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Animals smelling in the real world use a small number of receptors to sense a vast number

of natural molecular mixtures, and proceed to learn arbitrary associations between odors

and valences. Here, we propose how the architecture of olfactory circuits leverages

disorder, diffuse sensing and redundancy in representation to meet these immense

complementary challenges. First, the diffuse and disordered binding of receptors to

many molecules compresses a vast but sparsely-structured odor space into a small

receptor space, yielding an odor code that preserves similarity in a precise sense.

Introducing any order/structure in the sensing degrades similarity preservation. Next,

lateral interactions further reduce the correlation present in the low-dimensional receptor

code. Finally, expansive disordered projections from the periphery to the central brain

reconfigure the densely packed information into a high-dimensional representation, which

contains multiple redundant subsets from which downstream neurons can learn flexible

associations and valences. Moreover, introducing any order in the expansive projections

degrades the ability to recall the learned associations in the presence of noise. We test

our theory empirically using data from Drosophila. Our theory suggests that the neural

processing of sparse but high-dimensional olfactory information differs from the other

senses in its fundamental use of disorder.

Keywords: olfaction, efficient coding, sensory neuroscience, Piriform Cortex, olfactory bulb, olfactory receptor

1. INTRODUCTION

Animals sense and respond to volatile molecules that carry messages from and about the world.
Some kinds of olfactory behaviors require sensing of particular molecules such as pheromones.
These molecules and the receptors that bind to them have likely co-evolved over long periods of
time to ensure precise and specific binding. However, to be useful in a diverse and changing world,
the olfactory system should be prepared to sense and process any volatile molecule. There are a
very large number of such monomolecular odorants (Dunkel et al., 2009; Touhara and Vosshall,
2009; Mayhew et al., 2020), far more than the number of receptor types available to bind these
odorants. Humans, flies and mice, for instance, have just about 300, 500, and 1,000 functional
olfactory receptor types, respectively (Vosshall et al., 2000; Zozulya et al., 2001; Zhang and Firestein,
2002). Yet, animals may be able to discriminate between orders of magnitude more odors than the
number of receptor types (a high estimate is given in Bushdid et al., 2014, but see Gerkin and Castro,
2015).

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.917786
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.917786&domain=pdf&date_stamp=2022-08-08
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vijay@physics.upenn.edu
https://doi.org/10.3389/fncom.2022.917786
https://www.frontiersin.org/articles/10.3389/fncom.2022.917786/full


Krishnamurthy et al. Neural Representation of Complex Odors

At an abstract level, the early stage of the olfactory system faces
the immense challenge of embedding a very high-dimensional
input space (the space of odor molecules) into a low-dimensional
space of sensors (the response space of olfactory receptors).
The distributed and combinatorial nature of receptor responses
in part tackles this problem (Malnic et al., 1999; Araneda
et al., 2000; Laurent et al., 2001; Stopfer et al., 2003; Kay and
Stopfer, 2006; Bazhenov and Stopfer, 2009; Saito et al., 2009;
Stevens, 2015; Zhang and Sharpee, 2016). This embedding must
also preserve similarity between different odors well enough
to permit the judgements of sameness and difference that are
crucial for behavior. Furthermore, experiments (Choi et al.,
2011) suggest that this odor representation is reorganized in
higher brain regions to be enormously flexible, allowing learning
of nearly arbitrary associations between valences and different
groups of odors.

Here, using an end-to-end integrated model (Figure 1),
we provide empirical evidence that the olfactory system
powerfully exploits physiological and structural disorder—or lack
of structure—at different stages of processing to meet these two
complementary challenges: (i) compression of a vast but sparsely-
structured odor space into a similarity preserving receptor
code, and (ii) reorganization of the receptor code into a high-
dimensional representation, which allows flexible learning from
redundant subsets of neurons. The benefits of such expansive
projections for learning have been studied before from the
perspective of capacity, sparsity and robustness to noise (Haberly,
2001; Luo et al., 2010; Babadi and Sompolinsky, 2014; Dasgupta
et al., 2017; Litwin-Kumar et al., 2017). Here our focus is on the
effect of disorder, and on flexible learning of associations from
redundant subsets.We also focus on the time-averaged properties
of the combinatorial receptor responses, thus omitting receptor
and circuit dynamics, which can be relevant in some olfactory
phenomena (Rabinovich et al., 2000; Laurent et al., 2001; Laurent,
2002; Stopfer et al., 2003; Brown et al., 2005; Mazor and Laurent,
2005; Turner et al., 2008; Raman et al., 2010; Nagel and Wilson,
2011; Gupta and Stopfer, 2014; Sanda et al., 2016) (but also c.f.
Stevens, 2015; Zhang and Sharpee, 2016; Dasgupta et al., 2017;
Grabska-Barwińska et al., 2017; Hiratani and Latham, 2020).

