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Inspecting the interaction between
human immunodeficiency virus and the
immune system through genetic turnover

Andrea Mazzolini, Thierry Mora† and Aleksandra M. Walczak†

Laboratoire de physique de l’École normale supérieure, PSL Université, CNRS, Sorbonne Université and
Université Paris Cité, 75005 Paris, France

AM, 0000-0003-3194-2052; AMW, 0000-0002-2686-5702

Chronic infections of the human immunodeficiency virus (HIV) create a very
complex coevolutionary process, where the virus tries to escape the continu-
ously adapting host immune system. Quantitative details of this process are
largely unknown and could help in disease treatment and vaccine develop-
ment. Here we study a longitudinal dataset of ten HIV-infected people,
where both the B-cell receptors and the virus are deeply sequenced. We
focus on simple measures of turnover, which quantify how much the com-
position of the viral strains and the immune repertoire change between
time points. At the single-patient level, the viral–host turnover rates do
not show any statistically significant correlation, however, they correlate if
one increases the amount of statistics by aggregating the information
across patients. We identify an anti-correlation: large changes in the viral
pool composition come with small changes in the B-cell receptor repertoire.
This result seems to contradict the naïve expectation that when the virus
mutates quickly, the immune repertoire needs to change to keep up.
However, a simple model of antagonistically evolving populations can
explain this signal. If it is sampled at intervals comparable with the sweep
time, one population has had time to sweep while the second cannot start
a counter-sweep, leading to the observed anti-correlation.

This article is part of the theme issue ‘Interdisciplinary approaches to
predicting evolutionary biology’.
1. Introduction
The adaptive immune system has been shaped by evolution to provide an effective
response against a practically infinite reservoir of pathogens. During an infection,
B-cells undergo affinity maturation in lymph-node germinal centres [1,2]. This
mechanism is a Darwinian evolutionary process, where B-cell receptors are subject
to somatic hypermutations [3] and are selected depending on their ability to recog-
nize an external pathogen. This increases the affinity of naïve B-cells against the
pathogen up to 10–100 factors [4–6], generating memory and plasma B-cells.

During chronic infections of the human immunodeficiency virus (HIV), the
immune response is dominated by the action of antibody-secreting plasma
B-cells [7]. However, most of the time, this machinery is not enough to control
or clear the virus. The reason can be identified in the extremely rapid evolution
of the virus escaping immune adaptation [8–10] and the fact that regions of the
viral structure sensitive to B-cell targeting are made inaccessible [11,12]. Never-
theless, an effective immune response can instead occur naturally in 10–20% of
the patients, and it is related to the emergence of broadly neutralizing anti-
bodies (bNAbs) [13–15]. This promising discovery is the basis of the search
for an HIV vaccine [16–19].

The current picture is that of the two populations of HIV and B-cell reper-
toire undergoing rapid and complex antagonistic coevolution. A lot of effort has
been put into quantitatively understanding evolutionary properties of these
two populations, which are usually considered separately. For example,
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previous work has studied the dynamics of HIV variants
escaping the immune system [20–22], or diversity patterns
and linkage equilibrium properties of the virus [23]. On the
immune system side, a large body of work has been dedi-
cated to studying the immune response to HIV and the
emergence of bNAbs [24–26], as well as to characterize line-
age evolution during the affinity maturation process, using
high-throughput sequencing of B-cell repertoire [27,28].
Much less work focuses on the coupled evolutionary
dynamics of the two populations. Coevolutionary work has
typically been theoretical, with a general focus on bNAb gen-
eration [29–31]. The datasets used for the data-based studies
contain sequences of either HIV or immune repertoires.
Given the interacting nature of this coevolutionary process,
genetic data of both the populations evolving in time
would provide valuable information.

