignment with

n(I)
i j (X) = �(R − |xi − x j |), (10)

in which � is the Heaviside step function. The second variant
(Model II) implements a topological multiparticle interaction,
with

n(II)
i j (X) =

{
1 ifi, j Voronoi neighbors
0 otherwise. (11)

At each time step, we build a tessellation of the periodic
plane domain associated to the current particle configuration
using the CGAL library [50]. Voronoi neighbors are pairs of
particles belonging to adjacent cells in this tessellation.

Both models are known to exhibit a phase transition from
a disordered isotropic phase to a polar ordered phase, but
with different phenomenology. Model I undergoes a first order
phase transition, where sharp phase coexistence is realized in
a wide portion of the ordered phase [see Figs. 1(a) and 1(c)
and [51]]. On the contrary, spatial heterogeneities are largely
suppressed in Model II, and the transition seems to be of sec-
ond order at the considered system sizes [Figs. 1(b) and 1(d)].
For a discussion on the nature of the transition of active
models with metric-free interactions see [52–54].

Phase diagrams for the modulus of the polar order pa-
rameter � = 1

N | ∑N
i=1 e(θi )| and for the EPR are plotted in

Figs. 1(e)–1(l). We observe that, as control parameters are
varied, the two models depart from equilibrium with roughly
the same qualitative behavior: the entropy production rate
peaks at intermediate D values, while it vanishes as D → ∞
or D → 0. A heuristic explanation for this behavior is readily
provided if we recall that in the considered class of models
nonequilibrium effects are entirely due to the rewiring of the
interaction network.

The existence of the first equilibrium limit is not surpris-
ing [55]: at D → ∞ the system behaves as an ideal gas of
free ABPs. The existence of a second equilibrium limit at
D → 0 is less trivial, because of the presence of a factor
D−1 in Eqs. (7)–(8). To have Ṡ → 0, irreversible reshuf-
fling [numerator of Eq. (8)] must occur on timescales that
diverge faster than D−1, corresponding to the ABP persis-
tence time. The reference model in this second limit is a
perfectly ordered passive ferromagnet, where reshuffling is
suppressed by the strong alignment of particle velocities. This
result justifies the use of approximate equilibrium descriptions
for strongly interacting biological systems operating in this
phase [56].

A simple argument can be made to predict a power-law
decay of the EPR in the two equilibrium limits, as detailed
in Appendix A 5. By approximating the amplitude of correla-
tions and reshuffling times in these two regimes, we deduce
from Eq. (8) that the expected EPR scaling at high D is
Ṡ ∼ D−2, whereas at low D the EPR must scale as Ṡ ∼ D1/2.
Figures 1(l) and 1(h) show the agreement between these pre-
dictions and numerical results for Model II (both regimes) and
Model I (high D regime only).

Model-specific features in the EPR curves of Model I and
Model II are also visible. For instance, the two variants of the
Vicsek model show an opposite trend of the EPR with the av-
erage density of the system, ρ = N/L2, as shown in Figs. 1(g)
and 1(k). In Model I an increase in ρ pushes the system
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Model I Model II
(a)

(c)

(b)

(d)

(e) (g) (i) (k)

(f) (h) (j) (l)

FIG. 1. [(a), (b)] Typical configurations for Model I and Model II at different D values. [(c), (d)] Distribution of the number of interacting
neighbors associated to the configurations above. Bimodality at moderate to small D values indicates phase coexistence in Model I. For Model
II the distribution has an almost invariant shape, hence the amount of irreversible reshuffling of the interaction network cannot be deduced
from its static connectivity alone. Red dashed line: mean number of neighbors; green solid line: expected number of neighbors for a Poisson
point pattern [πρR2 + 1 in the metric case (c), 6 in (d)]. (e) Polar order parameter (OP) of Model I. The white line is the mean field transition
point [40]. (f) EPR across the phase diagram of Model I. (g) EPR curves as a function of the rescaled distance from the mean field transition
point, DMF = JρπR2/2. A possible explanation for the remaining density dependence is provided in the main text. Inset: Equivalence of
formulas (7) and (8) is verified, guaranteeing stationarity of the observed processes. (h) EPR per particle (Model I). Color code is associated
with the system size N . Strong finite-size effects are evident for small N in the symmetry-broken phase (where coexistence is realized), but
Ṡ/N seems intensive as N is increased. The dashed vertical line represents the spinodal (extracted from the number of neighbors’ distribution
for N = 8192). (i) OP of Model II. (j) EPR across the phase diagram of Model II. The white line represents the alleged critical point. (k)
Density dependence of the EPR curves (discussed in the main text). Inset: irreversibility is governed by a single control parameter, v0ρ

1/2, at
fixed D. (l) EPR per particle for Model II (different colors for different N values). All curves perfectly collapse on a single master curve, which
converges to the two equilibrium limits as predicted. Simulation parameters: (Model I) R = 1, J = 1, v0 = 0.5; when not explicitly indicated
N = 1024, ρ = 1. (Model II) J = 1, v0 = 0.5; when not explicitly indicated N = 2048.

towards an equilibrium-like mean field limit, by increasing
the average number of neighbors and reducing the effect of
reshuffling. Conversely, increasing ρ in Model II causes an
effective increase in the activity of the system. Since the
average number of Voronoi neighbors does not depend on the
density, but density modifies typical interparticle distances,
larger ρ is equivalent to larger self-propulsion speed v0. As
shown in the inset of Fig. 1(k), the EPR of Model II is in fact
governed by a single control parameter, v0ρ

1/2.

The EPR curves of the two models also show a differ-
ent shape and different sensitivity to finite-size effects [cf.
Figs. 1(g) vs 1(k) and Figs. 1(j) vs 1(l)]. In the topological
Voronoi case (Model II), the EPR curves exhibit a kink at
the transition point, similar to that observed in [15] for the
“flocking dissipation rate” of the active Ising model, and a
perfect collapse when rescaled by N . In the metric case, EPR
curves are smoother and tend to flatten in the coexisting region
as N is increased. We notice indeed that at low to intermediate
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values of the D parameter, where the two types of curves are
furthest from each other, Model I and Model II mostly differ
in the features of their typical macroscopic configurations—
most strikingly, the presence or absence of phase coexistence
(at least at the observed sizes). This observation corroborates
the recently proposed idea that structure and dissipation are
deeply interrelated in active matter [57,58].