To perform effectively within its design constraints, a sensory
system must exploit structure in the environment. For example,
the symmetries and statistics of natural images dictate an
efficient decomposition into edges (Olshausen and Field, 1996),
likely explaining why simple cells in the visual cortex respond
preferentially to oriented lines and why complex cell responses
are invariant to translations within the receptive field (Hubel
and Wiesel, 1962; Riesenhuber and Poggio, 2000). We noted
that a salient feature of natural odors is that they typically
contain only a tiny fraction of the possible volatile molecular
species (Krishnamurthy et al., 2014). For example, food odors are
typically composed of 3–40 molecules (Yu et al., 2015). Natural
odors are thus sparse in the high-dimensional space of odorant
molecules. Surprising results from the mathematical literature on
random projections (Candès et al., 2006; Donoho, 2006; Baraniuk
et al., 2010) show that there is an efficient solution for storing
signals of this nature: sparse, high-dimensional input signals can
be encoded—in a manner preserving similarity—by a compact

set of sensors through diffuse and disordered measurements
of the input space. For example, this sort of compression
can be achieved if each sensor response contains randomly
weighted contributions from every dimension of the input space.
Importantly, this diffuse sensing need not be tuned to the specific
structure of the input signal—i.e., in this manner, it can be non-
adaptive. This sensing scheme contrasts with the expectation for
many sensory modalities in that a lack of structure/symmetry in
the responses is required to efficiently capture the sparse structure
of the inputs. We propose that the olfactory system employs such
a diffuse sensing strategy in order to exploit the sparse structure
of natural odor space, and to produce compact representations of
odors (Figure 1).

Ultimately, odor representations must support associations
between odors and valence, and experimental evidence
suggests that animals can learn such associations both flexibly
and reversibly (Choi et al., 2011). However, the compact
representations achieved by diffuse sensing make such learning
difficult. This is fundamentally an issue of the dimensionality
of the representation, and it is well-known that increasing the
dimensionality improves the capacity for learning (e.g., Cover,
1965; Babadi and Sompolinsky, 2014). Here, we show that
the disorder in the expansive projections to cortex is further
beneficial for flexible learning from redundant subsets of the
high-dimensional representation.

We use an integrated end-to-end model with data from
Drosophila to provide evidence for our proposal. We show that
the diffuse responses of olfactory receptor neurons provide a
compact representation of odor information while preserving
similarity. Introducing structure in the responses degrades
similarity preservation. We then show that the non-linear
transformation in the second stage of olfactory processing
(Antennal Lobe in insects; Olfactory Bulb in mammals),
followed by the apparently disordered, expansive projection to
the third stage of olfactory processing (Mushroom Body in
insects; PiriformCortex inmammals) creates a high-dimensional
representation containing redundant copies of the information
for flexible learning. Moreover, we show that introducing any
structure in the expansive projections degrades the ability to
recall the learned associations in the presence of noise.

2. RESULTS

2.1. Olfactory Receptor Neurons Use
Disorder to Encode Natural Odors:
Decoding Error Analysis
Volatile molecules are sensed when they bind to olfactory
receptors, each encoded by a separate gene (Buck andAxel, 1991).
For example, in mice, almost 5% of the genome is devoted to
encoding about 1, 000 receptor types. Even a relatively small
number of olfactory receptors could in principle encode a vast
number of odors because of the diffuse sensing of moelcules
by ORNS (insect: Hallem and Carlson, 2006; Carey et al., 2010;
mammal: Saito et al., 2009), and the consequent combinatorial
nature of the odor code (Malnic et al., 1999; Stopfer et al.,
2003; Stevens, 2015; Zhang and Sharpee, 2016). Indeed, the
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FIGURE 1 | Proposal: The olfactory system uses two kinds of disorder to first compress odor information into the responses of a small number of receptors, and then

reconfigure this information to enable flexible associations between odors and valences. (i) Natural odors are high dimensional but sparse: they contain a tiny fraction

of all possible monomolecular odorants. (ii) Olfactory receptors diffusely bind to a broad range of odorants, producing a compact representation of odor information

that enables accurate decoding. (iii) The Antennal Lobe/Olfactory Bulb decorrelates this representation. (iv) Disordered projections from the Antennal Lobe/Olfactory

Bulb to the Mushroom Body/Piriform Cortex, followed by non-linearities, create a sparse and distributed representation of odors that facilitates flexible learning of odor

categories from small and arbitrarily-chosen subsets of neurons.

number of patterns of receptor response and silence increases
exponentially with the number of receptors; N receptors have 2N

response/silence patterns so that just 50 receptors in Drosophila
are capable of encoding over 1015 odors. However, a good
odor code should also be structured to support judgements of
similarity and difference that are essential to animal behavior.
More formally, the code should preserve an appropriate notion
of distance between odors. How could a combinatorial olfactory
system where odorants bind diffusely to many receptors, and
receptors bind to many odorants, preserve such distances?

Well-organized sensory systems perform their jobs well by
adapting to structure in the environment. A key structure present
in the olfactory environment is sparsity—natural odors typically
contain a tiny fraction of the possible volatile molecules (Yu
et al., 2015). More technically, the representation of a natural
odor in terms of its molecular concentration vector will have very
few non-vanishing components. Suppose there are N types of
volatile molecules, and any given natural odor contains no more
than K ≪ N of these types. Then, recent results in mathematics
show that when N is sufficiently large, a small number of linear
sensors (about K logN) could store complete information about
natural odors in a similarity preserving manner, provided that
the binding affinities of the sensors are statistically random
(Candès et al., 2006; Donoho, 2006; Baraniuk et al., 2010). This
fact suggests that rather than having strong responses for a
specific set of important molecules, a general purpose receptor
repertoire should be selected to have molecular affinities that
are as disordered as possible—i.e., lacking symmetry—subject to
constraints imposed by biophysics and evolution.