To our knowledge, only one dataset of this kind has been
made public, where a portion of the HIV envelope gene and
B-cell receptors have both been deeply sequenced in time for
different patients [32]. We base our analysis on this dataset
and define simple macroscopical observables for the
evolution of the two populations, which quantify genetic
turnover and selective pressure. We find that a few of those
measures display temporal correlations between the viral
population composition and the immune system, showing
that the coevolutionary ‘arms-race’ leaves traces at the
whole-population level. To make sense of these correlations,
the second part of the article introduces population–genetics
models with different levels of complexity. Through numeri-
cal and analytical analysis, these models show that the
observed statistical patterns can emerge for a biologically
reasonable set of parameters. These theoretical models
can help to build intuition about how and under which
conditions these correlations arise.
2. Methods
(a) Longitudinal data for human immunodeficiency

virus and the immune repertoire
Our study is based on the dataset described in [32]. The samples
originate from 10 HIV-infected male participants. For each indi-
vidual we have 10–20 longitudinal samples, taken before
administration of antiretroviral therapy. For most of the time
points the viral genetic composition and the immune repertoire
are tracked in parallel, see electronic supplementary material,
figure S1 and section S1 for more information. Specifically, on
the viral side, the C2–V3 region of the env gene is deeply
sequenced. This gene is known to be a potential target of the
antibody repertoire [33,34]. On the immune repertoire side, the
samples correspond to the deep sequencing of the variable
region of the immunoglobulin (Ig) heavy chain locus. We
omitted patient 10 because of lack of HIV samples, as shown
in electronic supplementary material, section S1.

We wrote a pipeline to download the dataset, assemble the
HIV sequences and the immunoglobulin heavy chain clonotypes.
The description of our pipeline is in electronic supplementary
material, section S2. The public repository https://github.com/
statbiophys/HIV˙coevo.git contains all the scripts and the
instructions necessary for running the pipeline and reproducing
our results. The obtained dataset is composed of HIV samples
having an average number of 1000 unique sequences and
250 000 total sequences. For the B-cell receptors there are
130 000 unique clonotypes and 210 000 total clonotypes. The Ig
clonotypes have been clustered into lineages as described in
electronic supplementary material, §S2D.
(b) Simple measures for quantifying evolutionary
properties of human immunodeficiency virus and
the immune repertoire

We ask whether the evolutionary dynamics of HIV are tem-
porally correlated with those of the immune repertoire. To this
end, we define and explore a few simple measures characterizing
the evolution of the two populations.

On the viral side, most of these measures are based on how
single nucleotide polymorphisms (SNPs) of the viral sequences
change over time. Details about how the SNPs are tracked in
data are discussed in electronic supplementary material, §S2E.
As sketched in figure 1a, for a given position in the sequences
and a given nucleotide, we can count its frequency and its abun-
dance. The frequency is the number of unique sequences in
which the nucleotide appears divided by the total number of
sequences. The abundance is the sum of the sequence counts of
all the sequences in which the letter appears. Therefore, the abun-
dance contains the information related to the sequence counts,
while the frequency does not. Since we do not know a priori if
this information is important for the later analysis, we keep
track of both quantities. These numbers can be computed for a
given SNP, i (e.g. i = (1, A) for an A at position 1) at different
time points to create a trajectory xi(t) (figure 1b).

To quantify how much the genetic composition of a set of
sequences varies between two timepoints t1 and t2, we add
together the absolute difference of all the single SNP
trajectories, as in figure 1c. We call this quantity absolute change:

absolute change ðt1, t2Þ ¼
X

i

jxiðt2Þ � xiðt2Þj: ð2:1Þ

The choice of the absolute value makes no distinction between an
increase or a decrease in the trajectory of the same amount. This
is because we are only interested in the magnitude of the change
and not in its sign.

The absolute change can be applied to the HIV sequences of
a patient across time points, both for SNP frequencies and SNP
abundances. This defines the first two entries of table 1: ’HIV
turnover fr/ab’. Since these measures compute how much new
mutations spread in the population from one time point to the
other, they can be interpreted as the genetic turnover.

In a similar way, these measures can also be applied to
the SNPs of Ig repertoire (entries ’Ig turnover fr/ab’ of table 2).
However, in that case, SNPs have to be computed at the level
of lineages, obtaining trajectories for SNP i in lineage l, xi,l(t).
Note that for ’Ig turnover fr’, the frequency is normalized by
the number of sequences in the lineage, so that

P
i[l xi,lðtÞ ¼ 1.

