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Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be
computed in practice. One class of methods uses data simulated with different parameters to infer models of
the likelihood-to-evidence ratio, or equivalently the posterior function. Here we frame the inference task as an
estimation of an energy function parametrized with an artificial neural network. We present an intuitive approach,
named MINIMALIST, in which the optimal model of the likelihood-to-evidence ratio is found by maximizing
the likelihood of simulated data. Within this framework, the connection between the task of simulation-based
inference and mutual information maximization is clear, and we show how several known methods of posterior
estimation relate to alternative lower bounds to mutual information. These distinct objective functions aim at
the same optimal energy form and therefore can be directly benchmarked. We compare their accuracy in the
inference of model parameters, focusing on four dynamical systems that encompass common challenges in
time series analysis: dynamics driven by multiplicative noise, nonlinear interactions, chaotic behavior, and high-
dimensional parameter space.
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I. INTRODUCTION

Model-based Bayesian inference relies on knowing the
probabilistic description of a process. Traditional methods
rely on computing the likelihood of the observed data given
the model parameters in order to maximize or sample from
the posterior. For many models, in particular with multiple
interacting degrees of freedom or hidden variables, the like-
lihood function may be impractical to evaluate. In cases in
which drawing data from the generative process is possible,
simulation-based inference techniques can be used as a pow-
erful alternative approach for characterizing the underlying
model.

Population genetics provides many examples of such prob-
lems. The observed quantities in this context are often based
on sequencing data and are “far” from the quantities described
by population dynamics models: it is possible in principle to
write down likelihood functions, but they typically depend on
a number of hidden variables that need to be marginalized out,
making their evaluation impractical. Approximate Bayesian
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computation (ABC) was first used for posterior inference in
the context of population genetics [1], and since then numer-
ous new approaches to simulation-based inference have been
developed to answer particular questions of phylodynamics
and sequencing data analysis.

More broadly, methods for simulation-based inference can
be organized in two classes [2,3]. In the first class, observa-
tions and simulated data are compared within the inference
process, as in the original ABC approach [4,5]. Methods
belonging to the second class proceed in two stages. First,
they use a large number of simulations to learn an approxi-
mate model for the likelihood function [6,7], or alternatively
the posterior function [8], or the likelihood-to-evidence ratio
[9–11] that is amortized over the simulation examples. The
amortized model is then used to evaluate the likelihood of
observations and to evaluate the posterior for model param-
eters. With theoretical developments in machine learning and
improvements in computing power, this class of algorithms
has seen a renewed interest in recent years.

Here, we model the likelihood-to-evidence ratio as a
Boltzmann factor and use it to infer the corresponding energy
function. We show that the maximum-likelihood estimation of
this factor is equivalent to the maximization of a lower bound
to mutual information between parameters of the simulation
and the simulated data. We exploit this equivalence by testing
different lower bounds to mutual information as objective
functions for simulation-based inference and optimize the
parameters of artificial neural networks to approximate the
posterior. We compare this approach to a recently developed
method [10,11], where a model of the likelihood-to-evidence
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FIG. 1. (a) Distribution of energies of independent and joint pairs (x, θ ). Pairs from the joint distribution have lower energy E , while pairs
from the independent distribution have higher energy, as the majority of these independent samples are relatively unlikely under a joint model.
(b) Schematic of the method. We first sample parameters θ from the prior P(θ ) and then sample observations x from the simulator P(x|θ ) to
obtain pairs (xi, θi ). To generate pairs (xi, θ j ) from the independent distribution, we shuffle the two initial vectors. Both sets are used to infer a
model of energy Eφ by maximizing a log-likelihood in (5) with φ parameters of the artificial neural network used for the inference.

ratio is learned through the optimization of a binary classi-
fier operating on simulated data and which has been shown
to provide state-of-the-art performance on a variety of tasks
[3]. We assess the accuracy of the methods to infer the pa-
rameters of four dynamical systems: the Ornstein-Uhlenbeck
process, which is a multidimensional stochastic process
with analytically tractable posterior; the birth-death process
with multiplicative noise-driven dynamics; the susceptible-
infected-recovered (SIR) model of epidemiology, which is a
simple system with elementary nonlinear interactions; and
the Lorenz attractor, which is a dynamical system that ex-
hibits chaotic behavior. The task of finding the parameters of
stochastic processes by maximizing the likelihood of observed
discrete trajectories is generically difficult [12]. Our experi-
ments encompass the most common challenges in the analysis
of time-series data and together show that simulation-based
inference offers a viable alternative to analytical methods.

II. METHODS

We aim to estimate parameters θ of a model given a set
of data x obtained from stochastic simulation of that model,
P(x|θ ), with a prior P(θ ). First, we reinterpret the likelihood-
to-evidence ratio in terms of a Boltzmann factor,

P(x|θ )

P(x)
= P(x, θ )

P(x)P(θ )
≡ Pjoint(x, θ )

Pindep(x, θ )
= 1

Z
e−E (x,θ ), (1)

where the energy function E (x, θ ) captures how the joint
distribution of data and parameters Pjoint(x, θ ) = P(x|θ )P(θ )
deviates from the independent distribution Pindep(x, θ ) =
P(x)P(θ ), as shown schematically in Fig. 1(a), in which the
pairs (x, θ ) sampled from Pjoint have lower energies than the
samples from Pindep.

The energy E (x, θ ) is generally a nonlinear function de-
scribing the dependence between data and parameters. Z is the
partition function, which ensures that the probability density
P(x, θ ) is normalized. E and Z are each defined up to con-
stants (additive for E , multiplicative for Z). Given the energy
function E (x, θ ), we recover the posterior probability density
P(θ |x) = 1

Z e−E (x,θ )P(θ ).

We will now describe an inference scheme to learn a
model of the energy function from simulated data, relying
on the flexibility of artificial neural networks. Specifically,
we approximate the energy E by a multilayered network Eφ

characterized by a set of parameters φ. Under a given model
Eφ , the joint distribution is approximated as

Pφ

joint(x, θ ) = 1

Zφ
e−Eφ (x,θ )Pindep(x, θ ). (2)

We simulate samples from the joint distribution, denoted
J = {(xi, θi )}N

i=1, by drawing a model parameter from a prior
distribution, θi ∼ P(θ ), and simulating xi ∼ P(x|θi ).

To learn the neural network parameters φ, we need to
maximize the log-likelihood of the simulated sample J under
a given model Eφ :

L(φ;J ) = NEJ
[

ln P φ

joint

]
= N (−EJ [Eφ] − ln Zφ + EJ [ln Pindep]), (3)

where EJ [·] denotes the empirical average over samples
J . The partition function is approximated using importance
sampling on samples drawn from Pindep:

Zφ =
∫

e−Eφ (x,θ )Pindep(x, θ )dx dθ ≈ EI[e−Eφ

], (4)

where EI[·] is the counting measure over a large set I
of independently drawn parameter and data pairs (x, θ ) ∼
Pindep(x, θ ) = P(θ )P(x). In practice, I may be obtained by
shuffling the indices of J [11], I = {(xi, θπ (i) )}, where π is
a random permutation of N elements, possibly multiple times.
Counting all possible combinations, the set I can have maxi-
mal size max(NI ) = N2 − N under a fixed simulation budget.
We denote the relative size of the two sets by k = NI/N .

