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Recent experimental results based on multielectrode and imaging techniques have reinvigorated the idea
that large neural networks operate near a critical point, between order and disorder. However, evidence for
criticality has relied on the definition of arbitrary order parameters, or on models that do not address the
dynamical nature of network activity. Here we introduce a novel approach to assess criticality that
overcomes these limitations, while encompassing and generalizing previous criteria. We find a simple
model to describe the global activity of large populations of ganglion cells in the rat retina, and show that
their statistics are poised near a critical point. Taking into account the temporal dynamics of the activity
greatly enhances the evidence for criticality, revealing it where previous methods would not. The approach
is general and could be used in other biological networks.
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Complex brain functions usually involve large numbers
of neurons interacting in diverse ways and spanning a wide
range of time and length scales. At first sight, systems of
inanimate matter seem to enjoy more regular properties, but
they may also display complex and heterogeneous behav-
iors when in a critical state, which corresponds to special
points of the parameter space. Thinking about the brain as a
system near a critical point has been an attractive idea[1,2],
which has gained attention after the suggestion that such
critical states could be achieved in a self-organized manner,
without fine-tuning[3], but also the proposal that operating
near a critical point could be beneficial for computation[4].

Despite considerable work on the foundations of a theory
of critical neural networks (see Refs.[5,6] for recent
examples), the validation of these ideas by experimental
data has proven difficult, largely because it requires us to
measure the detailed activity of large populations of
neurons. Recent progress has been made possible by the
advance of multielectrode or imaging techniques, which
have helped detect signatures of criticality in a variety of
neural contexts. Two lines of empirical evidence, rooted in
different approaches to critical systems, have been fol-
lowed, albeit with little intersection. In line with the original
ideas of self-organized criticality and branching processes,
the statistics of neural avalanches in cortical layers has been
shown to display power-law statistics[7,8]. This observa-
tion is indicative of the critical nature of the systemÕs
dynamics, but it relies on arbitrary choices, such as the
number of units considered, the minimal silence time to call
the end of an avalanche, or the definition of a neural event
itself. The stability exponents of the neural dynamics,
which become positive at the transition to chaos, have
also been used as signatures of criticality[9]. This criterion
relies on a continuous description of neural activity, which
is inappropriate for codes relying on combinations of

spikes and silences. Both these approaches address the
dynamical aspect of criticality. They require the definition
of anad hocorder parameter (avalanche size, firing rates),
which may not be the most relevant one for neural activity.
A second line of inquiry, which focuses on the thermody-
namic aspect of criticality, has been to study the frequency
of combinations of spikes and silences in a neural pop-
ulation as a statistical mechanics problem, and explore its
properties in the thermodynamic limit[10,11], using non-
parametric signatures such as the divergence of the specific
heat to demonstrate critical behavior[12,13]. These analy-
ses have, however, been restricted to the simultaneous
distribution of neural activity, with no regard to its
dynamical properties, which may be strongly out of
equilibrium and may contain important clues about critical
behavior. Because of their respective limitations, neither of
these approaches gives us a coherent picture for assessing
and understanding all aspects of criticality.

In this Letter we overcome these limitations by intro-
ducing a framework for analyzing the critical dynamics of
neural networks. We apply a thermodynamic approach to
the populationÕs spiking activity over long periods, treating
time as an extra dimension. We propose a generalized,
time-normalized specific heat of spike trains as an indicator
of critical dynamics. The approach accounts for the
combinatorial nature of the code, and does not rely on
the choice of an order parameter. It reduces to the usual
notion of dynamical criticality through the stability expo-
nents of the dynamics when the number of spikes can be
approximated as a continuous variable. It is also equivalent
to the thermodynamic criticality of Refs.[11,13]when time
correlations are ignored. We apply our criterion to a dense
population of ganglion cells recorded in the rat retina.
We will show that the dynamics of this population are close
to a critical point, where the specific heat diverges. This
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divergence appears to be much more pronounced once the
temporal dynamics are taken into account.

To describe the discrete spiking activity of a population
of N neurons, we divide time into small windows of length
! t, and assign a binary variable! i ;t ¼ 1 if neuron i has
spiked at least once within windowt, and 0 otherwise.! t
must be small enough so that two spikes are unlikely to
occur in the same window. In the following we will take
! t ¼ 10 ms. The probability of a given multineuron spike
train betweent ¼ 1 andt ¼ L, or generalizedÒcode wordÓ
f! i;tg, can be written in a Boltzman form:

P" ðf! i;tgÞ ¼
1

Zð" Þ
e−" Eðf! i;t gÞ; ð1Þ

whereZð" Þ is a normalization constant. This equation is
just a formal definition, but it allows us to defineE as the
energy of spike trains from their probability distribution,
and thus to make an explicit analogy with equilibrium
statistical mechanics. In information-theoretic terms, the
surprise of the spike train is related to its energy through
− logP ¼ " E þ logZð" Þ. Note that this probability reflects
both the intrinsic dynamics of the retinal network and the
correlations imposed by the stimulus." is an adjustable
control parameter equivalent to an inverse temperature, set
to 1 by convention to describe the observed spike statistics.
Its function is to study the parameter space of models in the
vicinity of the actual system at" ¼ 1, and thus assess its
proximity to a critical state.