The absolute turnover then sums across all SNPs and lineages.
To quantify the fact that B-cell lineages themselves are subject

to turnover, and rise and fall in time, we introduce a measure that
computes the absolute change of lineage sizes. The size of a
lineage is the sum of all its sequence abundances or frequencies
(here normalized by their total counts in the sample, so thatP

i xi,lðtÞ ¼ 1). Applying the formula for absolute change,
equation (2.1), to these quantities defines the Ig lineage turnover
fr/ab measures in table 2. We define two additional measures
derived from the Ig lineage turnover abundances: one that
includes only the top 10% changes in abundances in the compu-
tation of the absolute change (Ig lineage large turnover), and one
with only the bottom 50% (Ig lineage small turnover). In general
we expect that smaller absolute changes are more subject to
noise and, in turn, carry less signal, which is verified by our
correlation analysis.

https://github.com/statbiophys/HIV_coevo.git
https://github.com/statbiophys/HIV_coevo.git


Table 1. List of HIV evolutionary measures. ab, abundances; fr, frequencies;
non-syn, non-synonymous; syn, synonymous.

short name definition

HIV turnover fr absolute change of SNP frequencies

HIV turnover ab absolute change of SNP abundances

HIV dN/dS fr ratio of the non-syn and syn absolute

changes for SNP frequencies

HIV dN/dS ab ratio of the non-syn and syn absolute

changes for SNP abundances

frequency and abundance of SNPs

1 2 3 4 5 counts

5
3
2

sequences at time 1

SNP abundance

time 1 time 2

4,T

1 2 3 4 5 counts

3
3
2
2

sequences at time 2

SNP:

freq:

abund:

1,A 4,T

2 5

1/3 2/3

1,A 3,G

3/4 1/4

7 2

4,T

1/4

2

SNP:

freq:

abund:

1,A

trajectories absolute variation

3,G

sum

(a)

(b) (c)

C T A A G
C T A T G
A T A T G

A T A A G
C T A A G
A T A A G
A T G T G

Figure 1. (a) Definition of SNP frequency and SNP abundance in a toy
example. (b) Trajectories of SNP abundances. The values correspond to the
example in (a). (c) Absolute-change computation of the trajectories. The
dashed vertical lines are the different contributions to the variation given
by each trajectory. They are summed together leading to the final absolute
change. (Online version in colour.)
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Finally, we define an estimate of the selective pressure on a
population, closely related with the well-known measure of
adaptation dN/dS [35,36]. To this end, we compute separately
the absolute change of the non-synonymous SNPs and synon-
ymous ones and we take their ratio:

dN
dS

ðt1, t2Þ ¼ k

P
i[non-syn jxiðt2Þ � xiðt2ÞjP
j[syn jx jðt2Þ � x jðt2Þj : ð2:2Þ

The coefficient k is the ratio of the probabilities of randomly
generating synonymous and non-synonymous mutations from
the reference sequence. This fixes the ratio to 1 in the case of
uniform randommutations and a smallmutation rate (see electronic
supplementarymaterial, §S2E).We computed this measure only for
HIVand not for the immune system. The reason for this is that most
of the lineages are small and it can happen that their synonymous
change is zero, dS = 0, leading to several undefined values.
3. Results
(a) A single-patient analysis does not show any

interaction
We will show that the coevolutionary interaction between
HIV and the immune system leaves a trace in the dynamics
of two populations. More precisely, some of the evolutionary
measures defined for HIV, table 1, significantly temporally
correlate with properties of the immune repertoire, table 2.