With this estimate of Zφ , and noting that the last term
of Eq. (3) does not depend on φ, the problem is reduced to
maximizing

M(φ; I,J ) ≡ −EJ [Eφ] − lnEI[e−Eφ

], (5)

which in the infinite data limit constitutes a lower bound
(the Donsker-Varadhan representation) to mutual information

055309-2



MUTUAL INFORMATION MAXIMIZATION FOR AMORTIZED … PHYSICAL REVIEW E 105, 055309 (2022)

I (X ; �) between simulated data and simulation parameters,

M(φ; I,J )
N → ∞=

∫
Pjoint (x, θ ) ln

Pφ

joint (x, θ )

Pindep(x, θ )
dx dθ

= I (X ; �) − DKL
(
Pjoint‖Pφ

joint

)
� I (X ; �), (6)

where DKL(Pjoint‖Pφ

joint ) is the Kullback-Leibler divergence
between the true joint distribution and its model (2). This
bound was extensively studied in [13] as an estimate of the
mutual information from discrete samples drawn from joint
distributions. Here, we will use this representation to learn
the energy function Eφ , which approximates the likelihood-to-
evidence ratio. We refer to this method as mutual information
neural estimation (MINE). Its rationale is presented schemat-
ically in Fig. 1(b).

The connection to mutual information estimation estab-
lished above opens the possibility of employing other empiri-
cal mutual information estimates to perform simulation-based
inference. An alternative lower bound to I (X ; �), first intro-
duced in [14], is the so-called f -divergence representation
(FDIV),

L f (φ; I,J ) ≡ −EJ [Eφ] − EI[e−Eφ−1]. (7)

This estimator defines an alternative objective function to (5)
that can be used to infer an optimal energy model Eφ . Note
that in the limit of infinite data N → ∞, and when the class of
models {Eφ}φ can represent the true energy exactly, the max-
ima of (5) and (7) are both reached at the true value of E (x, θ )
where they give the true value of I (X ; �) (see Appendix A).
Outside of this limit, using one of these objective functions
may prove more beneficial. In particular, the second term
of L f (φ; I,J ) and its gradients may be reliably estimated
by averaging over small batches, unlike the second term of
M(φ; I,J ) because of the logarithm, giving FDIV an ad-
vantage for stochastic gradient descent algorithms. While the
Donsker-Varadhan bound on the mutual information is tighter,
i.e., L f (φ; I,J ) � M(φ; I,J ) holds for N → ∞ [13], it is
unclear whether it might produce a more reliable estimate of
E (x, θ ).

A third alternative is to use the original approach for the
likelihood-to-evidence ratio estimation proposed in [10] and
[11]. The energy E (x, θ ) may be rewritten in terms of a
classifier between the two hypotheses of (x, θ ) originating
from the joint or independent distribution in a mixture Pmix =

1
k+1 Pjoint + k

k+1 Pindep (in [11] k = 1). We define

d (x, θ ) ≡ P(joint|x, θ ) = Pjoint (x, θ )

Pjoint (x, θ ) + kPindep(x, θ )

= 1

1 + kZeE (x,θ )
. (8)

The classifier is parametrized by a neural network, d = dφ ,
and is trained by minimizing the binary cross-entropy,

S(φ; I,J ) = −EJ [ln dφ] − kEI[ln
(
1 − dφ

)
]. (9)

Similarly to objectives (5) and (7), in the N → ∞ limit
and when the class of {dφ}φ models contains the true d , this
cross-entropy is minimized at the true value d (x, θ ). In [15] it

was shown that it can also be used as an estimator of mutual
information by computing the mean logarithm of the predicted
likelihood-to-evidence ratio, EJ [ln (kdφ/(1 − dφ ))]. Indeed,
in the infinite data limit, all three objective functions, (5),
(7), and (9), share the same optimum; see Appendix A. For
high-dimensional random variables, binary cross-entropy (9)
sets a tighter lower bound and a more accurate estimate of
the mutual information than the f -divergence estimator (7)
[15]. However, its accuracy was not directly compared to the
proposed estimator in Eq. (5). We will refer to the inference
approach based on minimizing the binary cross-entropy loss
in Eq. (9) as BCE.

Finally, once an energy model Eφ has been trained by
optimizing M(φ; I,J ), L f (φ; I,J ), or S(φ; I,J ) over φ,
the posterior of parameters given an observation x may be
calculated as P(θ |x) = (1/Zφ )e−Eφ (x,θ )P(θ ). We note that if
the prior is changed, the energy function needs to be re-
inferred. When θ is of high dimension, scanning the posterior
for all possible values of θ may be impractical. In that
case, we generate samples of θ from the posterior using a
Markov-chain Monte Carlo method with Metropolis-Hasting
acceptance probability:

ρ(θ −→ θ ′) = min

(
1,

q(θ ′|θ )P(θ ′)
q(θ |θ ′)P(θ )

e−[Eφ (x,θ ′ )−Eφ (x,θ )]

)
,

(10)

with q an ergodic Markov transition probability in the parame-
ter space. This procedure generalizes in a straightforward way
to the case of multiple observations drawn with the same set
of parameters.

III. RELATIONS TO OTHER WORK

The presented methods are related to several recent ap-
proaches. For completeness, we discuss the similarities and
differences between the presented and other methods.

A. Posterior inference methods

An alternative to likelihood-to-evidence ratio estimation
(RE) is the framework of neural posterior estimation (NPE),
which consists in fitting a conditional density estimator
directly to the posterior. Several recently developed NPE
algorithms [16–18] have been compared with the BCE method
in [3] as part of a public benchmark of ABC, NPE, and RE
methods across several simulation-based inference tasks. The
comparison reveals that there is no single best algorithm, i.e.,
NPE and RE approaches yield similar performance and con-
sistently outperform ABC. The benchmark we present below
is limited to different RE methods and compares alternative
loss functions.

B. Noise contrastive estimation

In [19], the NPE and the RE methods have been presented
as two instances of a more general scheme, which the authors
termed as noise contrastive estimation. The learning algorithm
introduced in [19] is based on a multisample loss function that
allows interpolating between the two approaches. Importantly,
Ref. [19] also suggests a link between the field of mutual
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FIG. 2. Example trajectories (a,c,e,g) and posterior inference (b,d,f,h) for Ornstein-Uhlenbeck (a,b), birth-death (c,d), SIR (e,f), and Lorenz
attractor (g,h). Trajectories are simulated with the parameter marked in red on the posterior plots. Circles indicate the discrete observations
used for inference. Posteriors were estimated over 10 trajectories.

information estimation and simulation-based inference since
the multisample loss function is also a lower bound to I (X ; �).
Here we formalize this link and test its applicability on a va-
riety of examples by proposing two new methods (MINE and
FDIV) for likelihood-to-evidence ratio estimation. We detail
how our approach fits within the noise contrastive estimation
scheme in Appendix B.