One possible indicator for detecting a critical point is the
specific heat[2,14], defined in our formalism as

cð" Þ ¼ " 2

NL
h#E2i" ; ð2Þ

where#E ¼ E − hEi denotes fluctuations from the mean
energy, andh% % %i" denotes averages taken under probability
law P" (see Appendix C, Ref.[15]). The specific heat has a
clear biological interpretation in terms of the spike train
statistics: it is the normalized variance of the surprise of
neural spike trains, VarðlogPÞ=NL. It quantifies the
breadth of code word utilization:cð" Þ ¼ 0 means that all
utilized code words have uniform usage probability,
whereas a largecð" Þ means that the code is balanced
between a few frequent code words and many more rare
code words[2]. We included the normalizationNL because
the variance of the surprise is expected to be an extensive
quantity scaling linearly with the system size, taken both
across neurons and time. Thus, in the limit where spiking
events ! i;t are independent or weakly correlated,cð" Þ
should converge to a finite value asN and L → ∞. For
example, if all spiking events were independent with the
same spiking probabilityp in each time window, we
would have cð" Þ ¼ " 2ðpqÞ" ðlogp − logqÞ2=ðp" þ q" Þ
with q ¼ 1− p, for all N and L (see Appendix C,
Ref. [15]). However, if the system is strongly interacting

(between neurons, across time, or both) the specific heat
may diverge for a certain critical value of the control
parameters. Treating time windows and neurons on equal
footing allows us to address both the many-body nature of
the problem and its critical dynamics with a single criterion.
Since this criterion is based on the surprise, which follows
directly from the probabilistic nature of the process, it does
not require us to choose an order parameter (spike rates,
size of avalanche,etc.).

Using the divergence of this specific heat as a diagnostic
tool for criticality generalizes previous approaches. First, in
the limit L ¼ 1, where code words are simultaneous
combinations of neurons and silences, with no regards to
the dynamics, we recover the static thermodynamic
approach of Ref.[13]. Second, the method is consistent
with the notion of dynamical criticality based on stability
exponents. Let us assume that the dynamics is well
described by a single projection of the spikes onto a
continuous variable, e.g.,Kt ¼

P N
i¼1 ! i;t , and linearized

to a Gaussian, Markovian dynamics

Ktþ1 ¼ aKt þ b þ Gaussian noise; ð3Þ

where the stability exponent of the dynamics is logðaÞ < 0.
This system is critical fora ∼ 1; above the transition, the
linearized dynamics breaks down as the system becomes
chaotic. The specific heat of this model at" ¼ 1,

cð" ¼ 1Þ ∼
!

log
N − hKi
hKi

"
2 VarðKÞ

N
1þ a
1− a

; ð4Þ

diverges at the critical pointa ¼ 1 (see Appendix D,
Ref. [15]). Lastly, the approach can detect criticality in
simple models of neural avalanches. Consider the spiking
model proposed in Ref.[7], where a neuroni spikes at
time t þ 1 in response to a presynaptic neuronj spiking at
time t with probabilitypij (Appendix E, Ref.[15]). This
model is parametrized by the branching parameter
$ ¼ ð1=NÞ

P
ij pij , which controls the spread of neural

avalanches. At the critical point$ ¼ 1 the system exhibits
avalanches with power-law statistics. We estimated the
specific heatcð" ¼ 1Þ of that model numerically, and
found it to diverge with the system size precisely at the
critical value of the branching parameter$ ¼ 1 (Fig. S1,
Ref. [15]). In sum, the specific heat, when defined on the
temporal statistics of spike trains, allows us to detect
dynamical critical transitions, without having to know
the order parameter or the definition of an avalanche.

Our goal is to apply our criterion to the spiking activity
of a dense population ofN ¼ 185retinal ganglion cells in
the rat retina[17], stimulated by films of randomly moving
bars and binned with! t ¼ 10 ms (see Appendix A and B,
Ref.[15]). However, to carry out our analysis we first need
to learn a probabilistic lawPðf! i ;tgÞ from the spike trains,
which in itself can be a daunting task. We do so by
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employing the principle of maximum entropy[10,18],
which consists in finding the least constrained distribution
of spike trains (i.e., of maximum entropy−

P
P logP)

consistent with a few selected observables of the data (see
Appendix F, Ref.[15]). In Ref. [11] the global network
activity of the salamander retina was modeled by con-
straining the distributionPðKÞ of the total number of spikes
in the population (see also Ref.[19]). The inferred model
was shown to be near a critical point. However, that choice
of constraints did not address the dynamical nature of the
spike trains. To do that while making as few additional
assumptions as possible, we also constrain a dynamical
quantityÑ the joint distribution ofKt at two different times
PuðKt; KtþuÞ. This leads to a family of time translation
invariant models of the form in Eq.(1) with

E ¼ −
X

t

hðKtÞ −
X

t

Xv

u¼1

JuðKt; KtþuÞ; ð5Þ

wherev ≥ 0 is the modelÕs temporal rangeÑ the larger the
v, the more accurate the model. Applying the maximum
entropy principle to trajectories rather than instantaneous
states is sometimes also referred to as the maximum caliber
method[20]. This model is time-translation invariant, as
justified by the short autocorrelation time ofKt (< 200 ms,
see Fig. S2, Ref.[15]), which indicates no long term
fluctuations, and by the stationarity of the firing rate and
temporal correlations in the data. The model is learned by
fitting the parametershðKÞ andJuðK; K 0Þ to the data using
the technique of transfer matrices (see Appendices H and I,
Ref. [15]). We find that a temporal range ofv ¼ 4 suffices
to account for the temporal correlations ofK (see Appendix
J and Figs. S2 and S3, Ref.[15]).

The obtained model reproduces key dynamical features
of the data. Fig.1(a) compares data and the model for
the joint distribution of the numbers of spikes in three
consecutive time windows, showing excellent agreement
despite this observable not being fitted by the model. More
importantly, the model predicts well the distributions of
size and duration of neural avalanches, defined as con-
tinuous epochs ofK > 0, as shown in Figs.1(b) and1(c)
for a subset ofN ¼ 61 neurons. The agreement extends
over seconds, way beyond the modelÕs temporal range of
v ! 10 ms¼ 50 ms. Although we will not use avalanche
statistics to discuss criticality in this Letter, as is often done
[7,8], the success of our model in predicting them dem-
onstrates its ability to capture complex, collective dynami-
cal behavior.