However, this signal is almost not visible at the single-
patient level. For example, in figure 2, we compute the
Spearman correlation between the HIV turnover ab and
the Ig lineage turnover ab trajectories in the nine patients.
Eight out of nine patients show an anti-correlation, but the
signal is weak, with only three out of eight showing a
p-value below 0.1, and only 1 (patient 4) showing a
significant correlation, with p = 0.004 (which comes very
close to the significance threshold of 0.05 after the Bonferroni
correction). Nevertheless, this kind of analysis is not catching
the fact that all these weak correlations point towards the
same direction. Below we propose a statistical measure
which shows that the correlation between these pairs of
measures deviates significantly from a null model where no
correlations exist.
(b) Statistical procedure for combining temporal
correlations across patients

As we saw in §3(a) and figure 2, the correlations between the
considered measures were negative for almost all the patients,
but with a non-significant p-value, which led us to conclude
that there is no significant correlation. However, it is very unli-
kely that, if the two measures are really independent, they
generate a coherent positive (or negative) correlation across
all patients. In the following we describe a procedure whose
aim is to quantify this observation of co-change and ‘integrate’
the information contained in coherent correlations.

We graphically illustrate the statistical integration pro-
cedure in the cartoon of figure 3 using an artificial dataset
composed of three patients. For each patient we consider a
given pair of trajectories: one for ameasure of theHIV turnover,
taken from table 1 and one for the Ig turnover, table 2. We then
calculate the Spearman correlation, ρ, between the two trajec-
tories in each patient, resulting in a set of three coefficients.
As discussed in the previous section, these coefficients are not
significant but they all point towards the same sign (figure 2).
These three coefficients, in general, cannot be compared with
each other: performing random shuffles of the trajectories
leads to null distributions that are specific to each patient.
These null distributions approximately follow centred Gaus-
sian laws, but with standard deviations that depend on the
number of points n, σn. For instance, if two patients have the
same Spearman coefficient but with different numbers of
points n and thus a different width of the null distribution σn,
the patient with the smaller σn will be more significant than
the other. To make these coefficients comparable across
patients, we re-scale them as r̂ ¼ r=sn, so that when the r̂ are
equal, they also have the same significance. The next step of
the procedure is to test if this set of re-scaled coefficients devi-
ates as a whole significantly from the null uncorrelated
scenario. To do so, we perform a one-sample Kolmogorov–
Smirnov test against a normal distribution, i.e. the null
distribution of all the r̂. The obtained Kolmogorov–Smirnov
p-value quantifies this significance.



Table 2. List of Ig-repertoire evolutionary measures. ab, abundances; fr,
frequencies; non-syn, non-synonymous; syn, synonymous.

short name definition

Ig turnover fr absolute change of SNPs frequencies

Ig turnover ab absolute change of SNPs abundances

Ig lineage

turnover fr

absolute change of lineage frequencies

Ig lineage

turnover ab

absolute change of lineage abundances

Ig lineage large the largest 10% absolute change turnover of

lineage abundances

Ig lineage small the smallest 50% absolute change turnover

of lineage abundances

patients
9 8 7 6 5 4 3 2 1

Ig lineage turnover ab

H
IV

 tu
rn

ov
er

 a
b

ρ = –0.26
p = 0.291  

ρ = –0.48
p = 0.071

ρ = –0.43
p = 0.244

ρ = –0.88
p = 0.004

ρ = –0.26
p = 0.531

ρ = –0.25
p = 0.589

ρ = –0.37
p = 0.332

ρ = –0.53
p = 0.139

ρ = –0.58
p = 0.099

Figure 2. Scatter plots of the trajectories of Ig lineage turnover ab and HIV
turnover ab for the nine patients of the dataset. The Spearman correlation
coefficient ρ and the correlation p-value p are reported within each plot.
(Online version in colour.)
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(c) Human immunodeficiency virus turnover and Ig
lineages turnover are significantly anti-correlated

To combine information across patients, we employ the stat-
istical procedure explained in §3(b). For each pair of the
HIV–Ig absolute-change measures, we compute a Kolmo-
gorov–Smirnov p-value on the distribution of re-scaled
correlation coefficients. The 24 p-values are shown in electronic
supplementary material, figure S3a. We correct for multiple
testing through a Benjamini–Hochberg test at a false discovery
rate of 0.05. This selects three significant pairs of measures,
which are shown in figure 4. This figure displays a scatter
plot for each pair, which contains all the points of all the
patients together (normalized as explained in the caption,
and colour-coded by patient). For example the second panel
displays all the points of the nine plots of figure 2. The histo-
gram of Kolmogorov–Smirnov p-values is shown above each
scatter plot. The first two significant pairs are the Ig lineage
turnover and the HIV turnover. We find a correlation when
all the lineage turnovers are considered (middle plot, Ig lineage
turnover ab), or when only the largest lineage changes are taken
(left plot, Ig lineage large turnover). The signal disappears if one
considers only small changes, Ig lineage small turnover, elec-
tronic supplementary material, figure S3a, a measure that is
probably more susceptible to noise. Interestingly, the corre-
lation is negative, as can be seen from the top histograms of
figure 4, and from the grey density of points of the scatter
plots. The third significant pair correlates lineage turnover
versus the dN/dS measure of HIV. This group of re-scaled
correlations points again towards an anti-correlation.