C. Learning optimal experimental designs
and sufficient statistics

An important direction of research in simulation-based
inference aims at finding experimental designs that are most
informative about the model parameters [20,21]. In [22], an
optimal design is found by maximizing mutual information
between design choice and target variable of interest in the
experiment. This task extends the original RE framework to
optimize over an additional hidden variable, namely the de-
sign, that specifies the simulation setup.

In [23] mutual information is maximized to build sufficient
summary statistics of the simulated data. This technique al-
lows for automatically learning an optimal representation of
the data without expert knowledge of process-specific observ-
ables. The statistics obtained this way can then generically
be parsed as input to simulation-based inference methods.
While the procedure to find summary statistics is similar to
the MINE and BCE methods described here, the algorithm of
[23] does not exploit the energy model for posterior inference.
Instead, the model is discarded and the statistics are inde-
pendently utilized with another simulation-based inference
method.

Concurrently to the first version of this paper, a new devel-
opment in this line of research [24] has been proposed. The

authors compare different mutual information lower bounds
for Bayesian experimental design and observe a consistent
trend with our findings, namely that the BCE method performs
overall better than other estimators. It is an independent vali-
dation of our results using a closely related task.

IV. EXPERIMENTS

We set out to examine the three presented methods for
estimating the likelihood-to-evidence ratio (MINE, FDIV, and
BCE) to infer the parameters of simple dynamical mod-
els from discrete samples of their trajectories. We chose
four contexts that together encompass the range of difficul-
ties in the inference of model parameters: (i) the stochastic
birth-death process, (ii) the epidemiological susceptible-
infected-recovered (SIR) process, (iii) the multidimensional
Ornstein-Uhlenbeck process, and (iv) the chaotic system of
Lorenz attractor. Example trajectories of each model are
shown in Fig. 2.

A. Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process is a multidimen-
sional Markov process driven by additive Gaussian white
noise. It is applied in many branches of science, notably to
describe the velocity of a Brownian particle [25], the fluc-
tuations of interest rates [26], or the evolution of continuous
phenotypic traits [27,28]. The trajectories are a solution of a
stochastic differential equation:

dx = −γ (x − μ)dt +
√

2σ dW, (11)

where μ is the stationary mean and γ is the damping matrix,
assumed to be symmetric. W stands for the multidimensional

055309-4



MUTUAL INFORMATION MAXIMIZATION FOR AMORTIZED … PHYSICAL REVIEW E 105, 055309 (2022)

Wiener process, and σ is the noise amplitude. We use the
Euler-Maruyama integration scheme to obtain the numerical
solutions of this equation [29]. The corresponding Fokker-
Planck equation for this process can be solved to obtain the
true posterior (see Appendix C).

In one dimension, we infer the mean μ and the noise
strength σ , setting γ = 1 and using uniform priors P(μ) =
U (−10, 10) and P(σ ) = U (0, 2).

To study how the performance of each method scales with
dimension, for 1 � d � 5, we fix μ = 0, σ = I, where I is the
identity matrix, and we infer the damping matrix parametrized
as γ = I + εg, where g is a Gaussian orthogonal matrix and
ε < 1, which ensures that the damping matrix is positive
definite (see Appendix C for more details). Since γ is sym-
metric, in the d-dimensional case we have

(d
2

)
parameters to

infer. The prior is given by the Gaussian orthogonal ensemble
distribution density, P(g) ∝ exp ( − d Tr(g2)/4).

B. Birth-death process

The birth-death process is a discrete one-dimensional
Markov process with multiplicative demographic noise. The
number of individuals n is subject to variation due to
stochastic birth and death events occurring at rates nλ and nδ,
respectively,

n
nλ−→ n + 1, n

nδ−→ n − 1. (12)

We use the Gillespie algorithm to sample trajectories from
this process [30]. We parametrize the process with the av-
erage exponential drift α = λ − δ and the noise timescale
β = λ + δ. We use uniform priors for both of these variables:
P(α) = U (−2, 2) and P(β ) = U (2, 20).

C. SIR model

The SIR model is a staple of epidemiological modeling.
Any member of the susceptible population S can be infected
at a rate β upon contact with one of I infected individuals. The
infected individuals can become resistant R at a rate γ :

S + I
β−→ 2I, I

γ−→ R. (13)

We simulate the trajectories of the SIR model using the
Gillespie algorithm [30]. We infer the rates β and γ under
uniform priors P(β ) = P(γ ) = U (0, 1) given samples from
the (S, I ) trajectories.

D. Lorenz attractor

The Lorenz system is a three-dimensional chaotic system
governed by the equations

ẋ = σ (y − x), ẏ = x(ρ − z) − y, ż = xy − βz. (14)

We simulate this deterministic process starting from a random
position (x0 + η, y0, z0), where η is the noise in the initial po-
sition drawn from a uniform distribution, η ∼ U (−0.1, 0.1).
We fix the parameters σ = 10 and β = 8/3 and set out to
infer ρ. The ensemble of trajectories starting in the vicinity
of x0 diverge with the characteristic time set by the inverse of
the largest Lyapunov exponent of the system λ = λ(ρ). We
start sampling from the trajectories at a random initial time

drawn from a Gamma distribution, t0 ∼ �(k = 5, θ = 2). We
then take five samples from each trajectory at time windows
that are larger than the characteristic time for chaotic diver-
gence, �t = 2λ−1. We set λ � 0.905, which is the Lyapunov
exponent for ρ = 28, a transition point where some but not
all the solutions of the Lorenz system are chaotic. We infer
the parameter ρ in a chaotic regime using a uniform prior
P(ρ) = U (30, 40).

The artificial neural networks used for all three
methods were multilayer perceptrons [31] with two hidden
layers and a hyperbolic tangent activation function. This
architecture choice was found to be expressive enough across
tasks, and, thanks to its simplicity, we could perform a
well-grounded comparison of the three methods without
advanced regularization techniques (see Appendix D for
details on hyperparameters choices). The methods were
implemented using TENSORFLOW [32,33] with extensive use
of Numpy [34] and Scipy [35] libraries.

V. RESULTS

Given enough data and a powerful enough neural network,
we expect the optima of the objective functions I , L f , and S to
converge, and the estimated energy function should approach
the true value.