Is there evidence for this view? One challenge is that
experimental data is typically only available for a small fraction

of the receptors and odors relevant to a species, while the relation
between disordered sensing and distance preservation is expected
for sufficiently large odor-receptor systems. We will meet this
challenge in two ways. In this section, we will show that an
efficient decoder of linear, disordered codes does nearly as well on
Drosophila ORN sensing data, as it would on odors encoded by
an optimal Gaussian, random encoder satisfying the theorems of
Candès et al. (2006), Donoho (2006), and Baraniuk et al. (2010).
Then in the next section we will develop a method to extrapolate
experimental sensing data to construct synthetic sensory systems
of a realistic size with the natural sensing statistics. We will
directly test the connection between similarity preservation and
disordered sensing in this extrapolated sensory system.

To this end, we analyzed firing rates of 24 ORN types
in Drosophila responding to a panel of 110 monomolecular
odorants (Hallem and Carlson, 2006). We used this data to
model responses to mixtures of odorants that are complex but
sparse like natural odors by constructing a firing rate “response
matrix” R whose entries specify the responses of each ORN
to each monomolecular odorant. To do so, we approximated
ORN responses to odor mixtures as linear in the response
to each odorant which is a reasonable approximation when
the receptors are not in a saturated regime (Tabor et al.,
2004; Grossman et al., 2008; Fletcher, 2011; Rokni et al.,
2014) (see Reddy et al., 2018; Singh et al., 2019, 2021; Zak
et al., 2020 for a more complete treatment of the non-linear
responses to mixtures). In this model, we defined a complex
mixture as a 110-dimensional composition vector Exwhose entries
specify the concentrations (measured relative to those used
in Hallem and Carlson, 2006) of monomolecular odorants in
the mixture. The ORN firing rates Ey can then be modeled
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as linear combinations of responses to these odorants: Ey =
R Ex.

To construct eachmixture composition vector Ex, we set a small
number K of its elements to be non-zero (where K specifies the
complexity of the mixture). The values of these non-zero entries
were chosen randomly and uniformly between 0 and 2. We then
attempted to decode composition vectors (x̂) from responses
Ey using an efficient algorithm for decoding linearly-combined
sparse composition vectors, that uses a L1−norm penalty to
induce sparsity (Candès et al., 2006; Donoho, 2006; Candès and
Plan, 2009). We deemed the result a failure if the average squared
difference between components of the decoded (x̂) vs. original (Ex)
composition vectors exceeded 0.01, and defined decoding error
as the failure probability over an ensemble of 500 odor mixtures
{Ex}. We checked that our findings are robust to different choices
of failure threshold used to assess decoding error (Supplement
IIIE, Figure 10 in Supplementary Material). Note that even the
efficient L1 decoding algorithm can be computationally intensive
(see Rozell et al., 2008 for comments on neural plausibility), and
that we have chosen a threshold for successful decoding that is
more stringent than typically necessary for animal behavior. The
purpose of our analysis is hence not to suggest that animals use
this particular method of decoding, but rather to demonstrate
that the necessary information for decoding is present in the
receptor responses.

Figure 2A shows the decoding error for varying mixture
complexityK and numbers of ORN types. Performance improves
with increasing number of ORNs and decreasing mixture
complexity. We compared the decoding error obtained from the
measured ORN responses to two idealized alternatives: (1) a
Gaussian randommodel, in which each ORN responds randomly
to different odorants (with the overall mean and variance
matched to data), and (2) a generalized sparse-sensing model, in
which each ORN responds (with the same strength) to only five
randomly-selected odorants. The Gaussian randommodel would
be an optimal strategy in the limit of many receptors and a large
odor space (Candès and Plan, 2009), while the sparse sensing
model corresponds to retaining the strongest responses. The
Drosophila ORNs significantly outperform the sparse-sensing
model model and approach the performance of the Gaussian
random model (Figure 2C). Quantitatively, 67% of mixtures
with 5 or fewer components drawn from 110 odorants can be
decoded almost perfectly from the responses of 24 receptors.
There are a staggering 100 million such mixtures. Again, this is
not to say that the fly brain attempts to reconstruct all of these
odors with such an accuracy, but it does say that the receptors
contain the necessary information. Our theory also predicts that
the olfactory representation of odors does not depend on the
details of how specific receptors respond to specific odors, but
rather only depends on the broad distribution of responses across
many receptors and many odors. We tested this prediction by
scrambling the Drosophila response matrix (Figure 2B) with
respect to both odors and receptors and indeed found identical
decoding performance (Figure 2C).