The fact that the correlation between turnovers is negative
seems counterintuitive. It means that if the composition of the
viral population is changing quickly, the immune repertoire
abundances are not changing much, while the immune
repertoire changes its composition faster when the viral
population is varying more slowly.

We performed additional tests to verify that the observed
signals are not caused by spurious effects of the data. A possible
confounding factor is sequencing depth: if the sizes of the HIV
and Ig samples are correlated for some reason, and one of the
consideredmeasures is, in turn, correlated with size, a spurious
correlation can appear. However, as shown by electronic sup-
plementary material, figure S3a, the number of HIV sequences
does not correlate with the number of Ig clonotypes as well as
with any of the Ig measures (and similarly for the Ig number
of sequences). Another spurious correlation can be generated
by the fact that the time points are not homogeneously distrib-
uted (electronic supplementary material, figure S1), and the
considered change measures are dependent on the length of
the time windows. However, we find that the size of time win-
dows (Delta time in electronic supplementary material, figure
S3a) does not showa correlationwith anyof the othermeasures.

Conversely, the Benjamini–Hochberg procedure that we
use to account for multiple testing makes the conservative
assumption that the different tests we tried are independent
of each other. But it is likely that many of the defined quan-
tities are strongly correlated, e.g. Ig lineage turnover ab and Ig
lineage large turnover, making the effective number of tests
smaller than actually used in the procedure and leading us
to overestimate the corrected p-values. Electronic supplemen-
tary material, §S3 discusses this problem using a different
null model generates trajectories that reproduce the internal
correlations present within the HIV measures and within the
Ig measures. This test confirms that the observed patterns
are strongly unlikely to be generated by the refined null model.

We then asked if the sign of the correlation depended on
time-interval size at which the populations were sampled.
The procedure of selecting only long time intervals decreases
the number of points of the trajectories, leading to fewer stat-
istics. The p-values do not show significant correlations for
longer sampling times, as shown in electronic supplementary
material, figure S3c. However, we cannot conclude whether
this lack of significance is due to the larger sampling time,
or to reduced statistical power.

(d) The HIV affects the future state of the immune
system

We repeated the analysis of §3(c) but with a temporal shift to
the trajectories. In particular, we computed the correlations
between the points of the Ig trajectories against the points
of the HIV ones, but one step forward in time (Ig time
shift +1, blue panel of figure 5) or one step back (Ig time
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shift −1, red panel of figure 5). The central green panel corre-
sponds to the case considered in the §3(c) (no time shift).

The statistical procedure discussed in §3(b) were then
applied in all these cases, leading to a distribution of re-
scaled correlations whose average is plotted in the lower
panels of figure 5. The significant pairs (Benjamini–Hochberg
test with 5% false discovery rate) are highlighted with a
black border. The p-values for all the pairs are displayed in
electronic supplementary material, figure S4. In addition to
the previously observed significant correlations with no time
shift, significance is achieved by six pairs, in which changes
in HIV precedes changes of the immune system at the future
time step (red dots). In other words, a larger turnover of HIV
is followed by a smaller turnover of the Ig lineages at a later
time. The average time of this delay, i.e. the average time dis-
tance between consecutive points of the dataset, is around
225 days. No pair shows a significant correlation in the oppo-
site case, suggesting that the immune system does not
immediately affect the future dynamics of the HIV population.
(e) Turnover correlations can be reproduced by a
population–genetics model

Assuming a coevolutionary arms-race, one could have
expected a positive correlation between HIV and Ig repertoire
turnovers, in contradiction with the anti-correlation observed
in figures 4 and 5. When one population is changing a lot, the
other population is expected to change as well to keep up,
leading to a positive correlation. In the following we show
using population-genetics models that this intuitive argu-
ment is not generally correct, and that anti-correlations can
emerge for a reasonable range of parameters.