To confirm the validity of the proposed methods, in the first
set of experiments we use a large number of simulations to
study the convergence of the posterior functions. To this end,
we choose a hypothesis θ∗ and simulate M trajectories, x1:M =
{xm}M

m=1, xm ∼ P(x|θ∗) with M = 2 for SIR, and M = 5 for
the other tasks. We evaluate the posteriors

P̂l (θ |x1:M ) = 1

(Zφ

l )M
exp

[
−

M∑
m=1

Eφ

l (xm, θ )

]
P(θ ), (15)

with l indexing one of the three methods (MINE, FDIV, or
BCE) and φ is the optimal one for each method (we dropped
the explicit dependency on φ in P̂l for ease of notation). The
posteriors converge when the amortized inference is done on
a training set with at least N = 107 samples (and 107 samples
for validation); see Fig. 3. We define a reference posterior
P∞(θ |x1:M ) ≡ 〈P̂l (θ |x1:M )〉l , obtained with N = 107 as the
average over three estimators. In the case of the Ornstein-
Uhlenbeck process, where the true posterior P(θ |x1:M ) can be
calculated analytically, P∞(θ |x1:M ) agrees with the analytical
prediction. This first result confirms the validity of our ap-
proach.

With reducing sample size N , the amortized posteriors
differ. To study the performance of the three methods under
different simulation budgets N for each task, we simulate
Ntot = 2 × 107 samples J = {(xi, θi )}. We perform the in-
ference of the amortized likelihood-to-evidence ratio with
varying simulation budgets, where both the training and the
validation data are equal-sized subsamples of J with N ∈
{104, 105, 106}. Inference and comparison are performed 10
times on independent subsamples of J . To obtain samples
from the independent set I, we shuffle the joint samples k = 5
times, and so NI = 5N . Larger shuffled data NI can improve
the inference but at the cost of computing power, which sets a
tradeoff between performance and training time.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 3. Convergence of the posteriors for Ornstein-Uhlenbeck (a,b), birth-death (c,d), SIR (e,f), and Lorenz attractor (g). To evaluate the
posteriors, we first choose a reference hypothesis θ∗: for Ornstein-Uhlenbeck μ∗ = 5 and σ ∗ = 1, for birth-death β∗ = 10 and α∗ = 0.2, for
SIR β∗ = 0.6 and γ ∗ = 0.2, and for Lorenz attractor ρ∗ = 35. We show posteriors P∞(θ |x1:M ) calculated using models trained with N = 107

trajectories. For the Ornstein-Uhlenbeck process, the exact posterior density P(θ |x1:M ) is also shown.

We compare the accuracy of the three inference methods
(MINE, FDIV, BCE) for the four tasks (OU, birth-death, SIR,
Lorenz) based on the three following metrics.

A. Global comparison

The first metric used for the benchmark is the mutual
information given a density estimator, computed with Eq. (5).
For each N , it is evaluated on test data composed of the re-
maining Ntot − N samples. Unlike the other two comparisons
(see below), it is a global metric that tests the approximation
of the likelihood-to-evidence ratio over all θ and x values. For
this reason, we use it to perform hyperparameter tuning for
each task and each objective with N = 105; see Appendix D.

For all four tasks, the value of the estimated mutual
information grows with the simulation budget and yields com-
parable performances for the three methods (Fig. 4, a, d, g,
and j). For the Ornstein-Uhlenbeck process, the BCE method
reaches consistently higher values of mutual information. For
the Lorenz attractor, the MINE method is significantly outper-
formed by the other methods in the low data limit (N = 104).

B. Posterior comparison

The objective of simulation-based inference is to find the
posterior distribution over model parameters. To characterize
the inference accuracy as a function of the simulation budget
N and the method l , we evaluate the Jensen-Shannon
divergence between the inferred and the reference
posterior DJS(P∞(θ |x1:M ), P̂N

l (θ |x1:M )) [where DJS(p, q) =
(1/2)

∫
[p(x) ln (p(x)/m(x)) + q(x) ln (q(x)/m(x))]dx with

m(x) = [p(x) + q(x)]/2], by scanning through the parameter

space with the prior P(θ ). A larger Jensen-Shannon
divergence indicates a larger deviation between the inferred
posterior and the reference (i.e., a lower performance).

All methods show comparable performances, and the
Jensen-Shannon divergence decays as a function of the sim-
ulation budget N (Fig. 4 b, e, h, and k, and Fig. 5 for
the Ornstein-Uhlenbeck process with d � 1). At N = 104,
the accuracy of the posterior inference is decreased for all
objective functions, as reflected by the large variance of
the DJS. In the case of the Lorenz attractor, this simulation
budget is also insufficient for the MINE method, which per-
forms significantly worse than the classifier-based (BCE) and
f -divergence (FDIV) estimators.

Figure 5 presents a comparison of the objective func-
tions for the inference of the damping matrix elements in
the high-dimensional Ornstein-Uhlenbeck process. We com-
pare the performance in terms of the estimated posterior’s
divergence from the analytical prediction. We compute the
Jensen-Shannon divergence independently for the marginal
posterior distributions over each element of the damping
matrix [a total of

(d
2

)
unique elements in dimension d].

We present the results independently for diagonal and off-
diagonal elements of the matrix γ [in dimension d there are d
diagonal and d (d − 1)/2 off-diagonal elements].

The efficacy of the three methods is comparable and the
average performance does not significantly decrease up to
d = 5, for which we estimate 15 elements of matrix g. At
the same time, the variation in the Jensen-Shannon diver-
gence increases with dimension as the inference task becomes
more difficult. This is particularly pronounced for the MINE
method in dimensions 4 and 5 at low (N = 104) as well as in-
termediate (N = 105) simulation budgets. In these instances,

055309-6



MUTUAL INFORMATION MAXIMIZATION FOR AMORTIZED … PHYSICAL REVIEW E 105, 055309 (2022)
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(c)
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(d)
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(e)
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FIG. 4. Benchmarking of the methods. We compare the three objectives M, Eq. (5) (MINE), Lf , Eq. (7) (FDIV), and S, Eq. (8) (BCE) for
three different metrics. We perform 10 replicates of the inference and comparison for simulation budgets N ∈ {104, 105, 106} for four systems:
Ornstein-Uhlenbeck (a,b,c), birth-death (d,e,f), SIR (g,h,i), and Lorenz attractor (j,k,l). In the first row, we compare the mutual information on
held out test data using Eq. (5) with the estimated Eφ . For the following two metrics, we need to instead choose a hypothesis θ∗; see Fig. 3
for the exact values. In the second row, we compare the Jensen-Shannon divergence DJS(P∞(θ |x1:M ), P̂N

l (θ |x1:M )) between the reference and
inferred posteriors. In the last row, we compare the Jensen-Shannon divergence DJS(P(x|θ∗), P̂N

l (x|θ∗)) using sampled trajectories from the
simulator P(x|θ∗) and the inferred distribution P̂l (x|θ∗).

using the f -divergence objective function yields the best per-
formance.