Our theory also predicts that the olfactory code spreads
information across all receptors, so that even weak responses are
informative. To test this comprehensively, we thresholded

FIGURE 2 | Disordered sensing by ORNs enables accurate decoding of

complex mixtures. (A) Error in decoding mixture composition from subsets of

ORN responses, as a function of mixture complexity K (i.e., number of mixture

components) and ORN subset size n. Results are averaged over 500 odor

mixtures of a given complexity, and 50 subsets of a given size. (B) Response

matrices for Drosophila ORNs (measured and scrambled), sparse-sensor and

Gaussian models (see text for details). (C) Error in decoding complex mixtures

from 24 ORNs as a function of mixture complexity K, shown for ORN

responses (solid green), a scrambled version of ORN responses (dashed

green), and two idealized models (the Gaussian random model, dashed black,

and the sparse-sensor model, dashed gray). Results are averaged over 500

odor mixtures of a given complexity. Results from scrambled, Gaussian, and

sparse-sensor models are additionally averaged over 100 model instantiations.

the Drosophila response matrix to keep only a fixed
fraction—“diffuseness parameter” f—of the strongest responses
setting the rest to zero. So a diffuseness value of f = 1.0 means we
retain all responses, whereas a diffuseness value of f = 0.5 means
that we retained the strongest 50% of all responses. We, then
scrambled the odor identities for each receptor to create receptor
responses with the same thresholded distribution. Figure 3A
shows the Drosophila ORN response matrix, along with model
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FIGURE 3 | Weakly responding ORNs and glomeruli are informative about odor mixture composition. All results computed for 24 ORN types responding to 110

monomolecular odorants and their mixtures. (A) Firing rate response matrix measured from Drosophila ORNs (left, solid green), and for increasingly diffuse model

response matrices (right, dashed green; “diffuseness” = fraction of largest responses kept). Model responses are constructed by thresholding measured responses

and then scrambling the response matrix. (B) Error in decoding from ORNs decreases systematically as diffuseness increases—hence weak responses are

informative. Results shown as a function of mixture complexity (K = number of odor mixture components). (C) ORN responses are divisively normalized to produce

responses in the glomeruli of the Antennal Lobe. Thresholding and scrambling these responses produces sensing models with different degrees of diffuseness. Error

in decoding from glomeruli decreases systematically as diffuseness increases. (Insets): The insets show decoding error as a function of the diffuseness parameter for

fixed values of mixture complexity (K = 3, 5, 7). For the plots, the models with varying diffuseness are averaged over 100 randomly scrambled model response

matrices. Decoding error is measured as the probability of decoding failure over an ensemble of 500 randomly chosen odor mixtures of a given complexity.

response matrices with increasing diffuseness. Figure 3B shows
the decoding error as a function of mixture complexity K
(number of non-zero components in each mixture) for varying
diffuseness. We see that decoding error decreases systematically
as diffuseness increases, showing that weak receptor responses
are informative about odor mixture identity.

2.2. Similarity Preservation in Extended
ORN Datasets
To judge how well the olfactory code preserves similarity and
difference between odors, we can complement the decoding
analysis by directly comparing the Euclidean distance between
the composition vectors corresponding to two mixtures ‖Exi−Exj‖
to the distance between the responses they elicit ‖RExi − RExj‖. In
order to compare these distances on common grounds, wemean-
center the columns of R and normalize so that every column
has unit norm. We then measure the degree of distortion in
similarity by measuring the threshold θ for which 95% of the
pairwise distances are distorted by less than θ (see Figure 4A

inset). Specifically, θ is defined as

P

(
∣

∣

∣

∣

‖RExi − RExj‖

‖Exi − Exj‖
− 1

∣

∣

∣

∣

> θ

)

= 0.05 (1)

Note that the mean-centering and normalization of R prohibit
trivial ways of increasing the distortion, like transformations
that globally scale the length of the vectors. We also note
that this distortion measure has an asymmetry between
transformations that distort relations by decreasing the distance
and transformations that increase the distance, because there is
a lower bound of zero on the distortion. The interpretability of
this measure nonetheless makes it an useful complement to the
decoding analyses above. Using the distortion measure, θ , we
can assess how similarity preservation is affected by (i) mixture
complexity; (ii) sparsity of responses; and (iii) structure/disorder
in responses.

Even though this distortion measure intuitively captures a

notion of similarity preservation, it can display high variability

on small sensing matrices which have a higher likelihood of

being statistically atypical. Even for Gaussian matrices—which
are known to be optimal for preserving similarity of sparse
vectors—the distortion measure shows substantial variability
when the size is similar to that of the Drosophila dataset we are
using (Supplement IIIB, Figure 7 in Supplementary Material).
Therefore, to use this measure to study similarity preservation
we need larger datasets. Thus we sought a way of synthetically
producing a sensory system that extrapolates the statistics of the
experimental data, but with many more odors and receptors.
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FIGURE 4 | Distortion in similarity of odors by ORN sensing. (A) Average distortion measure θ (averaged over odors and responses; see text) as a function of number

of receptors for odors with 50 components. Note that this is higher than the number of components in typical natural odors. Different colored lines correspond to

different values of “diffuseness” prescribing the fraction of largest ORN responses to be retained in sensing. (Inset): Histogram of ratio of pairwise distances between

odor composition vectors and their corresponding ORN representations. The distortion measure θ measures how narrowly concentrated this distribution of these

ratios is around 1.0. (B) Distortion measure θ as a function of number of components in the odors for 48 receptors (∼ 50 is a lower estimate for the number of

receptors in Drosophila). Note that identifying > 50 component odors with ∼ 50 receptors is a hard challenge, and we want to emphasize here the effect of the

diffuseness rather than the absolute performance. (C) Distortion measure θ as a function of the structure factor for 48 receptors and 50 component odors. The

structure factor is a parametric way of controlling the structure in the response matrix by varying the rate of decay of the eigenvalues of the correlation matrix (see

Supplement IIIC in Supplementary Material for details). A structure factor of 1.0 corresponds to responses that are as structured as the Drosophila dataset and

higher values correspond to a faster decay of eigenvalues of the correlation matrix, and thus more structure. For all the panels the total odor space consisted of 1,000

odorants; increasing the size of this space did not seem to have an appreciable effect on the distortion measure.