We investigated the emergence of correlation patterns in
genetic turnovers within a model used before in the context
of HIV and immune system coevolution [30], with a few
minor modifications. The two populations are characterized
by binary strings of length L. The genotype of a virus v is
denoted by v ¼ ðsv

i , s
v
2, . . . , s

v
LÞ, where si ¼ 1 or � 1. Simi-

larly, a clonotype of a B-cell receptor is characterized by a
binary string r ¼ ðsr

i , s
r
2, . . . , s

r
LÞ. We considered populations

of fixed size, NV and NR. The fraction of a given virus strain
or Ig clone are denoted by xv, xr. The ability of a B-cell to
recognize a viral strain and expand depends on how much
its Ig string is similar to that of the virus. At the same time,
a virus strain proliferates more easily if it is different from
the receptor sequences. We defined the affinity between v
and r as follows:

Ev,r ¼
XL

i¼1

sv
i s

r
i : ð3:1Þ

Affinity enters the definition of fitness for the two popu-
lations, which is proportional to its average over the whole
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See table 1 and table 2 for abbreviation definitions. (Online version in colour.)
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adversary population:

fR ¼ sR
2

X

v
xvEr,v, fV ¼ � sV

2

X

r
xrEr,v, ð3:2Þ

where the two selection coefficients sR, sV > 0 control the
strength of selection.

This antagonistic coevolutionary dynamics is simulated
using a Wright–Fisher model, whose details are described
in electronic supplementary material, section S4. Briefly, in
one generation, each genotype i generates a binomially
distributed number of offspring, with a probability pro-
portional to the exponential fitness (given by equation (3.2)
for Ig, or its negative value for HIV) times the genotype fre-
quency, exp ( fi)xi. The total number of individuals in the
population is fixed and imposed via multinomial sampling
of the population from one generation to the next. After
each reproduction step, there is a probability that a given
site switches sign, leading to a mutated offspring. We call
the mutation rates per site per generation μV and μR.
We performed simulations using values for the popu-
lation size and the mutation rate estimated from data. The
effective population size of viral population and number of
B-cells in germinal centres is approximately NR∼ 103− 104,
NV∼ 102− 103 [31,37,38]. The mutation rates are estimated
from neutral sequence diversity as μR∼ μV∼ 10−5− 10−4

over a length of LR∼ 200 for the receptor variable region,
and LV∼ 1000 for the env protein of HIV. This leads to 1–10
mutations per generation in both populations [23,30,39]

As done in [30], in our model we needed to set the same L
for both of the populations, choosing L = 50 amino acids,
which means a gene of a similar length of the B cell receptor
variable region. The other parameters were chosen in a way
to keep the total number of mutations per generation equal
to 1 in both the populations: NR =NV = 103, μR = μV = 10−3/L.

Figure 6 shows the correlation between turnovers gener-
ated by the simulation. The genotype frequencies of the
two populations were sampled every 50 or 200 generations.
The real generation time of B-cells or HIV can be of order
of 1 day [31], meaning that we sampled our simulations
every few months, similarly to what was done in the
experimental data. We compute the absolute change by con-
sidering 20 consecutive samples, using equation (2.1), where
x corresponds to the genotype frequency. We then correlate
the two obtained trajectories of absolute changes for the
two populations and plot the average of those re-scaled
correlations over repeated realizations of the simulation.
The behaviour is complex, depending on the selection coeffi-
cients and the interval of time chosen for the sampling.
However, figure 6 shows that the region of parameter for
which the correlation is negative is wide, consistent with
empirical observations.