As a final note, the use of formulas (7) and (8) suggests that
dissipation has a local origin in flocking models, explaining its
extensive nature, but it does not seem to be spatially localized,
even if the system exhibits phase coexistence. In contrast to
MIPS models, we could not observe a spatial segregation of
the particles that relates to their dissipation [21,22,59]. On
the contrary, the heat or work contributions per single particle
fluctuate in time, assuming both positive and negative values,
with an amplitude comparable to the fluctuations of the mean
EPR, rescaled by

√
N (see Fig. 6 in Appendix A 6). However,

since the EPR is a global quantity and its local decomposition
is nonunique (we can always add a state function with a well-
defined steady-state average value), we cannot exclude that
different rewritings of Ṡ could unveil alternative interesting
interpretations.

IV. SIGNATURES OF IRREVERSIBILITY

Explicit expressions for the EPR of Vicsek-like models
allow us to identify model-dependent signatures of irre-
versibility in the steady-state distribution of a flock. For the
sake of simplicity, we focus on Model I and compute

ṅ(I )
i j = −δ(R − |xi − x j |) (xi − x j ) · (vi − v j )

|xi − x j | . (12)

The rewiring of the connectivity matrix in Model I depends
only on how mutual distances between pairs of particles
evolve. Let us insert Eq. (12) into Eq. (8) and assume station-
arity to rewrite the EPR as

Ṡ = Jv0

2D

∑
i j

〈cos ϕi j[cos α̂i j − cos(α̂i j − ϕi j )]〉|xi−x j |=R, (13)

where 〈·〉|xi−x j |=R is the conditional average over pairs of
particles at distance R. The variables ϕi j , α̂i j are angles
parametrizing the mutual alignment and the relative angular
position of the two particles, respectively (see Fig. 2):

ϕi j = (θ j − θi ) mod 2π, α̂i j = (
α0

i j − θi
)

mod 2π, (14)

where α0
i j is the angle indicating the direction of the displace-

ment vector ri j = x j − xi in a fixed reference frame, in which
the ith particle’s orientation is θi. We can symmetrize Eq. (13)
by introducing αi j = α̂i j − ϕi j/2 and rewrite

Ṡ = Jv0

2D
N2g(R)

∫
[0,2π]2

dα dϕ q(α, ϕ)ε(α, ϕ), (15)

where g(r) = 1
N2 〈

∑
i j δ(|x j − xi| − r)〉 is the pair correlation

function and

ε(α, ϕ) = cos ϕ
[
cos

(
α − ϕ

2

)
− cos

(
α + ϕ

2

)]
(16)

FIG. 2. (a) The time-reversal (TR) operator acts on the system’s
variables by flipping velocities and keeping positions unchanged. Out
of equilibrium, the two configurations cannot be equally probable.
(b) Sample trajectories from a system of N = 1024 particles (D = 3,
J = 1, v0 = 0.5, ρ = 1, � 
 0.21) elucidating the dissipation mech-
anism in Model I. Black stretches indicate the portion of trajectory in
which the two particles are at a distance smaller than the interaction
radius; gray stretches those where particles are at a distance r > R
and do not interact. In (b.i) strongly antialigned particles start inter-
acting with an initial phase difference of 0.95π (triangle, converging
red arrows, corresponding to a positive EPR contribution εin 
 1.76).
Due to rotational diffusion, they later leave each other’s neighbor-
hood at a new relative phase and displacement angle (square, blue
arrows), corresponding to εout 
 −0.92. In (b.ii) converging particles
(cross) enter the interaction disk contributing to the EPR negatively
(εin = −0.34). After the interaction, they diverge being more aligned
than before (circle), so that the EPR contribution associated to this
configuration surmounts the previous one: εout = 0.38. (c) Contour
plot of Eq. (16).

is proportional to an EPR density per pair of particles. The
quantity q(α, ϕ) is the (normalized) distribution of particle
pairs at distance R:

q(α, ϕ) = 〈∑i j δ(|ri j | − R)δ(α̂i j − ϕi j/2 − α)δ(ϕi j − ϕ)〉
N2g(R)

.

(17)

The time-reversal operator acts on the newly introduced
angular variables in the following way:

ϕ†(t ) = ϕ(τ − t ), α†(t ) = α(τ − t ) + π. (18)

Hence, breakdown of the time-reversal symmetry, Ṡ �= 0,
implies from Eq. (15) a symmetry breaking in the pair dis-
tribution: q(α, ϕ) �= q(α + π, ϕ). This means that two mirror
configurations like those in Fig. 2(a) cannot be equally prob-
able. Specifically, since the EPR is nonnegative, for aligned
pairs (cos ϕ > 0) configurations with diverging particles are
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FIG. 3. First row: Reconstructed log distributions of pairs of
particles at distance R from numerical simulations of Model I (N =
1024, v0 = 0.5, ρ = 1, J = 1). Second row: Antisymmetric part of
the log distributions: −u−(α, ϕ) = u(α + π, ϕ) − u(α, ϕ). A posi-
tive correlation with ε(α, ϕ), shown in Fig. 2(c), is evident. Black
lines represent the level curves of the fitted λε(α, ϕ) function, with λ

free parameter.

expected to be more probable than ones with converging
particles. On the contrary, for antialigned pairs (cos ϕ < 0),
configurations with colliding particles are expected to be more
probable than ones with divaricating particles [cf. Fig. 2(b)].
This scenario reflects the fact that birds leaving each other’s
neighborhood have been interacting in the past and are typ-
ically more aligned than those which have not interacted
directly before.

It is convenient to consider the logarithm of the particle pair
distribution function, u(α, ϕ) = − log q(α, ϕ) and decompose
it into T-symmetric and T-antisymmetric parts: u±(α, ϕ) =
1
2 [u(α, ϕ) ± u(α + π, ϕ)]. The irreversibility condition now
reads u−(α, ϕ) �= 0, while Eq. (15) is rewritten as

Ṡ ∝
∫

[0,2π]2
dα dϕ e−u+(α,ϕ) sinh [−u−(α, ϕ)]ε(α, ϕ). (19)

The positivity of the EPR is translated into a positive correla-
tion between the log distribution of particle pairs −u−(α, ϕ)
and the EPR density ε(α, ϕ). We show in Fig. 3 the numeri-
cally reconstructed function −u(α, ϕ), for different parameter
values. In the disordered phase, the log distribution looks al-
most T-symmetric, as the system is close to equilibrium (large
D in Fig. 3, second row). In the ordered phase nonnegligi-
ble asymmetries are visible in the reconstructed distributions:
these are especially concentrated in the low-probability region
where particles are antialigned (ϕ ∼ π ).