To study the effect of the interventions on larger sensing
matrices, we developed a novel method to generate extended
ORN response matrices along both the receptor and
odor dimensions. We first observed (Supplement IIIC in
Supplementary Material) that the normalized logarithm of the
responses of the nrec = 24 receptors in theDrosophila dataset to a
given odor is well-approximated by a high-dimensional Gaussian
distribution which captures the correlation structure between
receptors. We use this observation to model the responses as
a Gaussian in the log-response space. Specifically, as described
in Supplement IIIC (Supplementary Material), we first create
an extended (by a factor F) repertoire of F · nrec receptors by
generating an extended correlation matrix which replicates the
original receptor-receptor correlation matrix F times along the
diagonal blocks. We then randomly rotate this larger covariance
matrix, and use this correlational structure to sample vectors.
Finally, an exponential transform generates simulated responses
to odors. This procedure allows us to generate response matrices
of size Fnrec × nodors.

Using the extended sensing matrix generated in this way,
we measured similarity distortion as a function of the number
of receptor types and odor complexity (Figures 4A,B) We
also varied the sparsity of ORN responses, by controlling the
“diffuseness”, a number ranging between 0 and 1 which measures
the fraction of largest receptor responses which are retained, with
the rest thresholded to zero.

We see that the distortion θ decreases as we add more
receptors (Figure 4A) and by the time we reach 150 receptors
most of the gain in performance is achieved for odors with odors
with ∼ 50 components. Note that most natural odors are not
this complex, and the typical repertoire size in animals is 100s
of receptor types. Interestingly, the dependence of the distortion

measure θ on the diffuseness is sharp, with most the of the gains
realized once the diffuseness reaches around ∼ 0.2–0.3. Indeed,
Prior work has also argued that odor information can be read
out sufficiently accurately if each receptor binds to ∼ 5–15 %
of odorants (Singh et al., 2021). The distortion θ also increases
for more complex odor mixtures (Figure 4B) and again we see
that very sparse responses (very low diffuseness) lead to worse
performance, but a diffuseness of∼ 0.2–0.3 achieves similar levels
of distortion as full dense response. This is also consistent with
the decoding analysis in the previous section (see Figure 3B,
inset), which suggests that a diffuseness of ∼ 0.2–0.3 would
provide much of the information gains.

Finally, we studied what happens if we parametrically
introduce structure in the responses. We do this by
parametrically controlling the rate of fall-off of the eigenvalues of
the receptor-receptor correlation matrix. A steeper fall-off means
there is more redundancy in the receptor responses and thus
the response matrix will be more structured (see Supplement
IIIC in Supplementary Material for details of the method).
According to our general the theory, introducing structure
should diminish the ability to preserve similarity. When we
systematically increase structure in the responses, we see in
Figure 4C that the level of distortion θ grows with structure as
expected from the theory.

2.3. Reading Out Odor Valence From ORN
Responses
We saw above that a combinatorial code that employs disordered
sensing is an efficient way to compress a vast odor space
into a smaller response space. However, Drosophila ORN
responses are noticeably structured and have a more clustered
distribution of firing rates than, e.g., the Gaussian randommodel
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FIGURE 5 | Reading out odor valence from ORN responses. Divisive

normalization of ORN responses decorrelates the responses (top - response

matrices; inset - correlation matrices). ORN responses and modeled

glomerular responses are not readily usable for flexible classification tasks.

Error in classifying randomly labeled “appetitive” or “aversive” mixtures from

responses of ORNs (green) and glomeruli (blue) quickly approaches chance as

the number of mixtures increases. Results are shown for two-class separability

of 5- component mixtures, averaged over 100 different ensembles of odor

mixtures, and 100 labelings into appetitive and aversive classes.

(Figure 2B). These correlations, perhaps arising from similarities
between odorant binding sites or between receptor proteins,
induce some order in receptor responses. These responses are
modified when receptors of each type converge to a second
stage of processing in distinct glomeruli of the Antennal Lobe
(analogously, the Olfactory Bulb in mammals). As has been
described before, this second stage of processing decorrelates
the responses by a divisive normalization (Olsen and Wilson,
2008; Olsen et al., 2010; Wiechert et al., 2010) (see Supplement
IIIE in Supplementary Material and Figure 5 inset). Assuming,
a linear response for mixtures at this stage, we find that the
L1−decoding error improves relative to the ORN responses
(Figure 3C). This assumption of linear mixing after the non-
linear divisive normalization is not equivalent to performing
a (complex) decoding of the non-linear mixture responses,
and likely gives a more optimistic estimate of the decoding
error. Nevertheless, this analysis can be regarded as estimating
the decoding performance achievable in a linearized regime
around a fixed odor background. Moreover, as with the ORN
responses, scrambling the responses over odors and receptors
does not change the performance, again suggesting that only the
distribution of responses is important for the odor representation
(Supplement IIID, Figure 10C in Supplementary Material).
Furthermore, in Figure 3C, we see that as with the ORN
responses, diffuseness increases the decoding performance;
however, most of these gains are realized with a sparsity of∼ 0.2.

