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Small-correlation expansion to quantify information in noisy sensory systems
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Neural networks encode information through their collective spiking activity in response to external stimuli.
This population response is noisy and strongly correlated, with a complex interplay between correlations
induced by the stimulus, and correlations caused by shared noise. Understanding how these correlations affect
information transmission has so far been limited to pairs or small groups of neurons, because the curse of
dimensionality impedes the evaluation of mutual information in larger populations. Here, we develop a small-
correlation expansion to compute the stimulus information carried by a large population of neurons, yielding
interpretable analytical expressions in terms of the neurons’ firing rates and pairwise correlations. We validate
the approximation on synthetic data and demonstrate its applicability to electrophysiological recordings in the
vertebrate retina, allowing us to quantify the effects of noise correlations between neurons and of memory in
single neurons.

DOI: 10.1103/PhysRevE.108.024406

I. INTRODUCTION

Networks of neurons from sensory systems are character-
ized by strong correlations that shape their collective response
to stimuli [1–6]. These correlations have two sources [1]: stim-
ulus correlations, which originate from shared or correlated
stimuli that affect the mean activities of different neurons in
a concerted way; and noise correlations, which stem from
network interactions that couple noise across cells. These two
sources of correlations impact how well the population en-
codes stimulus information, and detailed investigations have
explored this effect both experimentally [5–9] and theoreti-
cally [10–16], showing a wide variety of scenarios in which
noise correlations could either hurt or improve information
transmission (see Ref. [17] for a recent review).

While geometric arguments about the structure of stimulus
and noise correlations can help interpret and evaluate the
impact of their interplay on information transmission for pairs
or small groups of cells [16,17], specific challenges arise when
dealing with large populations of cells. A common way to
quantify these effects is by computing the mutual information
between the stimulus and the activity of the whole population.
However, attempts at quantifying this information are inher-
ently limited by the curse of dimensionality, whereby the size
of the state space to be sampled grows exponentially with the
system’s size. Models based on the principle of maximum
entropy have been proposed to build explicit probabilistic
models of the collective activity of many neurons, based on
mean spike rates and correlation functions [2,18–22]. These
distributions map onto known models of statistical mechan-
ics, and can be used to evaluate entropies as well as mutual
information.

*These authors contributed equally to this work.

In this paper, we leverage these techniques from statistical
physics to compute the information of experimental spike
trains using a small-correlation expansion [23]. We show
on synthetic data that this approach outperforms previous
approximations of the mutual information and is computa-
tionally efficient. The resulting formulas are expressed as
simple functions of the experimental observables, yielding
an intuitive picture of how correlations affect information
encoding in sensory systems beyond the previously discussed
“sign rule” [16], which states that noise correlations are ben-
eficial when of opposite sign to stimulus correlations. We
apply our formulas to real electrophysiological recordings
from the retina, to illustrate how it can be used to quantify
the effect of noise correlations between neurons and across
time.

II. SMALL-CORRELATION EXPANSION
OF THE MUTUAL INFORMATION

The collective response of a neural network of size N
can be described by the neuronal activities n = (n1, . . . , nN ),
taking value 0 or 1 depending on whether or not the neuron
spikes within a short time window �t (typically 10–20 ms).
In general, because of processing delays and adaptation, the
response is a stochastic function P(n|s) of the history of the
stimulus s up to the response. The mutual information I (n, s)
quantifies the amount of information conveyed by the neural
response about the stimulus [24,25]. Since it is expressed as a
difference of entropies I = H[n] − 〈H[n|s]〉s, where H[x] =
−∑

x P(x) ln P(x), its quantification requires good entropy
estimators. Direct estimation methods from data exist, and can
be applied for relatively small groups of neurons [26]. How-
ever, the estimation problem quickly becomes intractable as
the number of neurons increases and the size of the response
space grows exponentially. To deal with large networks, we
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FIG. 1. How correlations affect information. (a) Visual stimuli
drive the noisy response of sensory neurons (spikes, represented by
vertical ticks). ρn

i j (s) is the pairwise Pearson correlation between the
activities of cells i and j in a short window �t , conditioned on past
stimuli s. The total Pearson correlation ρ tot can be decomposed into
stimulus and noise contributions, rs and rn. (b) Small-correlation
expansion of the mutual information I and synergy �I = I − ICI

between stimulus s and response n, based on Ref. [23]. ICI is the
information in the absence of noise correlations. In the diagrams
each line corresponds to a correlation term; double lines are sums
of two correlations; multiple lines connecting the same two points
are multiplied.

thus developed a method based on a small-correlation expan-
sion of entropies [23], which allows us to express them as
analytical functions of the empirical correlations.