Simplifying the model too much does not capture
important statistics of the data. We could constrain two-
point correlation functionshKtKtþui (instead of the full
joint distribution), as well asPðKÞ. Although this would
reduce the number of parameters of the model, it would not
improve its numerical tractability. Simplifying further, we
could make a continuous approximation forKt and

constrain only the first two moments of the distributions.
This approximation would yield an autoregressive model
generalizing Eq.(3) (see Appendix G, Ref.[15]). However,
the statistics of such models would all be Gaussian, in plain
contradiction with the observed distribution of spikes
PðKÞ, see Fig.1(d). Since the tail of that distribution is
related to the collective properties of the population[11], it
is important to account for it fully, and our model is the
simplest one that does that.

Confident that our model gives a precise account of the
temporal dynamics of the global network activity, we can
use it to estimate its specific heat. Figure2(a)represents the
specific heat of the learned models [Eq.(5)] for all N ¼ 185
neurons as a function of the temperature1=" , for different
choices of the temporal rangev. The special casev ¼ 0, in
which time correlations are ignored, shows only a moderate
peak in specific heat, and far from" ¼ 1. By contrast,
including time correlations (v > 0) greatly enhances the
peak, which rapidly approaches" ¼ 1 as the temporal
rangev is increased. Figure2(b) shows how the peak in
specific heat behaves for random subgroups of neurons of
increasing size, forv ¼ 4. Similarly, the peak becomes
larger, sharper, and closer to" ¼ 1 as the network size
grows. These are striking results, if we recall that all these

(a) (d)

(b) (c)

FIG. 1 (color online). The model captures the global dynamics
of the network. (a) Predicted versus observed connected corre-
lation functionsC3¼PðKt;Ktþ1;Ktþ2Þ−PðKtþ2ÞPðKtþ1ÞPðKtÞ
between the total number of spiking neurons in three consecutive
time windows of length! t ¼ 10 ms, for a subnetwork ofN ¼ 61
neurons. (b) and (c) Model prediction for the size and duration of
avalanches, with different temporal rangesv, for the same
subnetwork ofN ¼ 61 neurons. An avalanche is a series of
nonsilent 10 ms windows, ended by a silent window. While a
model of independent spike words (v ¼ 0) is a poor predictor of
avalanche statistics, including time correlations over a few time
windows greatly improves the prediction. (d) The distribution of
the number of spiking neurons in a window! t ¼ 10 ms (black
curve) is exactly fitted by the model, by construction. By contrast,
it is not well predicted by a Gaussian model (red curve).
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curves would fall on top of each other for independent (or
weakly correlated) spiking events. The unusual scalings of
Fig. 2 suggest that the system is indeed close to a critical
point. But they also show that both the collective behavior
of the population and the temporal correlations play a
crucial role in revealing the critical properties of the
network. In fact, the convergence of the peak of the specific
heat towards" ¼ 1 is only apparent when time correlations
are taken into account (v > 0), as illustrated by Fig.3(a).
This is in contrast with the results of Ref.[11], which found
signatures of criticality even forv ¼ 0, although this
apparent disagreement may be attributed to differences
between species (the rat having much higher average firing
rates in their retinal ganglion cells than the salamander).

Although the peak of the specific heat is a somewhat
abstract quantity, the fact that it increases and approaches
" ∼ 1 implies that the normalized variance of the surprise
cð" ¼ 1Þ ¼ VarðlogPÞ=NL also increases with the system
size, as shown in Fig.3(b). These variances are extremely
high compared to that we would obtain if all spiking events
were independent,cindeð" ¼ 1Þ ¼ 0.38, indicating a very
wide spectrum of code word usage.

For the sake of simplicity and tractability, we have here
only modeled the global network activity of the retina.
Although these models capture important features of the
dynamics (Fig.1), more detailed models accounting for the
full temporal cross-correlations between individual neurons
[21,22]could provide us with a more precise description of
the spiking dynamics, and better approximations to the
specific heat curves. In principle our inference procedure
may also depend on the choice of window size! t. We
repeated the analysis for windows of 5 ms, and found the
same results, with an excellent agreement between models
that have a different! t but the same temporal rangev ! ! t
expressed in seconds (see Appendix H and Figs. S4 and S5,
Ref. [15]). Our results also depend on our choice of
stimulus. Repeating our analysis for a random white-noise
stimulus, where no spatial or temporal correlations are
present and thus collective effects are expected to be much
weaker, we still observe signs of an approach to a critical
point, although less markedly (Fig. S6, Ref.[15]).

We have introduced a framework for studying the
collective dynamics of a population of neurons. This
formalism provides us with a nonparametric criterion for
detecting the proximity to a critical state, whether this
criticality stems from strong collective effects in the
population, from critical dynamics at the edge of chaos,
or from both, thus generalizing previous approaches. When
we apply our approach to large-scale recordings in the
retina, we find that the population dynamics are very close
to a critical state. Compared to the static thermodynamic
approach of Refs.[11,13], which focused on the statistics
of instantaneous code words, the peak in specific heat that
we find is 10 times larger, and much closer to the systemÕs
actual temperature of 1. Our results suggest that although
simultaneous correlations between neurons are an impor-
tant marker of near-critical behavior, accounting for their
dynamical component greatly enhances our confidence and
understanding of it.