Another key requirement of a sensory olfactory representation
is its ability to support flexible associations between odors and

valence that are necessary for driving behavior. To study
how well the ORN/glomerular representation supports this
ability, we randomly labeled mixtures “appetitive” or “aversive”,
and trained a linear classifier to identify these labels from
ORN and non-linear glomerular responses (Supplement
IIIF in Supplementary Material). The performance was
poor (Figure 5C), even though mixture compositions can be
accurately decoded from these responses (e.g., Figure 2C).
This is fundamentally an issue concerning the dimensionality
of the representation, and we know that reformatting the
representation into a higher-dimensional form can aid in
learning associations (e.g., Cover, 1965). We conclude that
although these first stages of processing retain nearly complete
information about odor mixtures, this information is not readily
usable for flexible learning.

2.4. Disordered Projections Reorganize
Odor Information to Facilitate Flexible
Learning
Although early stages of olfactory processing apparently do
not support flexible learning, we know empirically that the
representation at the third stage in the pathway can support
such learning (fly: Heisenberg et al., 1985; McGuire et al., 2001;
mammal: Choi et al., 2011). How is odor information reorganized
to achieve this?

In both insects and mammals, the transformation from the
second to third stage of olfactory processing has two notable
features: (i) expansive and disordered projections that distribute
odor information across a large number of cells (Sosulski et al.,
2011; Caron et al., 2013), and (ii) non-linearities that sparsify
responses (Turner et al., 2008; Stettler and Axel, 2009). As a
result, an odor is represented by a sparse pattern of activity
distributed broadly across cells in the third stage. We expect from
general theory that this transformation should facilitate flexible
associations between odor signals and valence (Cover, 1965; Luo
et al., 2010; Barak et al., 2013; Babadi and Sompolinsky, 2014).
Here, we propose that an additional source of disorder—lack of
structure in the connectivity patterns—allows such associations
to be learned from small groups of neurons drawn arbitrarily
from within the population.

To test this, we simulated the responses of Kenyon cells in
the Mushroom Body of the fly to odor mixtures (Figure 6A).
We constructed an end-to-end model, starting with linearized
mixture responses of ORNs modeled as in Section 2.1, that
are divisively normalized in the bulb following (Olsen and
Wilson, 2008; Olsen et al., 2010; Wiechert et al., 2010) (see
Supplement IIID in Supplementary Material). We modeled
each Kenyon cell as receiving inputs from 8 glomeruli selected
at random, reflecting empirical estimates (Caron et al., 2013;
Litwin-Kumar et al., 2017) (interestingly, fewer or more
projections from the bulb yield worse performance; Figure 14
in Supplementary Material). Connection weights were drawn
uniformly between 0 and 1 (Figure 6C, left). We modeled
long range inhibition by first removing the average response
to an ensemble of odors, and then thresholding to eliminate
weak responses (Supplement IIIG in Supplementary Material,
Luo et al., 2010). This imposed a tunable level of sparsity
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FIGURE 6 | Disordered projections enable flexible learning in the presence of noise. (A) Schematic. Small subsets of Kenyon cells exhibit sparse firing patterns in

response to odor mixtures. A linear readout neuron can learn to separate arbitrary classes of appetitive and aversive odor mixtures from these responses. (B) Small

subsets of sparsely active Kenyon cells (here 15% of cells respond) facilitate accurate classification of mixtures. Shown here are plots for the classification error, for

random connectivity between the glomerulia and Kenyon cells [see (C)], as a function of number of mixtures classified and the number of Kenyon cells used to

perform the classification. Noise (introduced in ORN responses; see text) degrades classification performance (left to right). (C) We generated random (left) and

locally-structured (middle, right) projections from the Antennal Lobe (stage 2) to a subset of cells in the Mushroom Body (stage 3). Local structure was introduced by

requiring that a fraction (1/3) of Kenyon cells receive inputs from a fraction (1/3) of all glomeruli (middle). When randomly permuted, the structure is no longer apparent

(right). We then parametrically interpolated between the structured and random matrices by varying the probability p that a glomerulus could connect to Kenyon cell

outside its preferred group. For p close to 1.0 the connectivity approaches random (left) and for p close to 0 it approaches the matrix on the right. (D) Classification

error for 230 mixtures as a function of number of Kenyon cells used for readout with locally structured connectivity between glomeruli and Kenyon cells. As expected

the classification error decreases with larger readout size; however, in the absence of noise in ORN responses, structure only degrades performance slightly (legend

indicates p, which controls the amount of structure in connections). As the noise level increases, the degradation in performance for structured connectivity is more

pronounced (left to right).

in the population response. We fixed this sparsity to 15%
to match experimental estimates (Turner et al., 2008; Stettler
and Axel, 2009). To assess learning, we generated responses
to an ensemble of odor mixtures (generated as described
above) with 25 components, in the middle of the mixture
complexity range reported for natural odors (Yu et al., 2015).
Increasing/decreasing the number of mixture components will
make the classification the task harder/easier. We then trained
a linear classifier to separate responses into two arbitrarily-
assigned classes (Supplement IIIF in Supplementary Material).
We defined classification error to be the fraction of mixtures
that are incorrectly labeled by the classifier, averaged over 100
ensembles of mixtures and 100 labeling of each ensemble into
appetitive/aversive classes.