We start by assuming that both P(n) and P(n|s) follow the
form of maximum entropy models consistent with empirical
pairwise covariances and spike rates. Later we will discuss the
limitations of this assumption. The total covariance between
two cells i and j across stimuli, Ci j ≡ Cov(ni, n j ), can be
decomposed into two contributions corresponding to the ef-
fects of stimulus and noise: Ci j = Cs

i j + 〈Cn
i j (s)〉s, with Cs

i j ≡
Covs(〈ni〉ni|s, 〈n j〉n j |s), Cn

i j (s) ≡ Cov(ni, n j |s), which can be
computed from the response to repeated presentations of the
same stimulus. Likewise, the Pearson correlation coefficient
ρ tot

i j ≡ Ci j/
√

CiiCj j can also be decomposed into stimulus-
and noise-induced contributions: ρ tot

i j = rs
i j + rn

i j [Fig. 1(a)],
with rs

i j ≡ Cs
i j/

√
CiiCj j and rn

i j ≡ Cn
i j/

√
CiiCj j . Note however

that these two terms are not proper correlation coeffi-
cients because of the normalization. Stimulus correlations
may instead be quantified by ρs

i j ≡ Cs
i j/

√
Cs

iiC
s
j j , and noise

correlations in a stimulus-dependent manner through ρn
i j (s) ≡

Cn
i j (s)/

√
Cn

ii (s)Cn
j j (s).

Following Ref. [23], we expand the entropy of the maxi-
mum entropy models—and thus the mutual information—at
small values of the covariance parameter [Ci j or Cn

i j (s)],
I = I0th + I1st + I2nd + · · · [see Supplemental Material (SM)
[27]]. The leading order of this expansion is the sum of
the information carried by each neuron: I0th = ∑

i[H[ni] −
〈H[ni|s]〉s]. The first-order term vanishes, while the second
one reads [see Fig. 1(b) and SM [27]]

I2nd = −1

2

∑
i< j

(
ρ tot

i j
2 − 〈

ρn
i j (s)2

〉
s

)
. (1)

We can compute higher-order terms using Feynman diagrams
rules [28], but they quickly become unwieldy. However, some
of these terms can be resummed to yield a better approxima-
tion of the mutual information than (1) in terms of first- and
second-order moments [23] (see SM [27]):

I ≈ I0th + Ipairs + IG − Idbl. (2)

Ipairs is the sum of the mutual information gains (with respect
to single cells) of each pair (i, j) calculated one by one,
ignoring the rest of the network. IG is the mutual information
gain computed through a mean-field (or loop) approximation
[23,29], which is equivalent to assuming that all fluctuations
(stimulus and noise) are Gaussian,

IG = 1
2 log(|ρ tot|) − 1

2 〈ln(|ρn(s)|)〉s, (3)

where |ρ| denotes the determinant of the correlation matrix.
Finally Idbl corrects for terms that are double counted in Ipairs

and IG .

III. NOISE SYNERGY

These expansions can be used to investigate the impact
of noise correlations on information transmission. We define
the noise synergy, �I ≡ I − ICI, as the gain in information
relative to the conditionally independent case [Fig. 1(b), bot-
tom line]. ICI can be computed in practice by shuffling the
response of individual neurons across repetitions of the same
stimulus, which preserves stimulus correlations but destroys
noise correlations. At second order we obtain (see SM [27])

�I ≈
∑
i< j

[
−rn

i, j r
s
i, j + 1

2

(〈
ρn

i, j (s)2〉
s − rn

i, j
2)]

. (4)

This expression shows how noise synergy depends on noise
correlations through rn and ρn. The first term is positive when
noise and stimulus correlations have opposite signs. This ef-
fect is known in the literature as the sign rule [16] and can
be interpreted in terms of the whitening of the output power
spectrum: It is beneficial for the network to “cancel out” input
correlations by adding noise correlations of opposite sign,
in order to approach a uniformly distributed output, thereby
increasing output entropy and information. The second term
of (4), which is of second order in the noise correlation param-
eter, can be either positive or negative in general. However,
in the particular case of noise correlations independent of the
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FIG. 2. (a) A spatially correlated random stimulus activates a
network of 12 neurons according to a generalized linear model
defined by stimulus, coupling, and spike-history filters. (b) Exact,
second order (1), resummed (2), and small time bin expansion [12] of
the mutual information for various strengths of the noise and stimulus
correlations (averaged over all pairs of neighbors). Note that since
mutual information is a difference of entropies, the error may be a
nonmonotonic function of ρn and ρs.