It is worth remarking that the discussed features are local,
as they are observed at the scale of the interaction radius R,
which is much smaller than the system size or the typical size
of polar clusters in the ordered phase. Asymmetries gradu-
ally disappear when we look at larger scales, as shown in

2 4
r

0.0

0.5

1.0

1.5

2.0

‖u
−‖

1
(r

)

D = 3.0

D = 3.5

D = 4.0

D = 4.5

D = 5.0

D = 8.0

FIG. 4. Scalar measure for the degree of asymmetry of the
log distribution of particle pairs at distance r: ‖u−‖1(r) =∫

dα dϕ|u−(α, ϕ; r)|. Curves peak at r = R (dashed line) for all the
considered D values. Lowering the rotational diffusion coefficient,
the decay to zero at large r gets slower because of the presence of
heterogeneous structures affecting the pair distribution. The trend of
these curves is qualitatively reminiscent of −∂rn(r) = δ(r − R). All
data are collected form simulations of systems of N = 2048 particles.

Fig. 4. This property is not specific to Model I, but holds
independently of the precise parametrization of n(X), pro-
vided that it describes a pairwise short-ranged interaction.
Interestingly, a similar asymmetric scenario has also been
observed in [60] in a variant of Model I with nonadditive,
nonpairwise interactions.

Model II is another example of a system with nonpairwise
interactions, since ni j (X) is not a simple function of the mu-
tual distance between particles i and j. As a consequence, we
do not have a simple expression for ṅi j to fill in Eq. (8). Since
the number of Voronoi cells must be conserved, reshuffling
can occur only via the formation of m-fold vertices, with
m � 4. Such transitional configurations are realized when the
particles form an m-sided polygon inscribed in a circle, so
signatures of irreversibility must be sought for in m-particle
densities (especially m = 4, since other transitional config-
uration than the lowest order fourfold vertex are unlikely to
occur).

V. IRREVERSIBILITY-INDUCED EXPLICIT
SYMMETRY BREAKING

The fact that irreversibility constrains asymmetries in the
two-body distribution (for Model I) is an example of a more
general result concerning systems with T-odd state variable
coordinates. Following the line of reasoning of [61], it can be
shown that for a whole class of stationary Langevin processes,
the irreversibility condition implies a symmetry breaking in
the nonequilibrium steady-state distribution of the system.
This symmetry breaking only depends on the parity of the
state variable coordinates under time reversal and it is easy
to predict, without solving the steady-state Fokker-Planck
equation. Nonetheless it may be typically hard to observe
because it requires reconstructing the full steady-state distri-
bution, while it is not guaranteed to survive projection, coarse
graining, or any other dimensional reduction of the variable
space.

Let us consider a stationary additive process z(t ) described
by a Langevin equation

żα = Aα (z) + Bαβξβ, (20)

034608-6



SIGNATURES OF IRREVERSIBILITY IN MICROSCOPIC … PHYSICAL REVIEW E 106, 034608 (2022)

whose coordinates have a definite parity under time reversal,
i.e., zα

†(t ) = εαzα (τ − t ) with εα = ±1. The condition Ṡ > 0
implies that at least one of the two following statements is
violated (see Appendix B):

Airr
α (z) + Dαβ∂βφ+(z) = 0 ∀α, (21)

∂αφ−(z) = 0 ∀α. (22)

Here D = 1
2 B�B is the diffusion matrix of process (20); Arev

and Airr indicate the common decomposition of the drift term
A into a reversible and an irreversible part [44]; φ± are the
T-symmetric and T-antisymmetric parts of the quasipotential
φ = − log ψ (z), where ψ (z) is the nonequilibrium steady-
state (NESS) distribution of the system.

When the state variable contains only even coordinates
with respect to time reversal, Eq. (21) must be violated, since
φ−(z) = 0. In contrast, when Arev(z) = 0, the stationarity
condition, combined with irreversibility, implies φ−(z) �= 0
(see Appendix B). This means that any Langevin additive
process with null reversible drift and having coordinates in
the state variable that change sign under time reversal exhibits
signatures of irreversibility in its NESS distribution.

The considered class of 2D flocking models corresponds to
this second scenario, independently of the interaction matrix
parametrization, as better described in Appendix B. Hence the
NESS distribution must be asymmetric under time reversal:

log ψ (X,�) �= log ψ (X,� + π ). (23)

The discrete T symmetry which is here explicitly broken
can be viewed as a π rotation in the velocity subspace
V = (v1, . . . , vN ), where vk = eiθk . Therefore, a continuous
rotational symmetry in the velocity subspace cannot hold;
we can think of this fact as an irreversibility-induced explicit
breakdown.

However, a different symmetry is preserved: the Fokker-
Planck operator and the NESS distribution are invariant if
arbitrary identical rotations are performed on both the external
space of positions and the internal space of the polar order
parameter:

ψ (eiθ0 X,� + θ0) = ψ (X,�) ∀θ0 ∈ R. (24)

As a consequence of Eq. (24), the marginalized pdf ψ (�) =∫
[0,L]2N dXψ (X,�) is rotationally invariant, even when the

dynamics of the polar active system is irreversible. Sim-
ilarly, the marginalized distribution of positions, ψ (X) =∫

[0,2π]N d�ψ (X,�), is invariant under rotations.
In conclusion, the above discussion does not compel ex-

plicit symmetry breaking in ψ (�), but underlines the lack
of continuous symmetry under velocity rotations in the cou-
pled (X, V) space, which appears as a hypothesis in known
Hohenberg-Mermin-Wagner theorems (including [9]). In our
Langevin-Vicsek model, this symmetry is recovered only at
equilibrium, where the absence of reshuffling disentangles
positions and velocities.