We found that small subsets of Kenyon cells can facilitate
accurate classification of mixtures (Figure 6B). For instance, 230
mixtures can be classified almost perfectly using any subset
of 150 Kenyon cells (Figure 6B, left); there are 23 active
Kenyon cells in a typical population of this size. Classifying the

same number of mixtures from the ORN/AL responses yields
poor performance (Figure 5). Moreover, since the connectivity
between Kenyon cells and the glomeruli was taken to be random
any typical subset will be equally good for classification [see
histogram in Figure 14A (Supplementary Material)]. Increasing
the number of cells used as a readout provided no significant
benefit beyond a certain point, and decreasing the average
sparsity of responses also had minimal effect on the performance
(Figure 14 in Supplementary Material). These results suggest
that the disordered projections from the second to the third stage
of the olfactory pathway reorganize the sensory representation so
that associations can be learned from small subsets of sparsely
active neurons. Furthermore, these associations can be learned
from arbitrary subsets of a given size, suggesting that the
information is redundantly represented across in the third stage,
i.e., Mushroom Body or olfactory cortex.

Classification performance could deteriorate markedly with
noise in the sensory representation. Hence, we probed the effect
of variability in the ORN responses on classification performance
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on the basis of Kenyon cell responses. To do this, we added
Gaussian noise with varying standard deviation to the ORN
responses (σlow = 0.1, σmed = 0.3). As expected noise
degrades performance, albeit in a graded way (see boundary
between good and poor classification in Figure 6B, left to right).
We then examined how the variability in responses interacts
with the connectivity pattern from the Antennal Lobe to the
Mushroom Body. To do this, we introduced local structure in
the projections from the Antennal Lobe to the Kenyon cells
in the Mushroom Body (Figure 6C, right). Within any chosen
subset of Kenyon Cells, we required that a certain fraction
received preferential inputs from some glomeruli (in both cases,
the fraction was taken to be 1/3). In doing so, we constrained
the overall distribution of connection strengths to match those
used to generate disordered connectivity (Supplement IIIH
in Supplementary Material). This ensured that as a whole,
each subset of Kenyon cells sampled all glomeruli, and any
differences in performance were guaranteed to arise purely from
differences in local connectivity patterns. We then parametrically
interpolated between this structured connectivity and random
connectivity by varying the probability p that a Kenyon cell in
the subset could connect to any glomerulus and not just the ones
in its preferred group. So, p close to 1.0 would give nearly random
connectivity and p close to zero would give connectivity as shown
in Figure 6C, right.

In the absence of ORN response variability, the effect
of local structure in the connectivity on the classification
performance was small but present, with more structure giving
slightly worse performance (Figure 6D, left). As the level of
neural variability was increased we saw that more structured
connectivity (lower values of p as indicated in the legend) gave
substantially worse performance (Figure 6D, middle, right). This
effect increased with higher variability. Performance degrades
with more structure because structured matrices have a sharper
fall-off of their singular values, and thus concentrate most
of the input power into a small subspace spanned by the
corresponding singular vectors. The net consequence of this is
higher variability in the most active neurons in the mushroom
body for structured matrices compared to random ones (see
Supplement IIIH, Figures 12, 13 in Supplementary Material for
more details). These results suggest that the disorder in the
connectivity between Antennal Lobe and Mushroom body is
beneficial for learning flexible associations in the presence of
repsonse variability, and any hidden structure hurts classification,
with the effect becoming more pronounced with increasing
variability.

3. DISCUSSION

We propose a new role for disorder—or the lack of symmetry—
in building sensory representations of sparse, high-dimensional
stimuli that are accurate, compact, and flexible. This feature
of the olfactory system stands in contrast to other sensory
systems like vision, where the neural responses mirror the
symmetry/structure observed in the external stimuli to form
efficient and compact representations. We argue that this
view explains key organizational and functional features of
the olfactory system, where disorder plays two key roles:

(i) diffuse sensing by olfactory receptors serves to compress
sparse, high-dimensional odor signals into compact neural
representations, and (ii) disordered expansion from the Antennal
Lobe to the Mushroom Body serves to reformat these
representations for flexible learning. This paradigm exploits a
key feature of natural odor signals—sparsity—to overcome a
bottleneck in the limited number of olfactory receptor types. We
used a combination of data and modeling to provide evidence
for this paradigm in fruit fly. Olfactory circuits in mammals
show very similar anatomical and functional motifs, including
broad receptor tuning (Saito et al., 2009) and apparently
disordered projections to the cortex (Sosulski et al., 2011). This
convergence between distant species suggests that disorder could
serve a computational function in the architecture of early
olfactory circuits.

3.1. The Logic of Olfactory Receptors
Our theory predicts that general-purpose olfactory receptors
should be selected for diffuse binding to many odorants, and
not for the strong and specific binding often seen in biochemical
signaling. An alternative view suggests that receptors should
be adapted to bind selectively to molecules in particular odor
environments or ecological niches (Carey et al., 2010; Zwicker
et al., 2016). These alternatives can be separated in experiments
that measure the affinities of olfactory receptors to very large
panels of odorants with varying ethological relevance.We predict
that the typical receptor will have a diverse range of binding
affinities across a broad array of odorants, with a statistically
similar spread across molecules that both do and do not have
immediate ethological importance. Likewise, we predict that
receptors in different species, even related ones, will typically
have broadly different distributions of binding affinities, with
similarities arising from biophysical constraints of olfactory
receptors and not from properties of ecological niches. In
addition, as a whole, the receptor repertoires of different species
will show similar coverage across the space of odorants. This
strategy resembles that of well-adapted immune repertoires,
where different antibody distributions achieve similar coverage of
the same pathogen landscape, as predicted theoretically (Mayer
et al., 2015) and observed in experiment (Venturi et al., 2008;
Elhanati et al., 2014; Thomas et al., 2014).