C. Likelihood comparison

The third metric is the Jensen-Shannon divergence
DJS(P(x|θ∗), P̂N

l (x|θ∗)) between the true and approximated
likelihood for a given model θ . This DJS cannot be directly
evaluated by summing over x, because it is typically of high
dimension. We thus rely on samples from these two distri-
butions and infer an additional classifier to estimate DJS; see
Appendix E.

The performance of the three methods is comparable
(Fig. 4, c, f, i, and l). For the Ornstein-Uhlenbeck process,
the BCE infers more accurate likelihood functions at N = 104

and 105 but it is outperformed by MINE at higher simulation
budgets.

The results of the benchmark shown in Fig. 4 suggest
that all estimators show reliable performances across different
tasks and simulation budgets. While the first metric is global
and the two other metrics are local, they draw a consistent
picture. A higher simulation budget enhances the performance
of all methods. The BCE method tends to perform better at the
lowest simulation budget. All three methods perform similarly
in the middle and high data regimes.

VI. CONCLUSION

We analyzed the problem of inferring an amortized estima-
tor for the likelihood-to-evidence ratio over model parameters,
using simulated data. We showed that this inference can
be performed by maximization of the mutual information
between simulated data and parameters of the model. This for-
mulation captures an intuition that inference can be performed
when we can extract the dependence between parameters and
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

N

FIG. 5. The Ornstein-Uhlenbeck process in d � 1. We compare the three objective functions M (MINE), Lf (FDIV), and S (BCE) for
dimension d = 1, 2, 3, 4, 5. We perform 10 replicates of the inference with simulation budgets N = 104, 105, 106 for changing dimension
d = 1, 2, 3, 4, 5. We compare the posterior with the analytical prediction for a hypothesis (g∗)i j = −1. We compute the Jensen-Shannon
divergence DJS(P(θ |x1:M ), P̂N

l (θ |x1:M )) between the true and inferred posteriors for each element of the damping matrix γ independently. We
show the divergence for diagonal (a–e) and off-diagonal terms (f–i).

observed data, as measured by the mutual information. Our
formalism opens up possibilities for using algorithms and
techniques developed in the context of mutual information
estimation [36] for inverse problems.

The likelihood function we propose is equivalent to the
mutual information bound analyzed in [13]. However, while
in [13] the focus is on the estimation of the absolute value of
this quantity, we are interested in the inferred energy func-
tion that can be used to evaluate the posterior distribution
for model parameters. Previous work that used classifiers for
simulation-based inference [10,11] also fits naturally within
our framework since logistic regression is linked to mutual
information estimation [15]. The methods we studied rely on
two lower bound estimators of mutual information, which are
based on (i) the Donsker-Varadhan [13], and (ii) f -divergence
representations of the Kullback-Leibler divergence [14]. It
would be interesting to explore other known mutual informa-
tion estimators for simulation-based inference [36].

We showed that the mutual information-based methods
(MINE and FDIV), implemented in flexible neural networks,
can reliably infer the posterior of the parameters and give con-
sistent results with the previously proposed classifier-based
technique (BCE) [10,11] when the simulation budget is suf-
ficient. We benchmarked the three approaches and found that
their performances are comparable in the intermediate data
regime, while in the low data regime the classifier-based
method performs consistently better. The main limitation of
the two proposed objective functions M and L f is that they
require large simulation budgets for accurate inference.

Our choice to implement the neural network as a multi-
layer perceptron with two hidden layers was motivated by
having a simple and reliable architecture to better focus
on the relative performance of the different objective func-
tions. For the specific task of inference of model parameters
from discrete samples of trajectories, absolute performance
could be increased by choosing network architectures adapted

to the data structure such as convolutional and recurrent
layers.

Existing approaches to simulation-based inference, such
as ABC, suffer from the need to define ad-hoc summary
statistics to be matched between data and model. An impor-
tant property of mutual information is its invariance upon
the reparametrization of its variables. This enables inference
and comparison of different parametrizations of the observed
data, as different choices can be evaluated using the absolute
value of the mutual information. A specific application that
could be interesting to explore is inference for population
genetics models, where the choice of summary statistics to
use for ABC analysis has always been critical, and the ability
to flexibly compare different parametrization choices greatly
improves performance, as shown in [23]. Another possibility
would be to explore more principled regularization techniques
such as the information bottleneck method [37]. This ap-
proach could be used to infer summary statistics of the data
that are maximally informative of the parameters of the model.
Then the summary statistics could be added as additional
variables for the observations of related tasks, such as model
extensions, in a transfer learning fashion.

In conclusion, our work helps to clarify the link between
mutual information estimation and simulation-based infer-
ence. We believe that this connection can be a fruitful source
of improved methods for amortized inference.

The code for the algorithms presented in this paper is
available in Ref. [38].
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APPENDIX A: DIFFERENT OBJECTIVE FUNCTIONS SHARE AN OPTIMUM

We study the following objective functions:

M(φ; I,J ) = −EJ [Eφ] − lnEI[e−Eφ

], (A1)

L f (φ; I,J ) = −EJ [Eφ] − EI[e−Eφ−1], (A2)

S(φ; I,J ) = −EJ [ln dφ] − kEI[ln
(
1 − dφ

)
]

= −EJ

[
ln

1

1 + kZeEφ

]
− kEI

[
ln

k

k + Z−1e−Eφ

]
. (A3)

In the infinite data limit, the empirical averages converge and we can rewrite all objectives as functional of the energy model:

M(Eφ ) = −
∫

Eφ (x, θ )Pjoint (x, θ ) dx dθ − ln
∫

e−Eφ (x,θ )Pindep(x, θ ) dx dθ, (A4)

L f (Eφ ) = −
∫ (

Eφ (x, θ )Pjoint (x, θ ) + e−Eφ (x,θ )−1Pindep(x, θ )
)

dx dθ, (A5)

S(Eφ ) = −
∫ (

ln
1

1 + kZeEφ (x,θ )
Pjoint (x, θ ) + k ln

k

k + Z−1e−Eφ (x,θ )
Pindep(x, θ )

)
dx dθ. (A6)

In this limit, the three optima of the objective functions are equivalent and recover the likelihood-to-evidence ratio. To see this,
we take the functional derivative with respect to the energy model Eφ ,

δM

δEφ (x, θ )
= −Pjoint (x, θ ) + 1∫

e−Eφ (x,θ )Pindep(x, θ ) dx dθ
e−Eφ (x,θ )Pindep(x, θ ), (A7)

δL f

δEφ (x, θ )
= −Pjoint (x, θ ) + e−Eφ (x,θ )−1Pindep(x, θ ), (A8)

δS

δEφ (x, θ )
= k

(
ZeEφ (x,θ )Pjoint (x, θ ) − Pindep(x, θ )

1 + kZeEφ (x,θ )

)(
1 + δ ln Z

δEφ (x, θ )

)
, (A9)

and we find that they vanish at energies EM , E f , and ES , respectively:

EM = − ln
Pjoint (x, θ )

Pindep(x, θ )
− ln Z, (A10)

E f = − ln
Pjoint (x, θ )

Pindep(x, θ )
− 1, (A11)

ES = − ln
Pjoint (x, θ )

Pindep(x, θ )
− ln Z. (A12)

All three are equal to the logarithm of the likelihood-to-evidence ratio up to constant factors. We note that the second derivatives
are different in the three cases, and therefore convergence to the optima EM , E f , and ES will in general be different.