VI. CONCLUSION

Real-life flocks and flocking models are often given as
examples of strongly out of equilibrium systems. However,

analysis of real flocks has showed that they can function
close to equilibrium if the self-propulsion leads the interaction
network to rearrange on slow timescales compared to the local
orientational dynamics [56]. Motivated by the observation
that self-propulsion and irreversibility are not always synony-
mous and that the former alone is not a sufficient condition
to explain the spontaneous emergence of collective behavior
in polar active matter [9], we measured how flocks depart
from equilibrium across their phase diagram. We employed
the entropy production rate as the natural quantifier for the
breakdown of detailed balance and exploited its positiveness
to identify signatures of irreversibility in minimal agent-based
flocking models.

While general statements can be deduced from the par-
ity of the state variables alone, the way such signatures are
manifested conveys model-specific information about align-
ment interactions in the flock. For the considered class of
Vicsek-like models, violations of the time-reversal symmetry
are indeed due to the interplay between self-propulsion and
the (otherwise equilibrium-like) alignment interactions. Self-
propulsion makes particles motile, but interaction is required
to probe the effect of motility, through the rewiring of the
interaction network.

It is worth noting that rewiring could in principle be re-
versible, if it occurs in a symmetric way. However, the way
information is transferred from velocity to positional degrees
of freedom prevents this from happening. The evolution of
bird positions can be seen as an effective external protocol
for the dynamics of the orientation degrees of freedom. The
protocol is, however, not arbitrary: it must ensure that the
XY Hamiltonian is on average stationary—a condition that
implies a feedback between the state of the driven system and
the driving protocol. A better understanding of the thermo-
dynamic and information-theoretical meaning of the rewiring
of the interaction network may help understand not only the
microscopic origin of the symmetry breaking out of equi-
librium, but also how to control a flocking system in any
thermodynamic phase.

Since irreversibility consists in a symmetry breaking (with
respect to the time-reversal transformation), it is not surpris-
ing that signatures of the out-of-equilibrium nature of the
dynamics can be detected in asymmetries of the steady-state
distribution of the system. When the collective dynamics
emerges from reciprocal pairwise interactions, such signa-
tures of irreversibility are manifested in the pair distribution,
at the scale of the interaction radius. Asymmetries are
washed away on larger scales, if the system is sufficiently
homogeneous.

Our analysis suggests that irreversibility-related features
can be exploited as a tool to infer relevant information about
microscopic interaction mechanisms in active polar systems
from the experimental data. Numerical simulations also show
that the EPR is highest in the coexistence region of the
metric additive Vicsek model, and peaks at the alleged crit-
ical point in the Voronoi Vicsek model, suggesting that the
effects of irreversibility in polar active matter should be
mostly visible in systems lying at the onset of collective mo-
tion. Candidate experimental models could be, for instance,
moderate density actomyosin motility assays [62] or insect
swarms [63].
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Lastly, the numerically computed EPR exhibits a finite size
scaling compatible with an extensive nature of the observable.
It would be interesting to investigate how the EPR and the
scaling we measure from agent-based microscopic models
relates to the EPR of fluctuating coarse-grained theories and
its scaling [64].
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APPENDIX A: DERIVATION OF EPR FORMULAS

1. Heat dissipation

The process in Eq. (1)–(2) is Markovian, so the path prob-
ability associated with it reads

p[X(t ),�(t )] ∝ ψ (X(0),�(0))e−AI [X(t ),�(t )], (A1)

where ψ (X,�) is the steady-state distribution of the N-body
system, and

AI [X(t ),�(t )] = lim
ε→0

lim
�t→0

Ns−1∑
s=0

N∑
i=1

1

�t

{
1

ε2

[
xs+1

i − xs
i − v0e

(
θ s

i

)
�t

]2 + 1

4D

[
θ s+1

i − θ s
i + J

∑
j

ns
i j sin

(
θ s

i − θ s
j

)
�t

]2
}

(A2)

is the Onsager-Machlup (OM) action [48] (in the Itô prescrip-
tion; any other α-type prescription would lead to the same
final expression for the EPR, since the process is additive).
Ns indicate the number of steps of amplitude �t in which the
trajectory is discretized, and the limit is taken while keeping
Ns�t = τ . The presence of the ε-dependent term in Eq. (A2)
comes from the representation of δ[ẋi − v0ê(θi)] as the sin-
gular limit of a Gaussian of variance ε2. This regularization
corresponds to adding an infinitesimal translational diffusion
noise to the deterministic Eq. (1), in order to make the diffu-
sion matrix of the 2D process nonsingular.

Assuming that the system is in a steady state, the
variation in the Shannon entropy of the initial state
distribution vanishes, �S0 = 〈log ψ (X(0),�(0)) −
log ψ (X†(0),�†(0))〉0 = 0, and the entropy production
of the irreversible process reduces to the housekeeping
entropy production [44]: S (τ ) = Shk (τ ) = AI [X(t ),�(t )] −
AI [X†(t ),�†(t )], where X†(t ) and �†(t ) indicate the
time-reversed trajectories.

Using Eqs. (A2) and the OM action of the time-reversed
trajectory, we can compute the entropy production rate and
obtain a first formula:

Ṡ =〈q̇〉
D

= − J

D

∑
i j

〈θ̇i ◦ ni j sin(θi − θ j )〉

= lim
Ns→∞

lim
�t→0

1

Ns�t

N∑
i=1

Ns−1∑
s=0

〈θ s+1
i − θ s

i

�t
· F s

i + F s+1
i

2

〉
,

(A3)

where F s
i = Fi(Xs,�s) = −J

∑
j ni j (Xs) sin(θ s

i − θ s
j ) is the

torque acting on the ith particle at time step s, and 〈·〉 is
the average over the ensemble of nonequilibrium stationary
paths. Here the limit is taken in such a way that Ns�t → ∞.
Equation (A3) coincides with the average stochastic heat [49]
dissipated by the system into a heat bath at temperature D per

unit time, divided by D or, equivalently, to the work rate of the
aligning torques.