The idea that biological systems may operate near a
critical point is not restricted to the case of neurons[2], with
evidence in systems as diverse as the cochlea[23], immune
repertoires[24], natural images[25], animal flocks[26], or
the regulation of genes in early fly development[27], to
name but just a few, and we expect our approach to be
useful when both the collective behavior and the dynamics
play an important role.

We thank William Bialek and Gasper Tkacik for helpful
comments on the manuscript. Experiments were performed

(a) (b)

FIG. 2 (color online). Divergence of the specific heat of spike
trains. (a) Specific heatcð" Þ of spike trains of the entire
population (N ¼ 185), as a function of the temperature1=" ,
for an increasing temporal rangev. Temperature" ¼ 1 corre-
sponds to the observed statistics of spike trains. The curve with
v ¼ 4, which fully accounts for the dynamics of the spike trains,
shows a markedly higher peak than that obtained from the
statistics of instantaneous code words (v ¼ 0). (b) Specific heat
of spike trains for subnetworks of increasing sizesN, for v ¼ 4.
Each point is averaged over 100 random subnetworks forN ≤ 50,
and shows one representative network forN ¼ 61 and 97. The
error bars show standard deviations. The peak increases with
network size, indicating a divergence in the thermodynamic limit.

(a) (b)

FIG. 3 (color online). Finite-size scaling. (a) Position of the
peak1=" in specific heat (see Fig.2) as a function of network size
N, for increasing time rangesv. Accounting for the dynamics of
spike trains (v > 0) gives peaks that are much closer to the
temperature of real spike trains (" ¼ 1) than for instantaneous
spike words (v ¼ 0). (b) The specific heat of real spike trains,
cð" ¼ 1Þ, is equal to the variance of the surprise per neuron and
per unit time, VarðlogPÞ=NL. This variance increases with the
system sizeN and with the temporal rangev. Note that thev ¼ 5
curves are very close to thev ¼ 4 ones up toN ¼ 61 (above
which they are not calculated).
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Appendix A: Retinal recordings

Recordings were performed on the Long-Evans adult
rat. In brief, animals were euthanized according to in-
stitutional animal care standards. The retina was iso-
lated from the eye under dim illumination and transferred
as quickly as possible into oxygenated AMES medium.
The retina was then lowered with the ganglion cell side
against a multi-electrode array whose electrodes were
spaced by 60 microns, as previously described [1]. Raw
voltage traces were digitized and stored for o!-line anal-
ysis using a 252-channel preampliÞer (MultiChannel Sys-
tems, Germany). The recordings were sorted using cus-
tom spike sorting software developed speciÞcally for these
arrays [1]. We extracted the activity from 185 neu-
rons with satisfying standard tests of stability and lim-
ited number of refractory period violations. The anal-
ysed data corresponds to one hour (L = 360, 000 with
" t = 10ms) of recordings.

Appendix B: Visual stimulation

Our stimulus was composed of two black bars moving
randomly on a gray background. Each bar was animated
by a brownian motion, with additional feedback force to
stay above the array, and repulsive forces so that they
do not overlap. The bars stay within an area that covers
the whole recording array. The amplitude of the bar
trajectories allowed them to sweep the whole recording
zone. The trajectories of the barsx1 and x2 are described
by the following equations:

dv1

dt
= !

v1

!
+ sign( y1 ! y2)

!
R

|y1 ! y2|

" 6

! " 2
0(y1 ! µ1) + # W1(t) (B1)

dv2

dt
= !

v2

!
+ sign( y2 ! y1)

!
R

|y2 ! y1|

" 6

! " 2
0(y2 ! µ2) + # W2(t) (B2)

where W1(t) and W2(t) are two Gaussian white noises of
unit amplitude, µ2 ! µ1 = 600µm is the shift between
the means," 0 = 1 .04 Hz, ! = 16.7 ms, R = 655µm and
# = 21.2µmás! 3/ 2. The width of one bar is 100µm. The
stimulus was displayed using a Digital Mirror Device and
focused on the photoreceptor plane using standard optics.

Appendix C: Thermodynamics of spike trains

Let us start with the probability distribution for entire
spike trains { #i,t } , i = 1 , . . . , N , t = 1 , . . . , L. By analogy
with Boltzmann law we can write this probability as:

P ({ #i,t } ) =
1
Z

e! E ( { ! i,t } ) , (C1)

where E({ #i,t } ) and ! logZ are deÞned up to a com-
mon constant. The surprise ! logP ({ #i,t } ) is equal to
E({ #i,t } ) + log Z. Note that considering the statistics
of entire spike trains over time allows for a well-deÞned
" t " 0 limit, with the concomitant scaling L # 1/" t, by
contrast to the static thermodynamic approach (L = 1)
where this limit tends to the all-silent state with proba-
bility one.

The probability distribution in Eq. C1 will produce
typical spike trains with the same statistics as the exper-
iment. To explore this model across a line in parameter
space, we can generalize Eq. C1 to an arbitrary Þctious
temperature:

P" ({ #i,t } ) =
1

Z($)
e! "E ( { ! i,t } ) . (C2)

While P" =1 describes ÒtypicalÓ spike trains with the
same statistics as the experiment, this generalized dis-
tribution allows us to explore atypical spike trains of low
or high energy (accessed by high and low$), or equiva-
lently of high and low surprises.