APPENDIX B: NOISE CONTRASTIVE ESTIMATION AND
MUTUAL INFORMATION

In this Appendix, we show how our work fits within the
framework of noise contrastive estimation (NCE) and how
it relates to the existing contrastive learning approaches to
simulation-based inference. The NCE methods estimate a
probability density p(y) by comparison to a reference noise
distribution q(y) [39,40]:

p(y) = 1

Z
e−E (y)q(y), (B1)

which reduces the problem to approximating the density ra-
tio. The original method [39] consists of the inference of

the density ratio model using logistic regression (minimizing
binary cross entropy) on samples from both distributions,
p, q. This framework encompasses the likelihood-to-evidence
ratio inference problem where p(y) = Pjoint(x, θ ) and q(y) =
Pindep(x, θ ) and one minimizes S(φ; I,J ) to find Eφ .

An alternative approach proposed in the noise contrastive
estimation literature [41,42] focuses on the estimation of con-
ditional probability functions,

p(y|z) = 1

Z (z)
e−E (z,y)q(y), (B2)

where now the partition function explicitly depends on the
conditioned variable z. The new density ratio can be inferred
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by optimizing the so-called ranking objective [41]. This ob-
jective function is typically used to rank a positive sample
from the target distribution p(y|z) above k samples from the
reference noise q(y) for the input z [42].

In simulation-based inference, this family of methods has
been used for posterior estimation, where p(y|z) = P(θ |x) is
the unknown posterior and q(y) = P(θ ) is the prior. In our
notations, the ranking objective function reads

Lr (φ;J ) = EJ

[∫
ln

(
e−Eφ (x,θ )

e−Eφ (x,θ ) + ∑k
j=1 e−Eφ (x,θ j )

)
k∏

i=1

P(θi )dθi

]
. (B3)

This method is known as the sequential neural posterior es-
timation (SNPE) proposed in [18], building on the work in
Refs. [16,17]. It is useful to note that the ranking loss Lr (φ;J )
has also been used to construct a high-bias and low-variance
estimator of mutual information [19,43].

Reference [19] proposes that also the binary classification
approach of [11] is a special case of the above inference for
k = 1. However, the ranking objective Lr (φ;J ) with k = 1
is distinct from S(φ; I,J ) and the two methods cannot be
identified as one. In Ref. [42], the cross-entropy has been com-
pared to the ranking loss and shown to generically outperform
it in the context of neural language processing.

APPENDIX C: THE ORNSTEIN-UHLENBECK PROCESS IN
DIMENSION d

The trajectories x(t ) are solutions to a stochastic differen-
tial equation,

dx = −γ (x − μ)dt +
√

2σ dW, (C1)

where x is a d-dimensional coordinate, μ is its long-term
average, γ is a d × d damping matrix, σ is the noise strength,
and W is a d-dimensional Wiener process. From a trajec-
tory x(t ) we sample n values every �t so that x = {xi =
x(i�t )}. To find the analytical expression for the likelihood of
these observations, we write the corresponding Fokker-Planck
equation for the density P = P(xi, t + �t |xi−1, t ),

dP

dt
= −∇[γ (x − μ)P] + σσ T ∇2P, (C2)

solved with a multivariate Gaussian distribution density

P(xi, t + �t |xi−1, t ) = 1√
(2π )d det �

e− 1
2 (xi−〈xi〉)T �−1(xi−〈xi〉),

(C3)
with mean

〈xi〉 = e−γ�t xi−1 + (1 − e−γ�t )μ, (C4)

and a covariance matrix given by

� = 2
∫ �t

0
ds eγ (s−�t )σσ T eγ T (s−�t ). (C5)

Both expressions simplify when we set σ = I and μ = 0. For
symmetric γ (γ = γ T ) we can find an orthogonal eigenbasis
r(γ ) in which the damping matrix is diagonal,

γ = r(γ ) � r(γ )T , (C6)

where � is a diagonal matrix and r(γ )r(γ )T = I. The covari-
ance matrix is also diagonal in this basis, which allows us to

compute the integral when σ = I so that

�(�t ) = r(γ ) �−1(1 − e2��t )r(γ )T . (C7)

To ensure that γ is symmetric and positive definite (which is
required so that the trajectories do not diverge and a steady
state exists), we choose the following parametrization:

γ = I + ε(d )g, (C8)

where g is a random matrix from the Gaussian orthogonal
ensemble with density

P(g) ∝ e− d
4 Tr(g2 ). (C9)

The eigenvalues of g can be both positive and negative; in
particular, the lowest eigenvalue is distributed according to the
Tracy-Widom law with mean μg = √

2d and standard devia-
tion of σg = √

2d1/6. Choosing ε(d ) = (μg + 2σg)−1 ensures
that the eigenvalues of γ are all positive with good confidence.

APPENDIX D: NEURAL NETWORK ARCHITECTURE
AND LEARNING HYPERPARAMETERS

The M(φ; I,J ) objective function is invariant with respect
to a global shift in energy, M(Eφ + E0) = M(Eφ ), since any
shift E0 can be incorporated in the partition function Z to
obtain the same likelihood-to-evidence ratio. We choose an
energy gauge in which the “free energy” vanishes, − ln Z = 0.
As suggested in [44], we do so by adding a regularization term
of the form −λZ (ln Z )2 to the likelihood function. Since the
constraint Z = 1 may be satisfied by adding the right constant
E0 to the energy function, this regularization does not affect
the result of the optimization. We fixed the strength of this
term to λZ = 10−3.

To perform the benchmark of the methods, we used the
same neural network architecture for all three objective func-
tions: a multilayer perceptron [31] with two hidden layers
of 50 nodes each. Each node processes a linear combination
of the inputs and adds a constant term (bias). A hyperbolic
tangent activation function is then applied to the result of
this linear map. Between the second hidden layer and the
output of the network, we do not apply the activation function.
We implemented L2 regularization on network weights, with
regularization strength λ2. We optimized the network weights
using stochastic gradient descent and the RMSprop [45] op-
timization algorithm with learning rate lr and a size of mini
batches b.