2. Local equilibrium

An alternative formula to Eq. (A3) is obtained by eliminat-
ing the spatial d.o.f.’s and projecting the process to those phase
space directions where the irreversible current has nonzero
components. In this reduced space, the diffusion matrix is
invertible and no regularization is needed. The effect of the
eliminated d.o.f.’s is taken into account by recognizing them
as parameters driving the system through a transformation that
does not modify the average value of the effective XY Hamil-
tonian (4). Having rephrased the problem in this way, we can
follow [47], and proceed by discretizing the trajectories of the
angular d.o.f.’s and of the protocol parameters as follows:

direct : �0
X1−→ �1

X2−→ �2 · · · �M−1
XM−→ �M,

time-reversed : �0
X1←− �1

X2←− �2 · · · �M−1
XM←− �M .

Let us now assume the local detailed balance condition [47]
(justified a posteriori by numerical results—no a priori as-
sumption of time scale separation which is valid in every
region of the phase diagram can be made):

Pc(�n; Xn+1)P(�n
Xn+1−→ �n+1)

Pc(�n+1; Xn+1)P(�n+1
Xn+1−→ �n)

= 1, (A4)

where

Pc(�; X) = 1

Z (X)
e−βHXY (�;n(X)) (A5)

is the equilibrium Boltzmann distribution of an XY spin
system on a fixed network with connectivity matrix n(X)
and β = D−1. Using hypothesis (A4) to compute the entropy
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production of the discretized Markov process,

S =
〈

log
Pc(�0; X0)

Pc(�M ; XM )
+ log

∏M−1
n=0 P(�n

Xn+1−→ �n+1)∏M−1
n=0 P(�n+1

Xn+1−→ �n)

〉

=
〈

log
M−1∏
n=0

Pc(�n; Xn)

Pc(�n; Xn+1)

〉
, (A6)

and taking the continuous limit yields for the EPR,

Ṡ = β

〈∑
i< j

ṅi j ◦
[
∂HXY (�; n)

∂ni j
− 〈∂HXY (�; n)〉c,n

∂ni j

]〉
,

(A7)
where 〈·〉c,n is the equilibrium over the canonical ensemble,
for fixed n. The same result is obtained by applying the stan-
dard rules of stochastic calculus to Eq. (A3). Recalling that
this expression involves a time average (eliminated under the
assumption of ergodicity), we can perform an integration by
parts resulting in

Ṡ = − J

2D

∑
i j

〈ṅi j ◦ cos(θi − θ j )〉

+ lim
τ→∞

〈HXY (τ ) − HXY (0)〉
τ

. (A8)

Let us now assume that the system is in a steady state, where
the average XY Hamiltonian does not vary with time (or at
most sublinearly). Equation (A8) then reduces to the rate of
work which fictitious reshuffling forces make on the system:

Ṡ = 〈ẇresh〉
D

= − J

2D

∑
i j

〈ṅi j ◦ cos(θi − θ j )〉. (A9)

Let us remark that these fictitious forces are not independent
of the system’s state: due to this crucial dependency between
the external protocol and the state of the system we can have
a nonzero EPR.

3. Arbitrary dimension

The generalization of the active XY model to the d > 2
case is the active O(n) ferromagnet, whose dynamics is de-
scribed by

dxα
i = vα

i dt, (A10)

dvα
i = Pαβ

i

(
−J

∑
j

ni jv
β
j + v0ξ

β
i

)
, (A11)

where 〈ξα
i (t )ξβ

i (t ′)〉 = δi jδαβδ(t − t ′) and Pαβ
i (t ) = δαβ −

vα
i (t )vβ

i (t )/v2
0 is the orthogonal projector to vi(t ) that is re-

quired for normalization purposes. For d > 2 the process is
multiplicative: the prescription to integrate Eqs. (A10)–(A11)
is the Stratonovich one.

The corresponding generalization of the EPR formu-
las (A3) and (A9) to the d-dimensional case reads

Ṡ = 〈d̄q〉
dt

= J

Dv2
0

∑
i j

〈
v̇α

i (t ) ◦ Pαβ
i (t )ni j (t )vβ

j (t )
〉
, (A12)

Ṡ = 〈d̄w〉
dt

= − J

2Dv2
0

∑
i j

〈
ṅi j (t ) ◦ vα

i (t )vα
j (t )

〉
. (A13)

4. Equilibrium limits

The obtained EPR formulas reveal the existence of several
equilibrium limits for the Vicsek model. Two of them obvi-
ously correspond to v0 → 0, where activity is suppressed and
the model corresponds to an equilibrium XY ferromagnet, and
J → 0. From inspection of Eq. (A3) a third equilibrium limit
can be deduced, for D → ∞, since torques and phase incre-
ments are bounded. In this limit, the interaction term in Eq. (2)
becomes negligible, compared to the noise, and the system
behaves as in the noninteracting equilibrium case. Because of
the equivalence between Eqs. (A3) and (A9), this means that
reshuffling is suppressed as the rotational diffusion coefficient
increases. Particles tend indeed to swirl around their positions,
being stuck in the vicinity of their own neighborhood for a
long time (see Fig. 5).

Another equilibrium limit, which is independent of the
parametrization of ni j , corresponds to D → 0. In the strongly
polarized phase the system approaches the behavior of a
passive ferromagnet in the comoving reference frame. The rel-
evant (asymmetric) contribution of reshuffling is suppressed
faster than D in this limit, resulting in an effective equilibrium
behavior. An approximate argument for this fact is provided
in Sec. A 5.

Two other nontrivial equilibrium limits can be deduced
for the two variants of the Vicsek model considered in the
main text, by varying the control parameter ρ. In the additive
metric case (Model I) the ρ → ∞ limit corresponds to an
equilibrium limit, since the system approaches an effective
mean field configuration. In the topological case (Model II)
the opposite limit, ρ → 0, is an equilibrium one.