stimulus, ρn(s) = ρn, the Cauchy-Schwarz inequality guaran-
tees its non-negativity (see SM [27] for a proof). This implies
that noise correlations may be beneficial even when the sign
rule is violated and the noise correlations are constant (see the
last section the SM [27]). Noise synergy can also be computed
using the resummed entropies of (2). The formulas are slightly
more involved and are reported in the SM [27].

IV. NUMERICAL TEST ON SYNTHETIC DATA

To test our approximations (1) and (2), we built a gen-
eralized linear model to mimic the response of a small
population of 12 retinal neurons with nearest-neighbor in-
teractions [Fig. 2(a)] for which mutual information could be
estimated exactly. The stimulus is modeled as a random Gaus-
sian field sampled at 100 Hz, with varying spatial correlations,
allowing us to tune the strength of stimulus correlations (see
SM [27]). The stimulus is convolved with a linear filter con-
sisting of a difference-of-Gaussians receptive field with a
biphasic temporal kernel [30] (see SM [27]). The mean spike
rate is controlled by the result of this convolution, to which the
effect of its own spiking history is added, through a nonlinear
function. In addition, the past activities of its neighbors con-
trol the stochastic part of firing, through coupling filters (the
mean effect of which is subtracted from the average rate—see
SM [27]). This strategy allows us to tune noise correlations
while keeping the stimulus correlation constant. Importantly,
this model is mathematically inconsistent with the maximum
entropy assumption. It thus allows us to test for both the
appropriateness of the maximum entropy approximation in
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FIG. 3. Application on retinal population response to visual stim-
ulation. (a) A mosaic of a population of off alpha cells in the rat
retina. (b) Stimulus correlation (ρs

i j) plotted against the distance
between pair of cells stimulated with a white-noise movie. (c) Same
as (b) but for noise correlations 〈ρn

i j (s)〉s. (d) Noise synergy for subset
populations of nearby cells. Each box plot corresponds to the noise
synergy of many subgroups of ganglion cells. Only nearby cells are
considered.

the context of a realistic spiking model, and the accuracy of
the small-correlation expansion.

After binning at 15 ms, we computed the exact mutual in-
formation between the stimulus and response using exhaustive
numerical simulations, and compared it with the predictions
of our approximations, as well as the state-of-the-art small
time bin expansion of Ref. [12] [Fig. 2(b)]. We observed
an excellent agreement between numerical calculations and
analytical expressions, in particular for the resummed mutual
information (2), in contrast to the small time bin approxima-
tion, which yields inaccurate results even in the absence of
noise correlations. Although less accurate, the second-order
approximation (1) still provided fair estimates for a wide
range of correlation strengths. We further checked that the
error did not blow up with the system’s size, by analyzing
networks subsampled from the full population with sizes 3–
12 for various values of the stimulus and noise correlations
(Fig. S1 [27]).

V. APPLICATION TO RETINAL DATA

We applied our formulas to ex vivo multielectrode array
recordings of rat retinal ganglion cells in response to black
and white checkerboard stimulation [31,32]. The receptive
fields of the cells have a mosaic structure [Fig. 3(a)], so that
neuronal responses show strong stimulus correlations between
neighbors, which decay with the distance between the re-
ceptive field centers [Fig. 3(b)]. Due to network effects [1],
nearby cells also show strong noise correlations that decay
with distance on a similar length scale [Fig. 3(c)].

We computed the noise synergy using our resummed
approximation (2) for many subgroups of nearby cells of
different sizes [Fig. 3(d)]. In this case it is not possible to
estimate mutual information exactly because of limited data,
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FIG. 4. Application on retinal temporal response to visual stim-
ulation. (a) We build a pseudopopulation of neurons to describe the
spiking history of single neurons. (b) Stimulus autocorrelations for
different cells responding to a white-noise stimulation. Highlighted
lines correspond to two example cells. (c) Same as (b) but for noise
autocorrelations. (d) Noise synergy for different cells plotted against
increasing temporal integration length.

making it a good test case for the usefulness of our analytical
formulas. Spike trains were binned at 15 ms and, to correct
for the bias stemming from noise in estimating correlations,
we subtracted the value obtained after shuffling individual
cell activities across repetitions. We observe that noise cor-
relations impede information transmission, by the order of 1
bit per neuron per second, for a total information of around
10 bits per neuron per second. It should be stressed however
that this result is specific to the white-noise stimulus statistics
considered here, and may not be a general feature of retinal
processing, as other stimulus statistics would change both the
nature of stimulus correlations and the input-output relation-
ship as the network adapts.