The free energy is deÞned asF ($) = ! $! 1 logZ($).
The Shannon entropy ofP" ,

S($) = !
#

{ ! i,t }

P" ({ #i,t } ) log P" ({ #i,t } ), (C3)

can be calculated asS($) = %F/%$= $($E%" ! F ($)),
where$á%" denotes an average taken over spike trains with
probability law P" . This last relation is better known in
the form F = E ! T S, with T = $! 1 is temperature.
The heat capacity is deÞned as:

C($) = T
%S

%T
= ! $

%S

%$
= $2($E2%" ! $ E%2

" ). (C4)

In statistical physics it is an extensive quantity, meaning
that it scales with the system sizeNL. The speciÞc heat
c($) = C($)/NL is the heat capacity normalized by the
system size.
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Let us consider a simple example, where each neuron
spikes with probabily pi = r i ! t in each time window
(where r i is its spike rate), independently of the other
neurons and of its own spiking history. In the limit ! t !
0 these are just Poisson neurons. The probability of a
given spike train factorizes over neurons and over time,
and reads:

P! ({! i,t }) =
LY

t =1

NY

i =1

1
zi (" )

p!" i,t
i q! (1 ! " i,t )

i , (C5)

where qi = 1 � pi and zi (" ) = p!
i + q!

i . The speciÞc heat
can be calculated from Eq. C4:

c(" ) =
1
N

NX

i =1

" 2(pi qi )! (log pi � logqi )2/ (p!
i + q!

i ). (C6)

This expression has no divergence as a function of" . For
small uniform spiking probability pi = p ⌧ 1, the speciÞc
heat at the natural temperature is also small: c(" =
1) ⇠ p(log p)2. In that same limit, the peak in speciÞc
heat is reached at high temperatures," c ⇠ �#/ logp,
where # ⇡ 2.2 is solution of the irrational equation # =
2(1 + e! # ); the value of the peak does not depend onp,
and is c(" c) ⇠ #(# � 2) ⇡ 0.48.

Appendix D: Thermodynamics of a simple
auto-regressive model

We consider a simple case where we assume that the
neural population is well described by a continuous pa-
rameter describing the total number of spiking neurons in
a time window. Let us call K t =

PN
i =1 ! i,t that number.

Its mean is hK i = rN , where r is the average spike rate
of each cell per time window. We denoteK t = rN + xt .
Assuming that K and N are large, we can treatxt as
a continuous variable, and model it by a simple Markov
dynamics, or auto-regressive model:

xt +1 = axt + $t , (D1)

with $t a Gaussian noise of mean zero and variance! 2.
xt is of mean zero, and its auto-correlation function ofxt
reads:

hxt xt ! i =
! 2

1� a2 a|t ! t ! | = hx2
t ia|t ! t ! | ⌘ f rNa |t ! t ! | ,

(D2)
where f = Var( K )/ hK i is the Fano factor of the number
of spiking neurons. f = 1 when the distribution of K
is Poisson. Whena ! 1, the system becomes critical in
the traditional dynamical sense, with a diverging corre-
lation time �1/ log(a). This is the Òstability parameterÓ
obtained from an auto-regressive model [2].

For each K , the probability of a given spiking pattern
is uniform:

P(! 1, . . . , ! N |K ) =
%(
P

i ! i , K )
�N

K

� . (D3)

Assuming that the system is stationary at t = 1, the
probability of a whole spike train of duration L is thus
given by:

logP({! i,t }) = �L
2

log(2&! 2) � x2
1

2f rN
� 1

2
log(2&frN )

� EK � E" ,
(D4)

with

EK =
1

2! 2

LX

t =1

(xt +1 � axt )2 (D5)

E" =
LX

t =1

[log "( N + 1) � log "( rN + xt + 1)

� log "((1 � r )N � xt + 1)] . (D6)

where we have replaced
�N

K

�
=

� N
rN + x t

�
by its expres-

sion in terms of Gamma functions "(x). The term �EK ,
combined with the Þrst term on the right-hand side of
Eq. D4, corresponds to the Gaussian distribution of' t
with replacement using Eq. D1. The term �E" corre-
sponds the conditional distribution in Eq. D3. The sec-
ond and third terms on the right-hand side correspond to
the Gaussian distribution of x1, of zero mean and vari-
ancefrN = Var( K ).

We expand E" by assuming that x ⌧ N , using Stir-
lingÕs formula, and obtain at leading order:

E" ⇡
X

t

NH
✓

Nr + xt

N

◆
⇡

X

t


NH (r ) + log

1� r
r

xt

�
,

(D7)
whereH (x) = �x log(x)� (1�x) log(1�x) is the binary
entropy.

If we neglect terms containing the initial condition x1,
the total surprise is, up to a constant, equal toEK + E" .
Its variance, also called heat capacity by analogy with
statistical mechanics, is given by

C(" = 1) = ( hE 2
K i � hEK i2) + ( hE 2

" i � hE" i2), (D8)

as the cross-correlation term involves the third moments
of xt and thus is zero. A calculation using Gaussian
integration rules gives, at leading order in the limit L !
1:

hE 2
K i � hEK i2 =

L
2

. (D9)

On the other hand we obtain:

hE 2
" i � hE" i2 = NL

✓
log

1� r
r

◆2

f r
1 + a
1� a

. (D10)

Both variances scale linearly with L . This is consistent
with the extensivity of the heat capacity: the average
surprise scales linearly withL , and its variance does as
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well. But only the second part of the variance scales
linearly with N . Thus in the limit N , L ! " ,

c(! = 1) =
C(! = 1)

NL
=

!
log

1 # r
r

" 2

f r
1 + a
1 # a

. (D11)

The variance of the surprise diverges asa ! 1, i.e. as
the system becomes critical in the usual dynamical sense.
When the Fano factor f = Var( K )/ $K %diverges with
N , the speciÞc heatc(! = 1) diverges as well. This is
the case when ßuctuations ofK are of the same order
of magnitude as K itself, e.g. Var( K ) & K 2 and thus
f & K & rN , as was observed in the salamander retina
[3].