Enhancement of reshuffling close to the transition is wit-
nessed by the decay of the reconstructed autocorrelation
function of the connectivity matrix:

Cnet(t ) = 1

N (N − 1)

∑
i j

〈ni j (t0 + t )ni j (t0)〉t0 , (A14)

where 〈·〉t0 denotes a time average over multiple starting times.
We show the quantity (A14) computed for Model II in Fig. 5.
The fastest decay is observed at the alleged critical point
(Dc 
 2). All the curves, for varying D, are well fitted by the
functional form:

Cnet (t ) ∼ M(1 + cta)−d , (A15)

which was empirically introduced in [65] to measure the av-
erage fraction of nonchanging neighbors after a time delay t
in real flocks of birds. We fitted Eq. (A15) on numerical data
by taking as fixed parameters d = 2 and M = 6 (the average
degree of a Voronoi vertex in a planar graph is fixed by the Eu-
ler formula). Results from the fit are shown in Fig. 5(g) where
parameters are plotted parametrically versus the average EPR
of the system.
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FIG. 5. (a) Subsample of trajectories of diffusing particles in different regimes. All the trajectories span the same time interval. In the
symmetry broken phase the trajectories are shown in the reference frame of the center of mass; mutual diffusion occurs mainly in the transverse
direction with respect to collective motion (black arrow). At D = 2, where reshuffling is mostly efficient, the flock is disordered but the motion
of the particles is still persistent. Persistence is reduced as the rotational diffusion coefficient D is increased. In all cases, N = 1024, ρ0 = 1.
(b) Autocorrelation function of the adjacency matrix of the flock, Cnet(t ), defined as in Eq. (A14). The color map refers to D values. The
maximum point of the EPR, D = 2, is marked in red and corresponds to the curve with the fastest decay. Dashed lines are the fitted curves
from Eq. (A15). [(c),(d)] Parametric plot of fitted parameters, a and c, vs EPR. The figure shows a positive correlation both for the effective
diffusion coefficient c and exponent a. Close to the transition point (marked by the red dot) reshuffling is the most efficient, and the system is
in the farthest condition from an equilibrium one.

5. Scaling with D

Let us focus on Eq. (A9) in the two equilibrium limits
D → 0 and D → ∞. The parameter D enters in the formula
through cos(θi − θ j ) (alignment of bird pairs that are changing
their status of neighbors), ṅi j (reshuffling rate), and the D−1

prefactor. Let us suppose that cos(θi − θ j ) ∼ C(l ), with C the
(full) spatial correlation function of birds’ velocities, which
we assume isotropic, and l the interaction radius (in Model I)
or the average distance of a pair of birds which are leaving
each other’s Voronoi shell (in Model II). In this paragraph the
symbol ∼ must be read as “approximately proportional to.”
Let us assume that the typical reshuffling rate, τresh ∼ ṅ−1

i j , is
related to the time needed for a particle to travel the same
reference distance l:

〈|�x(τresh )|2〉 ∼ l2. (A16)

In the low-D regime the system is deeply ordered and
we can adopt the spin-wave approximation. This approxi-
mation consists in linearizing the equations of motion by
taking into account only the transverse fluctuations of the
velocity variables (or spin wave excitations) v0πi, where πi ⊥
V = 1

N

∑N
i=1 vi. The magnitude of these Gaussian fluctuations

scales as |πi| ∼ D1/2. The corresponding low-D expansion
of the correlation function is C(l ) ∼ 1 − |π|2 ∼ 1 − D. In
Model II

∑
i j ṅi j = 0 because the average degree of a vertex in

a Delaunay triangulation of the plane (Voronoi tessellation’s
dual) is exactly 6 [66], so a nonzero contribution to the EPR
is only expected to come from the connected velocity corre-
lation. In Model I a similar argument holds on average, if the
system is in a stationary condition. Hence we shall replace
C(l ) with Cc(l ) ∼ D and estimate τresh from Eq. (A16). Since
the system is strongly ordered, mutual displacement occurs
mainly in the transverse space to the collective direction of
motion, and we can assume that l is typically small enough to

work in the ballistic regime. The condition

〈�x2
⊥(t )〉 ∼ |π|2t2 ∼ l2 (A17)

identifies a reshuffling timescale τresh ∼ D−1/2, so that Ṡ ∼
D1/2.

In the high-D regime thermal noise dominates over align-
ment interactions. The limit model is an ideal gas of free
ABPs, whose mean-squared displacement is known [67]:

〈�x(t )2〉 = 2v2
0

D

[
t − 1

D
(1 − e−Dt )

]
∼ l2. (A18)

From Eq. (A18) we deduce (in both ballistic and diffusive
limits) that the reshuffling rate scales as τ−1

resh ∼ D−1. In
this disordered phase, the full velocity correlation function
corresponds to the connected one, which exhibits a sharp,
short-range decay: Cc(l ) ∼ e−l/ξ (D), where ξ (D) is a finite
correlation length, of the order of l , which scales as D0 as
D → ∞. Therefore, the resulting scaling for the EPR is Ṡ ∼
D−2.

6. Single-particle decomposition

Let us focus on Model I, where phase coexistence is real-
ized. We consider the statistics of single-particle contributions
to the EPR from Eqs. (A3) and (A9), respectively, correspond-
ing to the heat rate per particle, divided by D:

ṡi = q̇i

D
= − J

D

∑
j

〈θ̇i ◦ ni j sin(θi − θ j )〉, (A19)

and work of reshuffling forces per particle, divided by D:

ṡi = ẇi

D
= − J

2D

∑
j

〈ṅi j ◦ cos(θi − θ j )〉. (A20)

The goal of this analysis is to unveil possible correla-
tions between dissipation and spatial segregation of each
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ṡi/D Ṡ/N = 0.022

0 5 10 15 20
t

−0.25

0.00

0.25

〈ẇ
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FIG. 6. (a) Time series of the average EPR of the flock (gray) and of the contribution of a sample single particle, properly rescaled (red),
computed as in Eq. (A19) (top) or as in Eq. (A20) (bottom). The two time series have comparable fluctuations, especially when the stochastic
heat is considered (top). This fact shows that all the particles contribute in the same way to the global EPR. (b) Probability density of the
single-particle stochastic heat [left, from Eq. (A19)] or irreversible work of fictitious reshuffling forces [right, from Eq. (A20)]. The histogram
is unimodal, even when particles are organized into polar clusters, in clear contrast with the MIPS phenomenology [59].

self-propelled particle, as it has been observed in scalar active
matter.