We tuned the hyperparameter by inference of five repli-
cate models on N = 105 training data for each objec-
tive function and combination of hyperparameters, λ2 ∈
{10−4, 10−5, 10−6}, lr ∈ {10−2,10−3,10−4}, and b∈ {103,104}.
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(a) (b) (c) (d)

FIG. 6. We compare the three objective functions M (MINE), Lf (FDIV), and S (BCE) using the area under the receiver operating
characteristic (AUROC) of a classifier trained to distinguish samples from the simulator P(x|θ∗) and samples from the inferred estimators
P̂(x|θ∗) for a specific hypothesis θ∗. AUROCs closer to 1/2 mean that the model is performing well, as its samples are indistinguishable from
samples from the true distribution. This metric gives a consistent picture with respect to the DJS metric presented in the main text (Fig. 4, c, f,
i, and l).

We evaluated the mutual information estimate M(φ; I,J ) on
N = 105 independent samples (test set). For each of the three
methods, we chose hyperparameters for which the mutual
information was highest.

APPENDIX E: METHODS FOR LIKELIHOOD
COMPARISON

We outline here the method for calculating the
Jensen-Shannon divergence between two distributions for
which an analytical density is not known, but instead we can
sample from the two distributions. This will be the case for
the likelihood comparison where we will compare the true
likelihood and an inferred model of the likelihood.

We generate M = 5 × 104 samples {x∗
m}M

m=1 ∼ P(x|θ∗)
from the true simulator. To generate samples for the inferred
estimators {x̂m}M

m=1 ∼ P̂N
l (x|θ∗), we perform rejection sam-

pling on samples from the marginal probability P(x). To
produce samples from P(x), we discard the parameters θ

from the samples {(xi, θi )}Ntot
i=1. Rejection sampling is based on

the identity P(x|θ ) = P(x)Z−1e−E (x,θ ), where the likelihood-
to-evidence ratio is approximated by an estimator. For each
simulation budget N and method l we generate {x̂m}M

m=1
samples by rejection sampling with acceptance probability
e−Eφ

l /Zφ

l . In the last row of Fig. 4, the methods are compared
using this metric.

By mixing the samples from P(x|θ∗) and P̂N
l (x|θ∗) in

equal proportion, we construct an ensemble of samples from
Pmix(x|θ∗) = 1

2 [P(x|θ∗) + P̂N
l (x|θ∗)]. We then train two clas-

sifiers, one between samples from P(x|θ∗) and Pmix(x|θ∗), and
the second between samples from Pmix(x|θ∗) and P̂N

l (x|θ∗).
We again exploit the fact that an optimal classifier is the
ratio of the two likelihoods, and we can read off the two cor-
responding Kullback-Leibler divergences, DKL(P||Pmix) and
DKL(P̂N

l ||Pmix), from its estimate (5). The value of the Jensen-
Shannon divergence is then the average

DJS(P||P̂N
l ) = 1

2

(
DKL(P||Pmix) + DKL(P̂N

l ||Pmix)
)
. (E1)

An alternative measure of performance of the model of the
likelihood is the AUROC characteristic of the optimal classi-
fier between samples from the true and an inferred likelihood,
which we will use below. The best models should result in
indistinguishable sets of samples for which AUROC = 1/2. A
failure to capture the mutual information between parameters
θ and simulated data x makes the two sets distinguishable and
AUROC = 1.

APPENDIX F: SUPPLEMENTARY BENCHMARK RESULTS

Figure 6 presents a comparison of the objective functions
applied to the four tasks: the Ornstein-Uhlenbeck process in
dimension 1 (A), the birth-death process (B), the SIR process
(C), and the Lorenz attractor (D), using the AUROC between
the true and estimated likelihood as a measure of performance.
The results are consistent with the Jensen-Shannon divergence
metric presented in the main text (Fig. 4).

[1] S. Tavaré, D. J. Balding, R. C. Griffiths, and P. Donnelly, Infer-
ring coalescence times from DNA sequence data, Genetics 145,
505 (1997).

[2] K. Cranmer, J. Brehmer, and G. Louppe, The frontier of
simulation-based inference, Proc. Natl. Acad. Sci. (USA) 117,
30055 (2020).

[3] J.-M. Lueckmann, J. Boelts, D. S. Greenberg, P. J. Gonçalves,
and J. H. Macke, Benchmarking simulation-based inference,
Proceedings of The 24th International Conference on Artifi-
cial Intelligence and Statistics, edited by A. Banerjee, and K.
Fukumizu, Vol. 130 (PMLR, 2021), pp. 343–351.

[4] M. A. Beaumont, W. Zhang, and D. J. Balding, Approximate
Bayesian computation in population genetics, Genetics 162,
2025 (2002).

[5] S. A. Sisson, Y. Fan, and M. A. Beaumont, Handbook of
Approximate Bayesian Computation (Chapman and Hall/CRC,
New York, 2018).

[6] S. N. Wood, Statistical inference for noisy nonlinear ecological
dynamic systems, Nature (London) 466, 1102 (2010).

[7] G. Papamakarios, D. Sterratt, and I. Murray, Sequential neural
likelihood: Fast likelihood-free inference with autoregressive
flows, in Proceedings of the Twenty-Second International

055309-11

https://doi.org/10.1093/genetics/145.2.505
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1093/genetics/162.4.2025
https://doi.org/10.1038/nature09319


GIULIO ISACCHINI et al. PHYSICAL REVIEW E 105, 055309 (2022)

Conference on Artificial Intelligence and Statistics, edited by
K. Chaudhuri and M. Sugiyama, Vol. 89 of Proceedings of
Machine Learning Research (PMLR, 2019), pp. 837–848.

[8] D. Rezende and S. Mohamed, Variational inference with nor-
malizing flows, in Proceedings of the 32nd International
Conference on Machine Learning, edited by F. Bach and D.
Blei, Vol. 37 of Proceedings of Machine Learning Research
(PMLR, 2015), pp. 1530–1538.

[9] G. L. Kyle Cranmer and J. Pavez, Approximating likelihood
ratios with calibrated discriminative classifiers (unpublished).

[10] O. Thomas, R. Dutta, J. Corander, S. Kaski, and M. U.
Gutmann, Likelihood-free inference by ratio estimation,
Bayesian Analysis, Vol. 17 (2021), pp. 1–31.

[11] J. Hermans, V. Begy, and G. Louppe, Likelihood-free MCMC
with amortized approximate ratio estimators, 2020, Proceed-
ings of the 37th International Conference on Machine Learning,
edited by H. Daumé III and A. Singh Vol. 119 of Pro-
ceedings of Machine Learning Research (PMLR, 2020),
pp. 4239–4248.

[12] F. Ferretti, V. Chardès, T. Mora, A. M. Walczak, and I. Giardina,
Building General Langevin Models from Discrete Datasets,
Phys. Rev. X 10, 031018 (2020).

[13] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A.
Courville, and R. D. Hjelm, MINE: Mutual information neural
estimation, 2018, Proceedings of the 35th International Con-
ference on Machine Learning, edited by J. Dy and A. Krause,
Vol. 80 of Proceedings of Machine Learning Research (PMLR,
2018), pp. 531–540.