Appendix E: Thermodynamics of a model of neural
avalanches

We now study a simple model of spiking dynamics that
is known to display critical avalanche statistics [4]. We
will show that applying our speciÞc heat criterion allows
us to detect the critical point. In this model, neuron i
spikes at timet if it receives signal from at least one other
neuron j , which happens with probability pij , provided
that that neuron has spiked at time t# 1. The probability
for a spike train can be written as:

P({ " i,t } ) =
#

t

N#

i =1

pi (t)! i,t [1 # pi (t)]1! ! i,t (E1)

wherepi (t) = 1 #
$

j (1# pij )! j,t ! 1 is the probability that
neuron i spikes at time t. The energy of this process can
be easily calculated asE = # log(P) =

%
t #t , with

#t = #
&

i

" i,t logpi (t) # (1 # " i,t ) log[1 # pi (t)] (E2)

The parameter $ = (1 /N )
%

ij pij quantiÞes the prob-
ability that a spike generates another spike at the next
time step. When $ < 1, the spiking activity goes
extinct, while when $ > 1, it explodes exponentially.
Around $ & 1, the system is critical and exhibits neural
avalanches with power-law statistics [4]. Since the all-
silent state is absorbing, in the simulation we further as-
sume that when the system goes into the all-silent state,
one random neuron (out ofN ) is made to spike to restart
the activity.

Taking the L ! " limit, the speciÞc heat is just esti-
mated numerically from simulations as

c(! = 1) =
1
N

$%#2t %+
2
N

&

u" 1

$%#t %#t + u %, (E3)

where %#t = #t # $#t %. Fig. S1 shows the speciÞc heat
as function of the branching parameter$, for increasing
network sizesN . The speciÞc heat peaks close to$ = 1.
The peak diverges and gets closer to 1 as the system
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FIG. S1: SpeciÞc heat of a simple model of neural
avalanches. The speciÞc heat c(! = 1), or variance of the
surprise Var(log P)/NL , is plotted as a function of the branch-
ing parameter " in a simple model of neural avalanches, for
increasing network sizes N . The speciÞc heat gets increas-
ingly peaked as the network size grows, and the peak gets
closer to the critical value branching parameter " = 1.

size is increased. This demonstrates that our criterion
for criticality based on the speciÞc heat can help detect
a critical transition in this simple model. Note that, in
doing so, we have not had to deÞne what an avalanche
is. Instead, we have solely relied on the thermodynamic
properties of the spike train statistics.

Appendix F: Maximum entropy modeling

We want to infer a model for the probability of a
entire multi-neuron spike train { " i,t } , i = 1 , . . . , N ,
t = 1 , . . . , L . The principle of maximum entropy allows
us to infer an approximation of that probability from
measurable observables. We look for a model distribu-
tion P({ " i,t } ) that has maximum entropy:

#
&

{ ! i,t }

P({ " i,t } ) log P({ " i,t } ) (F1)

under the constraint that it agrees with the ex-
pected value of a few chosen observablesO1({ " i,t } ),
O2({ " i,t } ), . . ., estimated from the data:

$Oa%data =
&

{ ! i,t }

Oa({ " i,t } )P({ " i,t } ), for all a. (F2)

The technique of Lagrange multipliers gives us the form
of such a distribution:

P({ " i,t } ) =
1
Z

exp

'
&

a

&aOa({ " i,t } )

(

, (F3)

where&a are Lagrange multipliers that must be adjusted
to satisfy Eq. F2, and Z is a normalization constant.
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There are many ways to choose the set of observ-
ables Oa, and just as many resulting models. Here for
simplicity we assume that the system is in a station-
ary state, so that the statistics of spike trains is time-
invariant. This implies that the observables will be time
averaged. Our choice of observables are the joint dis-
tributions of the number of spiking neurons at di!erent
times, Pu (K t , K t + u ), for u = 1 , . . . , v, deÞned as:

Pu (K, K !) =
1

L ! u

L " u!

t =1

!

{ ! i,t }

! K,K t ! K ! ,K t + u P({ " i,t } ),

(F4)
where ! a,b = 1 if a = b and 0 otherwise. The correspond-
ing model of maximum entropy is:

P({ " i,t } ) =
1
Z

exp

"
!

t

h(K t ) +
!

t

v!

u=1

Ju (K t , K t + u )

#

(F5)
where h(K ) and Ju (K, K !) are the Lagrange multipliers
#a associated with the constraints onPu (K, K !). Intro-
ducing h(K ) is not necessary, becauseJu (K, K !) su"ces
to enforce the constraints on the marginals, but doing
so allows us to formally separate Þrst-order from second-
order terms, at the cost of redundancy. As a result, the
deÞnition of the model in Eq. F5 allows for some freedom
in the deÞnition of the parameters. Indeed the distribu-
tion is unchanged upon the transformations:

Ju (K, K !) " Ju (K, K !) + $(K ), h(K ) " h(K ) ! $(K ),
(F6)

and likewise for the second argument ofJu . This degen-
eracy can be lifted by imposing the following relations:

!

K

P(K )h(K ) = 0 , (F7)

!

K

P(K )Ju (K, K !) = 0 for all K !, (F8)

!

K !

P(K !)Ju (K, K !) = 0 for all K. (F9)

Note that this choice of parametrization does not a!ect
the model distribution itself. It is merely a choice of
convention, which ensures that the energy termsh and
J are balanced around 0.

In practice it is enough to study the model for
(K 1, . . . , K L ), the distribution of which is:

P(K 1, . . . , K L ) =
1
Z

exp

"
!

t

$
h(K t ) + log

$
N
K t

%%

+
!

t

v!

u=1

Ju (K t , K t + u )

#

,

(F10)

where the binomial factors
&N

K t

'
counts the spiking pat-

terns (" 1,t , . . . , " N,t ) having K t spiking cells amongN .