In contrast to MIPS models [21,22,59], however, dissipa-
tion seems to occur in a nonlocalized way in the system. Two
findings have been made in the context of scalar active matter:
first of all, the analysis of both coarse-grained models and
microscopic agent-based models for MIPS has shown that
the breakdown of the time-reversal symmetry occurs at the
interfaces, whereas in the bulk of both the dense and dilute
phases the EPR density vanishes [21,22]. A second analysis
on a different type of microscopic model (ABP with repulsive
interactions, in contrast to active Ornstein-Uhlenbeck parti-
cles) has revealed that the work of the self-propulsion force
per single particle assumes a different value depending on
the particle’s position inside the system [59]. The probability
distribution of the active work per particle is assumed to obey
a large deviation principle and the associated rate function
is found to be nonconvex. The values corresponding to the
minima of the rate function are the typical active work values
of particles belonging to the bulk of the two phases; work
values in the nonconvex region are typical of particles at the
interface.

If we represent the EPR contribution per particle, using
either Eq. (A19) or Eq. (A20), we see that violations of the
time-reversal symmetry are not concentrated at the interface;
on the contrary, the bulk contributes significantly and not with
a definite sign [68]. If we also consider the time series of
single-particle EPR contributions, we see that they largely
fluctuate, taking both positive and negative values. The typical
amplitude of fluctuations is comparable to that of the rescaled
average EPR of the system, 1√

N

∑N
i=1 si [Fig. 6(a)]. Finally, the

histograms of the time-averaged single particle contributions,
shown in Fig. 6(b), seem to have a unimodal shape, corrobo-
rating the idea that in polar flocks there is no correspondence
between the particle’s energetic role and its position in the
flock.

APPENDIX B: TIME REVERSAL SYMMETRY
BREAKING IN LANGEVIN SYSTEMS

In this Appendix we analyze general consequences deriv-
ing from the irreversibility condition on ABP models with

alignment. We start by recalling some results presented in [61]
and move from them to the following:

(1) Derive a new formula for the entropy production of
nonequilibrium stochastic process driven by additive noise
[Eq. (B14)]

(2) Show that the irreversibility condition induces on any
ABP-based model of flocking an explicit asymmetry in the
steady-state distribution of the system’s microstates

(3) Generalize this last result to any Langevin system with
completely irreversible drift.

1. General results

Let us consider a general stochastic additive process z(t )
described by a Langevin equation with drift term A(x) and
diffusion term D. Let ψ (z) be the steady-state distribution
that solves the stationary Fokker-Planck equation: LFPψ (z) =
−∇ · j(z) = 0, where

j(z) = A(z)ψ (z) − D∇ψ (z) (B1)

is the probability current. This current is standardly decom-
posed into a reversible and irreversible part [44] as

jrev(z) = Arev(z)ψ (z), (B2)

jirr (z) = Airr (z)ψ (z) − D∇ψ (z), (B3)

where

Arev
α (z) = 1

2 [Aα (z) − εαAα (εz)], (B4)

Airr
α (z) = 1

2 [Aα (z) + εαAα (εz)], (B5)

with ε denoting the time-reversal operator. For now, we as-
sume that ε acts linearly on the state variable z (precisely,
diagonally with εα = ±1 ∀α).

A necessary and sufficient condition for detailed balance
to hold is that the two following conditions are verified (in
addition to stationarity, ∇ · j = 0) [69]:

jirr (z) = 0 and Dαβ (z) = εαεβDαβ (εz). (B6)

Therefore the condition of irreversibility implies jirr (z) �= 0,
when D is independent of z. This condition is sufficient to
guarantee the positivity of the entropy production in a proper
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NESS, i.e., in the absence of external drivings, where the
total entropy production reduces to the housekeeping entropy
production:

Ṡhk =
∫

dz ψ (z)V irr
α (εz)[D−1(εz)]αβV irr

β (εz). (B7)

In (B7) V(z) = j(z)/ψ (z) is the phase space veloc-
ity [44], which is decomposed as Vrev(z) + Virr (z) after (B2),
and (B3). Dal Cengio et al. [61] identified Eq. (B7) with a
second expression for the EPR given in [44],

Ṡ =
∫

dz ψ (z)V irr
α (z)[D−1(z)]αβV irr

β (z), (B8)

to derive the following constraint:∑
αβ

D−1
αβV irr

α (z)V irr
β (z) =

∑
αβ

D−1
αβV irr

α (εz)V irr
β (εz). (B9)

Equation (B9) is valid almost surely if the diffusion matrix is
invertible and z-independent. Using the definition of Virr and
the property Airr

α (z) = εαAirr
α (εz), Eq. (B9) implies∑

α

[
Airr

α (z) + Dαβ∂βφ+(z)
]
∂αφ−(z) = 0 (B10)

almost surely. The functions φ± are defined as the T-
symmetric and T-antisymmetic parts of the quasipotential
φ(z) = − log ψ (z):

φ+(z) = 1
2 [φ(z) + φ(εz)], φ−(z) = 1

2 [φ(z) − φ(εz)].
(B11)

For the sake of simplicity, let us assume D is diagonal. All
the results can be generalized to the nondiagonal case, if D
is symmetric and positive definite. We remark that it is not
possible to merely invoke the diagonalizability of D through
a change of basis, because we need all the coordinates of z to
have a definite parity under time reversal.

We start from an explicit rewriting of the entropy produc-
tion rate from Eq. (B8):

Ṡ =
∫

dz e−φ(z)
∑

α

D−1
αα

[
Airr

α (z) + Dα∂αφ(z)
]2

. (B12)

Exploiting the symmetries of Airr , φ+ and φ−, we can rewrite
Eq. (B12) as

Ṡ =
∫

dz 2 cosh[φ−(z)]e−φ+(z)

×
∑

α

D−1
αα

{[
Airr

α (z) + Dαα∂αφ+(z)
]2 + Dαα[∂αφ−(z)]2

}

+
∫

dz 4 sinh[φ−(z)]e−φ+(z)

×
∑

α

[
Airr

α (z) + Dαα∂αφ+(z)
]
∂αφ−(z). (B13)

The second line of Eq. (B13) is zero due to Eq. (B10), hence

Ṡ =
∫

dz cosh[φ−(z)]e−φ+(z)

×
∑

α

{
D−1

αα

[[
Airr

α (z) + Dαα∂αφ+(z)
]2 + [∂αφ−(z)]2

}
� 0.

(B14)

Equality is realized in Eq. (B14) iff both of the following
conditions are verified:

Airr
α (z) + Dα∂ααφ+(z) = 0 ∀α (B15)

and

∂αφ−(z) = 0 ∀α ⇐⇒ φ−(z) = 0. (B16)

Notice that φ− cannot be a constant function different from
zero.