( f ) Minimal population–genetics models can reproduce
the observed signal

To gain further intuition about the observed turnover corre-
lations, we make a strong simplification of neglecting the
mutational background [40] and consider the antagonistic
coevolution of two populations, each with only one locus.
This corresponds to the previous model with L = 1.
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Using parameters corresponding to the full model, within
the simple model each population alternates between states
of almost complete fixation and switching (figure 7a), charac-
teristic of the successional-mutation or selective sweep
regime [41,42]. Within this regime, the simple model esti-
mates the time for finding and establishing a beneficial
mutation as T∼ 1/(s Nμ). This time can be applied to HIV
when its population is fixed and the spin sign is concordant
with that of the immune system. For the immune system, it
applies when its sign is opposite to HIV. In both cases
mutations are beneficial with a selective advantage s. The
time for a beneficial mutation to expand in the whole-popu-
lation scales as S∼ log(s N)/s [41]. The selective sweep
regime, S≪ T, means that each sweep finishes before the
sweep of the other population starts, which corresponds to
the limit of weak mutations Nμ≪ 1.

This simple model maps the trajectories in figure 7a onto
an effective eight-state discrete Markov chain (figure 7b,c).
Each of the two populations can either be at a fixed or
sweep state that, when combined with the four possible all
up (+) and down (–) configurations of the two populations,
lead to eight possible states. Transitions to the sweep states
happen with rate λi = 1/Ti and to the transitional states
with rate ηi = 1/Si, where i = {R, V}. For example, in the
state where both populations are in the + fixation state (the
pink state ++ in figure 7b,c), a beneficial mutation occurs in
the virus with rate λV moving it to a sweep state +↓. The
system moves to the discordant configuration +− with effec-
tive rate ηV, until a beneficial mutation in the repertoire occurs
with rate, λR and so on. In this setting, the turnover of a popu-
lation in a time window Δt is 1 if the state at t has a different
fixation sign from the state at t + Δt, and 0 if the fixation sign
is the same between the two time points (see electronic
supplementary material, §S5 for more details).

This simplified Markov chain qualitatively captures the
correlations between turnovers of the full model in §3(e) (elec-
tronic supplementary material, figure S7a and section S5). This
case can be also solved analytically (electronic supplementary
material, equation S3), allowing us to understand how the cor-
relation regime depends on the population parameters and the
timescales involved. In general, we see that we need selection
to observe any correlation. Negative correlations, such as those
observed in the data, require small or intermediate selection
coefficients s, and small turnover time windows Δt (figure 7d
and electronic supplementary material, section S5C). The intui-
tion behind the negative correlation is that a sweep in the
second population is unlikely to occur before the sweep of
the first population is almost complete because the selective
advantage for the second population is weaker during the
sweep than after fixation. As a consequence, two sweeps are
unlikely to be synchronous, implying an anti-correlation in
the turnovers of the two populations when Δt is of the order
of the sweep time S. Consistent with this reasoning, figure
7d shows that the first maximum of negative correlation
scales with the sweep time S∼ log(s N)/s, which sets the
timescale for negative correlations.

In contrast, a longer Δt will not be affected by this interfer-
ence effect and can lead to positive correlations when Δt∼ T,
capturing the intuition that a sweep in one population favours
a subsequent sweep in the other. Consistently, themaximum of
positive correlation scales with the establishment time T∼ 1/(s
Nμ), determining the timescale of positive correlations (figure
7d and electronic supplementary material, section S5C).
Increasing the time window Δt after this scale, the first popu-
lation has enough time to sweep back, generating a second
region of negative correlation at larger Δt. This alternating be-
haviour of positive and negative correlations is damped as Δt
is further increased, eventually approaching zero correlation
for Δt≫ T (electronic supplementary material, section S5C).