Appendix G: Gaussian approximation

It is possible to further simplify the maximum entropy
model by treating K as a continuous variable and con-
straint only its Þrst and second moments#K t $, #K t K t + u $.
Using Eq. F3, these constraints lead to a Gaussian dis-
tribution for the number of spiking neurons:

P(K 1, . . . , K L ) =
1
Z

exp

"

!
1
2

!

t

v!

u=0

xt Au xt + u

#

, (G1)

wherext = K t !# K $as before. This process is equivalent
to a generalized auto-regressive model:

xt =
v!

u=1

%u xt " u + $t , (G2)

with $t a Gaussian variable of zero mean and covariance
#$t $t ! $= " 2! tt ! and the correspondance:

A0 =
1
" 2

(

1 +
v!

u=1

%2
u

)

(G3)

Au = !
2
" 2

*

+ %u !
!

|u ! " u !! |= u

%u ! %u !!

,

- . (G4)

This class of models generalizes Eq. D1. They predict a
Gaussian distribution for the number of spiking neurons,
in contradiction with experimental observations.

Appendix H: Model solution

The Þtting problem of the maximum entropy distribu-
tion reduces to Þnding the parametersh(K ), Ju (K, K !)
so that the distribution in Eq. F10 agrees with the ex-
periments on the values of the marginal probabilities
Pu (K, K !) (for all K, K !). Data estimates are simply
obtained from the frequency of (K t , K t + u ) pairs in the
recordings. The model prediction, deÞned by Eq. F4, re-
quires to sum over all possible trajectories ofK t , which, if
done with brute force, would be prohibitively long. How-
ever, it is possible to perform these sums using the tech-
nique of transfer matrices, which requires much less com-
putational power. This technique is commonly used to
solve one-dimensional problems in statistical mechanics.
It is also known in computer science as an instance of
dynamic programming.

We start by assuming that the trajectory ( K 1, . . . , K L )
is an vth order Markov process (this assumption will
be veriÞed later). We deÞne the super variableX t =
(K t , K t +1 , . . . , K t + v" 1), and rewrite Eq. F10 as:

P({ X t } ) =
1
Z

exp

"
!

t

H (X t ) +
!

t

W (X t , X t +1 )

#

%
.

t

v" 1.

u=1

! X ( u )
t ,X ( u +1)

t " 1

(H1)
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FIG. S2: Temporal correlations. Mutual information rate
between K t and K t + u as a function of u ! ! t (! t = 10 ms),
for all N = 185 neurons. The mutual information quantiÞes
the correlation between two quantities. The model prediction
for di"erent v is compared to the data. The agreement is good
for v = 3 and 4. The gray curve shows the direct information
between di"erent times [5], which quantiÞes the strengh of
interaction between t and t + u, within the v = 4 model.
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FIG. S3: Value of the coupling parameters
Ju (K t , K t + u ). The x and y axes represent K t and K t + u ,
respectively. The model was Þttted with v = 4 and all
N = 185 neurons.

whereX (u)
t is the uth component ofX t , i.e. K t + u! 1, and

with

H (X t ) =
1
v

v!

u=1

"
h(K t + u! 1) + log

#
N

K t + u! 1

$%

+
v!

u ! <u =1

1
v ! (u ! u")

Ju! u ! (K t + u! 1, K t + u ! ! 1).

(H2)

and

W (X t , X t +1 ) = Jv (K t , K t + v ). (H3)

If K t is vth -order Markovian, then the super-variable X t
is Markovian:

P({ X t } ) = P(X 1)
L&

t =2

P(X t |X t ! 1). (H4)

The conditional distribution can be written in the form:

P(X t |X t ! 1) =
1

zt
#

eH (X t )+ gt
" (X t ) ! gt # 1

" (X t # 1 )+ W (X t # 1 ,X t )

"
v! 1&

u=1

! X ( u )
t ,X ( u +1)

t # 1
,

(H5)

where gt
# is a function that will be speciÞed by normal-

ization (see below). This identiÞcation can be veriÞed by
replacing Eq. H5 into Eq. H4 and comparing with Eq. H1,
with gL

# (X L ) = 0,

P(X 1) =
1
z1

eH (X 1 )+ g1
" (X 1 ) , (H6)

and Z =
' L

t =1 zt
# . Thus, X t is indeed Markovian, and

K t is vth order Markovian.
The parameter to be learned is the functiong# (X ). In

general that function depends ont, but here we assume
that it is constant because of stationarity. This assump-
tion is only valid in the bulk ( i.e. for t far away from
both 1 and L). The normalization condition

!

X t

P(X t |X t ! 1) = 1 , (H7)

which must hold for all X t ! 1, gives the following self-
consistent equation forg# (X ):

eg" (X ) =
1
z

!

X !

(

eH (X ! )+ W (X,X ! )
v ! 1&

u=1

! X ! ( u ) ,X ( u +1)

)

eg" (X ! ) ,

(H8)
where we have replacedX t ! 1 by X and X t by X " to
ease notations (but also because these are dummy vari-
ables). We can view this equation as an eigenvalue prob-
lem: eg" (X ) is the eigenvector of the matrix deÞned in
the bracket (called the transfer matrix), associated with
its largest eigenvaluez. This equation can be solved by
simply iterating Eq. H8, and normalizing eg" (X ) after
each iteration (by e.g. maxX g# (X ) or

*
X g# (X )). Af-

ter convergence, that normalization constant at each step
simply gives the eigenvaluez. This procedure takes a
computational time of order (K max +1) v+1 , which is large
but manageable for small enoughv.