3.2. The Computational Role of Expansive
and Disordered Projections
While this work provides evidence for the role of disordered
sensing in the compression of odor information, it also adds to
a growing body of work on the computational role of expansion
via disordered neural projections. Expansive projections are
known to make classification easier (Cover, 1965; Luo et al.,
2010; Barak et al., 2013), and the computational benefits of
this expansion can be further improved by Hebbian learning
(Babadi and Sompolinsky, 2014) and by sparse connectivity
(Litwin-Kumar et al., 2017). We have argued here that the
primary purpose of the expansion from the second to the
third stage of olfactory processing is to reorganize a highly
compressed representation of odors produced by disordered
sensing by the receptors. By contrast, other studies have
proposed that this expansion could itself implement a form of
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odor signal compression (Krishnamurthy et al., 2014; Stevens,
2015), or even a direct encoding of odor space (Zhang and
Sharpee, 2016; Kepple et al., 2019) (in one case requiring strict
relations between the expansion and ORN responses; Zhang and
Sharpee, 2016). We found no evidence that expansive projections
implement a form of compression, nor do we find evidence
to support the direct representation of odor composition in
Kenyon cell responses. Rather, we found evidence that the
expanded representation is organized to support flexible learning
of categories (Choi et al., 2011; Gruntman and Turner, 2013)
from modest subsets of Kenyon cells. Anatomical evidence in
fly indeed suggests that each olfactory readout neuron samples
only a fraction of the Mushroom Body (Schroll et al., 2006) while
still allowing formation of complex associations (Fiala, 2007).
Our view is also consistent with abstract theory showing that
sparsely firing binary neurons with “mixed selectivity” permit
both discrimination between, and effective generalization from,
complex overlapping binary inputs (Barak et al., 2013; Rigotti
et al., 2013). Our work can be viewed as additionally showing that
receptor neurons with “mixed selectivity” effectively compress
high dimensional sensory information, while subsequent “mixed
sampling” of these responses reformats them for flexible learning
by a simple readout. It would also be interesting to understand
the relationship between our results and the finding in Singh
et al. (2021) that receptors that do not respond to an odorant are
particular informative about its identity.

3.3. Implications for Behavior
Conceptually, our key idea is that disorder in the olfactory
system is a fundamental adaptation to the intrinsic complex
structure of the world of smells. We predict, distinctively,
that odor information is distributed in both weak and strong
responses across the entire ensemble of olfactory receptor types,
and that this is important for complex discrimination tasks.
An alternative view suggests a “primacy” code where only
the earliest or strongest responses are relevant for behavior
(Wilson et al., 2017; Dewan et al., 2018; Kepple et al.,
2019). We have shown (Figure 3) that an encoding scheme
that retains only the strongest responses contains much less
information about complex mixtures than does a scheme that
retains both strong and weak responses. Because of this, we
expect that our view can be separated from the primacy
code in behavioral experiments that vary the complexity of
discrimination tasks, e.g., by increasing the number of odors,
the number of mixture components, and the degree of overlap
between mixture components. Given knowledge of responses
to individual odorants, our theory quantitatively predicts the
decline of behavioral performance with task complexity (e.g.,
Figures 2–5). Likewise, our theory predicts how the relationship
between behavioral performance and task complexity will vary
as a function of information content in the olfactory pathway.
This information content can be experimentally manipulated
by creating genetically-impoverished or enhanced receptor
repertoires, or optogenetically activating Kenyon cells to simulate
structured projection patterns from the Antennal Lobe.

3.4. The Role of Valence and Context
Our analysis has focused on ways in which the olfactory system
can faithfully represent and then recover the similarities and
differences between odors seen as concentration vectors in
a high-dimensional space of odorants. In fact, in vertebrates
behavioral valence and context are known to change both
perceptual similarity of odors, and representational similarity
in cortex. These changes may be entrained by the extensive
feedback that is present from the central brain to the olfactory
bulb. Interestingly, recent work (Tavoni et al., 2021; Kersen
et al., 2022) suggests that these feedback effects of context
and valence need not be structured, and instead can also be
disordered. That is, each behavioral context can effectively be
represented as a random vector of feedback to the circuit
elements of the bulb. It would be interesting to understand
how such disordered feedback interacts with disorder in the
ORN encoding map and feedforward projections to cortex that
we have discussed in this paper, while also including non-
linear models of ORN response such as those in Singh et al.
(2019).

3.5. Looking Ahead
Testing these predictions requires a movement away from simple
paradigms involving small mixtures and pairwise discrimination,
toward far more complex tasks that are reflective of life in the real
world. Methodologically, this shift has begun occurring in the
study of vision. We have argued here that in olfaction, this shift is
even more critical—the functional logic of the sense of smell can
only be understand by taking into account the complexity of the
real odor world.
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