Together, the simple model shows that the timescales of
turnover determine the negative correlations observed in
data. The results also suggest the limits of relatively weak
selection coefficients and small turnover windows compared
to mutation rates.
4. Discussion
HIV and the immune system likely interact antagonistically in
a coevolutionary process, whose quantitative details are still
not well understood. Previous works provide evidence that
the virus [43] and the immune system [44] taken separately
are measurably evolving, but an analysis that identifies signals
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of the coevolutionary interaction between the two populations
was still lacking. Taking advantage of a dataset that tracks in
time HIV sequences and B-cell repertoires, we show that this
interaction exists and leaves traces at the population scale.
In particular, we find that HIV genetic turnover and lineage
turnover are significantly negatively correlated. Since lineage
turnover is a measure that considers the immune system as a
whole—we do not select for specific Ig lineages—the fact
that the signal is significant makes us speculate that the viral
population interacts with a large number of distinct immune
lineages, as suggested by previous studies [27,30]. A second
surprising finding is that this correlation is negative, meaning
that when the viral population slows down, the B-cell clones
increase their rate of change (and vice versa).

Using a simple model of coevolution, we were able to
show that negative correlations appear when the time delay
for computing the turnover is comparable with the sweep
time of mutations, while positive correlations emerge for
delays of the order of the establishment time of the new
mutant. The simplest one-locus model that we considered
to derive these timescales clearly lacks biological realism, in
particular in its neglecting mutational background and com-
petition between lineages. Nevertheless, it shows that the
observed negative correlations are driven by a specific inter-
action between the timescales of the problem and constrains
the evolutionary regimes of the viral population and the
repertoire. Specifically, it suggests that the viral population
sweeps before the immune repertoire can respond.

While we cannot offer a detailed mechanism for how this
evolutionary regime is obtained, we may speculate that the
viral population within a sweep rapidly mutates away from
the regions covered by the repertoire, so that the immune
system cannot immediately adapt. Eventually the immune
system catches up, but this happens on timescales where
new beneficial mutations in the viral population may occur.
While the simple model proved very useful to gain intuition
how different turnover correlations can occur, its mapping
between the correlation sign and the population parameters
(selection coefficients, mutation rates) has to be taken with
caution. For example, both the HIV [45] and the B-cell
repertoire [28] show evidence of clonal interference. A conse-
quence of clonal interference is a decrease in the sweep times
of beneficial mutations [46], and the dependence between the
distribution of selection coefficients and observed sweep
dynamics is much more difficult to estimate.

By investigating the correlations between the two popu-
lations with a timeshift, we found that a few measures of
viral turnover and dN/dS negatively correlate with Ig
measures one step forward in the future, while the opposite
was never true. This suggests that HIV evolution impacts the
future state of the immune system. One possible explanation
for the absence of reciprocity could be that there is a difference
in the timescales of response to changes in the other popu-
lation. Assume that the HIV virus responds fast to repertoire
changes, while repertoires respond more slowly to changes
in HIV composition. Then the immune system would hold a
longer memory of the past states of the viral population,
leading to the observed delay in the anti-correlation. Charac-
terizing the timescales involved in these correlations could
help us unveil crucial properties of the HIV–immune system
interaction. However, our attempts in this direction have
been hampered by the limited size of the dataset.

Both the full model of HIV–Ig coevolution inspired by
Nourmohammad et al. [30] and its simplified Markov chain
description reproduce the negative correlations in a wide
range of biologically plausible parameters. The simplified
model does not include the possibility of clonal interference,
indicating that these properties are not necessary for the
appearance of the correlation patterns. Both models consider
only the evolution of clonotypes within a single lineage
against a single epitope, rather than a the multi-lineage
dynamics with multiple targets. Generalizing to more realis-
tic models would require making choices about the kind of
dynamics and parameters for ways in which lineages interact.
A future interesting line of research would be to better charac-
terize this competitive dynamics, since it is known that
different lineages act together against the same pathogen
[4], for example targeting different viral epitopes. One
could also introduce multiple viral epitopes in the model
[47]. Different receptor lineages would compete to increase
the affinity against a given epitope, but at the same time
cooperate in targeting different epitopes. The emerging over-
all dynamics generalizes previous models [30] and it would
be interesting to study how this more realistic setting
influences the statistics of the generated turnover correlations.

To conclude, in this work we have identified an unex-
pected pattern of anti-correlation in the longitudinal tracking
of coevolving HIV and Ig repertoires. The approach we devel-
oped can help to analyse genetic data from other coevolving
populations with antagonist interactions, and to understand
better the general rules that govern them.
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