We also used our method to study the effect of spiking
memory in single neurons, by treating the spike activity of
the same neuron in N consecutive 4-ms time bins as our
activity vector (n1, . . . , nN ) [treating time bins as we treated
individual neurons previously—see Fig. 4(a)]. Stimulus tem-
poral autocorrelations are positive for about 50 ms [Fig. 4(b)],
then become negative and go to zero for longer times (not
shown). Noise temporal correlations are driven by refrac-
toriness, which suppresses activity immediately following a
spike, and by burstiness, which induces rippling effects up
to 50 ms [Fig. 4(c)]. We find that these correlations im-
prove information transmission by up to 8 bits per second
[Fig. 4(d)], almost doubling it for some cells. This suggests
that information is encoded not just in the average spike rate,
but also through the control of interspike timing, consistent
with previous findings [33–36].

VI. DISCUSSION

Despite being based on a small-correlation expansion,
our analytical predictions, especially (2), work well even in
the presence of strong correlations, which are ubiquitous in
neuroscience [1,2,37]. We showed how our results can be
applied to same-time correlations between neurons, or to neu-

ron autocorrelations, and they can readily be used on general
spatial-temporal correlations.

Our work shares some connections with previous ef-
forts to estimate or interpret information in population codes
[12–14,16,17,38,39]. Reference [13] proposes decomposi-
tions of the mutual information with different interpretations,
but does not provide ways to estimate it. References
[16,38,39] are mostly based on the Fisher information, which
in some limit can be related to the mutual information. While
the first term of our simpler expression (4) recovers one
of their main results—the so-called sign rule—second- and
higher-order terms in the noise correlation parameter provide
important corrections when correlations are high, as can be
seen from deviations from the initial slope in Fig. 2(b). In
Ref. [12] the authors developed a small time bin expansion
of the mutual information. Expanding their results for small
correlations (and further assuming Poisson distributed spike
counts—see SM [27]) gives back our second-order expression
(1). Our method however does not need to assume small time
bins, and still works well for large correlations. Reference
[14] provides an estimate of the mutual information when
the neuronal responses are correlated but have only small
fluctuations around a large mean activity, which is not ap-
propriate for small time bins or for low spike rates as in the
retina.

Our results are based on the small-correlation expansion
developed in Ref. [23]. In order to apply this theoretical
tool, we assumed that both the stimulus-conditioned and
the marginal responses follow a pairwise maximum entropy
distribution. These models are characterized by many un-
known parameters that in principle need to be inferred from
data. However, the final expressions for the mutual informa-
tion contain only quantities that can be directly estimated
from data, without needing any inference. This makes our
approximations ready and easy to use, without requiring
much computational effort. We showed that it works well
even when the data were generated with a very different
model. Maximum entropy distributions are actually a se-
ries of approximations which, just as Taylor expansions,
can be refined by adding higher-order correlations. A fu-
ture direction could be to compute corrective terms to the
mutual information corresponding to third- and higher-order
correlation functions, rather than just pairwise correlations
as we did in this work. At the same time, the pairwise
approximation has proven very accurate for both marginal
[2,19,22,40,41] and conditional [42–45] responses of popu-
lations of neurons, and is only expected to break down for
very large densely correlated populations [46]. We thus ex-
pect our results to be applicable to a wide array of neuronal
contexts.
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G. Tkačik, and O. Marre, Nat. Commun. 8, 1964 (2017).

[32] O. Sorochynskyi, S. Deny, O. Marre, and U. Ferrari,
PLoS Comput. Biol. 17, e1008501 (2021).

[33] I. Nemenman, G. D. Lewen, W. Bialek, and R. R. de Ruyter van
Steveninck, PLoS Comput. Biol. 4, e1000025 (2008).

[34] U. Ferrari, S. Deny, O. Marre, and T. Mora, Neural Comput. 30,
3009 (2018).

[35] V. Botella-Soler, S. Deny, G. Martius, O. Marre, and G. Tkačik,
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