Breakdown of detailed balance imposes that at least one
of the terms in Eqs. (B15)–(B16) is nonzero, along with the
constraint (B10). If all the coordinates of the state variable are
T-even, then φ−(z) = 0 and violation of Eq. (B15) is enforced.
In the presence of T-odd coordinates, φ−(z) can be different
from zero (see Appendix B 3).

2. Application to Langevin-Vicsek model

The results presented above are valid for general Langevin
stochastic processes, provided that they are additive with an
invertible diffusion matrix. Let us now focus on our system of
ABPs in Eqs. (1)–(2), which models a Langevin-Vicsek flock.

Since we work in the absence of translational diffusion,
the D matrix is noninvertible, irrespectively of whether we
decide to study the process in the (X,�) phase space or in the
(X, V) phase space, where V = ei�. Moreover, the process
is nonadditive in the second case. In the first case the �

variables are not T-even or T-odd under time reversal, but the
time-reversal operator acts by shifting them of an amount π .
Hence the hypotheses that led to the derivation of the above
results are not valid for the polar system of interest. Nonethe-
less, we can still derive from the irreversibility condition a
condition on the asymmetry of the steady-state distribution
ψ (z).

Let us apply the same definition of quasipotential φ(z) and
of its decomposition into T-symmetric and T-antisymmetric
parts given in (B11). Our goal is to show (by contradiction)
that irreversibility implies φ−(z) �= 0. Let us start from the
stationary FPE,

v0

∑
i

e(θi ) · ∇iψ = J
∑

i j

ni j∂θi [sin(θi − θ j )ψ]

+ D
∑

i

∂2
θiθi

ψ, (B17)

and derive the corresponding PDE for the quasipotential φ:

v0

∑
i

e(θi ) · ∇iφ = J
∑

i j

ni j cos(θi − θ j )

+ J
∑

i j

ni j sin(θi − θ j )∂θiφ

+ D
∑

i

∂2
θiθi

φ + D
∑

i

(∂θiφ)2. (B18)

Let us apply the time-reversal operator to both the r.h.s. and
l.h.s. of Eq. (B18) (this operation corresponds to a change
of variable from the state variable z to εz) and split the
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quasipotential into its T-symmetric and T-antisymmetric parts
to rewrite a set of two coupled stationary equations:

v0

∑
i

e(θi ) · ∇iφ− = J
∑

i j

ni j cos(θi − θ j )

+ J
∑

i j

ni j sin(θi − θ j )∂θiφ+

+ D
∑

i

∂2
θiθi

φ+

+ D
∑

i

(∂θiφ+)2 + D
∑

i

(∂θiφ−)2,

(B19)

v0

∑
i

e(θi ) · ∇iφ+ = J
∑

i j

ni j sin(θi − θ j )∂θiφ−

+ D
∑

i

∂2
θiθi

φ− + 2D
∑

i

(∂θiφ+)(∂θiφ−).

(B20)

We now assume that φ−(z) = 0 in Eq. (B19). The resulting
equation for ψ = eφ+ is of the form

0 = J
∑

i j

ni j∂θi [sin(θi − θ j )ψ] + D
∑

i

∂2
θiθi

ψ. (B21)

This equation is solved by the Boltzmann distribution that we
would have in the absence of self-propulsion:

ψ (z) = f (X) exp[−H(z)] ⇐⇒ φ+(z) = H(z)

D
+ c(X),

(B22)
with c(X) an arbitrary constant. Uniqueness of the stationary
solution of a Fokker-Planck equation is guaranteed under
rather general smoothness hypotheses on the solution and drift
term [70]. Let us notice that we crucially exploited the sym-
metry of ni j to write the steady-state solution as Eq. (B22).
We can conclude that the nonequilibrium condition is contra-
dicted: the hypothesis φ−(z) = 0 leads to an absurdum.

In Langevin-Vicsek models, the condition φ−(z) �= 0 cor-
responds to requiring that

ψ (X, V) �= ψ (X, eiπ V); (B23)

i.e., irreversibility constrains an explicit symmetry breaking
under rotations in the internal space of velocities. A possible

way to measure of the degree of irreversibility of the process is
to quantify the asymmetry of the steady-state pdf in Eq. (B23).
However, reconstructing the N-body probability density is
clearly an out-of-reach task, both in numerical simulations
or real experiments. Having some knowledge of the aligning
interaction potential HXY (�; n(X )) allows us to visualize the
asymmetry on a much lower-dimensional space, and to predict
how the second law of thermodynamics (Ṡ � 0) constrains
the realization of such asymmetries.

3. Langevin processes with irreversible drift

The result obtained in the previous section can be extended
to any Langevin process where Arev(z) = 0 and the state vari-
able coordinates have a definite parity under time reversal. It
is sufficient to write the stationary Fokker-Planck equation

∇ · A + A · ∇φ + D∇2φ + D(∇φ)2 = 0 (B24)

and perform a change of variable, identifying z as εz′. Using
the decomposition of A and φ into their T-symmetric and T-
antisymmetric components, and combining (respectively with
a positive and negative sign) the resulting equation with (B24),
one can obtain the two following equations:

∇O · Airr
O + Airr

E · ∇Eφ− + Airr
O · ∇Oφ+

+ D∇2φ+ + D(∇φ+)2 + D(∇φ−)2 = 0, (B25)

∇E · Airr
E + Airr

E · ∇Eφ+ + Airr
O · ∇Oφ−

+ D∇2φ− + 2D∇φ+ · ∇φ− = 0. (B26)

The subscripts in the equations above indicate the parity of the
state variable coordinates, which can be split as z = (zE , zO),
such that εz = (zE ,−zO). Assuming that φ−(z) = 0 (absur-
dum), the sum of (B25) and (B26) yields

∇ · (Airrψ ) + D∇2ψ = 0, (B27)

where we have identified ψ = eφ+ . Providing natural bound-
ary conditions to the FPE (B24), we deduce from (B27) that
Airrψ + D∇ψ = 0. This condition, together with φ−(z) = 0,
implies detailed balance. Therefore irreversibility implies, in
a system where Arev = 0 and the state variables coordinates
are either T-odd or T-even, that φ−(z) �= 0.
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