[14] X. Nguyen, M. J. Wainwright, and M. I. Jordan, Estimating
divergence functionals and the likelihood ratio by convex risk
minimization, IEEE Trans. Inf. Theor. 56, 5847 (2010).

[15] S. Mukherjee, H. Asnani, and S. Kannan, CCMI: Classifier
based Conditional Mutual Information Estimation, Proceedings
of the 35th Uncertainty in Artificial Intelligence Conference,
edited by R. Adams and V. Gogate (UAI 2019).

[16] G. Papamakarios and I. Murray, Fast ε-free inference of simu-
lation models with bayesian conditional density estimation, in
Advances in Neural Information Processing Systems, edited by
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(Curran Associates, New York, 2016), Vol. 29.

[17] J.-M. Lueckmann, P. J. Goncalves, G. Bassetto, K. Öcal, M.
Nonnenmacher, and J. H. Macke, Flexible statistical inference
for mechanistic models of neural dynamics, in Advances in Neu-
ral Information Processing Systems, edited by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Curran Associates, New York, 2017), Vol. 30.

[18] D. Greenberg, M. Nonnenmacher, and J. Macke, Auto-
matic posterior transformation for likelihood-free inference, in
Proceedings of the 36th International Conference on Machine
Learning, edited by K. Chaudhuri and R. Salakhutdinov, Vol. 97
of Proceedings of Machine Learning Research (PMLR, 2019),
pp. 2404–2414.

[19] C. Durkan, I. Murray, and G. Papamakarios, On contrastive
learning for likelihood-free inference, Proceedings of the 36th
International Conference on Machine Learning, edited by H.
Dumé II and A. Singh, Vol. 119 of Proceedings of Machine
Learning Research (PMLR, 2020), pp. 2771–2781.

[20] S. Kleinegesse and M. U. Gutmann, Efficient Bayesian ex-
perimental design for implicit models, Proceedings of the
Twenty-Second International Conference on Artificial Intelli-

gence and Statistics, edited by K. Chaudhuri and M. Sugiyama,
Vol. 89 of Proceedings of Machine Learning Research (PMLR,
2019), pp. 476–485.

[21] A. Foster, and M. Jankowiak, E. Bingham, P. Horsfall, Y. W.
Teh, T. Rainforth, and N. Goodman (unpublished).

[22] S. Kleinegesse and M. U. Gutmann, Efficient Bayesian
experimental design for implicit models, in Proceed-
ings of Machine Learning Research (PMLR, 2019),
pp. 476–485.

[23] Y. Chen, D. Zhang, M. U. Gutmann, A. Courville, and Z. Zhu,
Neural approximate sufficient statistics for implicit models,
Ninth International Conference on Learning Representations, in
International Conference on Learning Representations (ICLR)
Virtual Conference, 2021.

[24] S. Kleinegesse and M. U. Gutmann, Gradient-based Bayesian
experimental design for implicit models using mutual informa-
tion lower bounds (unpublished).

[25] G. E. Uhlenbeck and L. S. Ornstein, On the theory of the
Brownian motion, Phys. Rev. 36, 823 (1930).

[26] O. Vasicek, An equilibrium characterization of the term struc-
ture, J. Financ. Econ. 5, 177 (1977).

[27] L. L. Cavalli-Sforza and A. W. F. Edwards, Phylogenetic analy-
sis. models and estimation procedures, Am. J. Hum. Genet. 19,
233 (1967).

[28] J. Felsenstein, Phylogenies and quantitative characters, Ann.
Rev. Ecol. Systematics 19, 445 (1988).

[29] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic
Differential Equations, Stochastic Modelling and Applied Prob-
ability (Springer-Verlag, Berlin, 1992).

[30] D. T. Gillespie, Exact stochastic simulation of coupled chemical
reactions, J. Phys. Chem. 81, 2340 (1977).

[31] D. Rumelhart, G. E. Hinton, and R. J. Williams, Learning in-
ternal representations by error propagation, Parallel distributed
processing: explorations in the microstructure of cognition (MIT
press, Cambridge, 1986), Vol. 1, pp. 318–362.

[32] M. Abadi et al., TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015, Software available from
tensorflow.org.

[33] F. Chollet et al., Keras, 2015 Software available from https://
github.com/fchollet/keras.

[34] C. R. Harris et al., Array programming with NumPy, Nature
(London) 585, 357 (2020).

[35] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for
scientific computing in python, Nat. Methods 17, 261
(2020).

[36] B. Poole, S. Ozair, A. van den Oord, A. A. Alemi, and G.
Tucker, On variational bounds of mutual information, Proceed-
ings of the 36th International Conference on Machine Learning,
edited by K. Chaudhuri and R. Salakhutdinov, Vol. 97 of Pro-
ceedings of Machine Learning Research (PMLR,2019).

[37] N. Tishby, F. C. Pereira, and W. Bialek, The information bottle-
neck method, Proc. of the 37-th Annual Allerton Conference on
Communication, Control and Computing (1999), pp. 368–377.

[38] github.com/statbiophys/MINIMALIST.
[39] M. Gutmann and A. Hyvärinen, Noise-contrastive estimation:

A new estimation principle for unnormalized statistical mod-
els, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, edited by Y. W. Teh and
M. Titterington, Vol. 9 of Proceedings of Machine Learning
Research (PMLR, 2010), pp. 297–304.

055309-12

https://doi.org/10.1103/PhysRevX.10.031018
https://doi.org/10.1109/TIT.2010.2068870
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1016/0304-405X(77)90016-2
https://doi.org/10.1146/annurev.es.19.110188.002305
https://doi.org/10.1021/j100540a008
https://tensorflow.org
https://github.com/fchollet/keras
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
http://github.com/statbiophys/MINIMALIST


MUTUAL INFORMATION MAXIMIZATION FOR AMORTIZED … PHYSICAL REVIEW E 105, 055309 (2022)

[40] M. U. Gutmann and A. Hyvärinen, Noise-contrastive estimation
of unnormalized statistical models, with applications to natural
image statistics, J. Mach. Learn. Res. 13, 307 (2012).

[41] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,
Exploring the limits of language modeling, 2016 (unpublished).

[42] Z. Ma and M. Collins, Noise contrastive estimation and negative
sampling for conditional models: Consistency and statistical
efficiency, in Proceedings of the 2018 Conference on Empiri-

cal Methods in Natural Language Processing (Association for
Computational Linguistics, 2018), pp. 3698–3707.

[43] A. van den Oord, Y. Li, and O. Vinyals, Representation learning
with contrastive predictive coding, 2019 (unpublished).

[44] K. Choi and S. Lee, Regularized mutual information neural
estimation, 2020 (unpublished).

[45] Rmsprop, http://www.cs.toronto.edu/∼tijmen/csc321/slides/
lecture_slides_lec6.pdf.

055309-13

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