The same reasoning can be repeated by writing the
Markov dynamics of X t backward in time:

P(X t |X t +1 ) =
1
z

eH (X t )+ g$ (X t ) ! g$ (X t +1 )+ W (X t ,X t +1 )

"
v! 1&

u=1

! X ( u +1)
t ,X ( u )

t +1
,

(H9)
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which gives the self-consistent equation:

eg! (X ) =
1
z

!

X "

"

eH (X " )+ W (X " ,X )
v! 1#

u=1

! X "( u +1) ,X ( u )

$

eg! (X " ) .

(H10)
The only di!erence with Eq. H8 is the exchange of X
and X ". Thus, g# and g$ may be di!erent for general
time-irreversible processes. The eigenvaluez remains un-
changed, however, because the right and left eigenvalues
of a matrix are the same.

Armed with g# and g$ , we can now calculate all
marginals. Using the Markovian nature of the sequence:

P({ X t " } ) = P(X t )P(X 1, . . . , X t ! 1|X t )P(X t +1 , . . . , X L |X t )

= P(X t )
t#

t " =2

P(X t " ! 1|X t " )
L ! 1#

t " = t

P(X t " +1 |X t " ),

(H11)

and replacing with Eqs. H5,H9 and H1, we get:

P(X t ) =
1
zt

eg# (X t )+ g! (X t )+ H (X t ) (H12)

and

P(X t , X t +1 ) = P(K t , . . . , K t + v )

=
1

zt zt +1
eg# (X t +1 )+ g! (X t )+ H (X t )+ H (X t +1 )+ W (X t ,X t +1 ) .

(H13)

We can also calculate pairwise marginals betweenK t at
arbitrary time di!erences by using the following recur-
sion, for u > v :

P(K t , K t + u+1 , . . . , K t + u+ v ) =
!

K t + u

P(K t , K t + u , . . . , K t + u+ v! 1)P(K t + u+ v |K t + u , . . . , K t + u+ v! 1). (H14)

starting with u = 0:

P(K t , K t +1 , . . . , K t + v ) = P(X t , X t +1 ). (H15)

This whole procedure can be performed at an arbitrary
inverse temperature" . The energy of a given spike train
is, according to Eq. F5:

E = !
!

t

h(K t ) !
!

t

v!

u=1

Ju (K t , K t + u ), (H16)

and thus at temperature 1/" the distribution of spike
trains reads:

P! ({ #i,t } ) =
1

Z (" )
e! !E ({ K t } ) , (H17)

where Z (" ) enforces normalization. The distribution
P! (K 1, . . . , K t ) is given by Eq. F10 with the substitu-
tions:

h(K ) " "h (K ), (H18)

Ju (K, K ") " "J u (K, K "). (H19)

All the results of the procedure, z(" ), g# (X ; " ) and
g$ (X ; " ) thus depend on " . The free energyF (" ) =

! " ! 1 logZ (" ) can be calculated per unit time through
f (" ) # F (" )/NL = ! " ! 1 logz(" )/N . The average en-
ergy (Eq. H16) per unit time is given by:

$(" ) #
$E%!

NL
= !

1
N

!

K t

h(K t )P! (K t )

!
1
N

v!

u=1

!

K t ,K t + u

Ju (K t , K t + u )P! ;u (K t , K t + u )

(H20)
and the entropy per unit time by s(" ) # S(" )/NL =
"$(" ) + log z(" )/N . The speciÞc heatc(" ) = ! "%s/%"
is obtained by numerical derivation.

The technique of transfer matrices can also be ex-
tended to calculate the statistics of avalanches. Two dis-
tributions can be calculated: that of the duration of the
avalanche, and that of the number of spikes in it. An
avalanche starts at t if K t ! 1 = 0 and K t > 0. It ends
after &steps if K t + " = 0, and K t " > 0 for all t " such that
t & t" < t + &. The probability Q" for an avalanche to
last at least &steps, and haveK t + " , . . . , K t + "+ v! 1 spiking
neurons at the v subsequent step is given recursively by:

Q" (K t + " , . . . , K t + "+ v! 1) =
!

K t + ! $ 1 > 0

Q" (K t + " ! 1, . . . , K t + "+ v! 2)P(K t + " |K t + " ! 1, . . . , K t + "+ v! 2) (H21)
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with initialization ! = 0:

Q! (K t , . . . , K t + v! 1) =
P(K t ! 1 = 0 , K t , . . . , K t + v! 1)

P(K t ! 1 = 0)
=

P(X t ! 1, X t )
P(K t ! 1 = 0)

. (H22)

Then the probability that the avalanche lasts ! steps is calculated through:

P! =
!

K t + ! +1 ,...,K t + ! + v ! 1

Q! (K t + ! = 0 , K t + ! +1 , . . . , K t + ! + v! 1). (H23)

Restricting to non-zero avalanches, the distribution is given byP! / (1 ! P! =0 ).
The distribution of the number of spiking events in the avalanche can be calculated in a similar way, although at

a higher computational cost. We deÞneR! (K t + ! , . . . , K t + ! + v! 1; n) as the probability that an avalanche has lasted at
least ! steps, has accumulatedn spiking events during these steps, and has (K t + ! , . . . , K t + ! + v! 1) spiking cells in the
v time windows following the ! th step. Then the following recursion holds:

R! (K t + ! , . . . , K t + ! + v! 1; n) =
!

K t + ! ! 1 > 0

R! (K t + ! ! 1, . . . , K t + ! + v! 2; n ! K t + ! ! 1)P(K t + ! |K t + ! ! 1, . . . , K t + ! + v! 2). (H24)

The initialization at ! = 0 simply reads:

R! (K t , . . . , K t + v! 1, n) =
P(K t ! 1 = 0 , K t , . . . , K t + v! 1)

P(K t ! 1 = 0)
"n, 0 (H25)

As before the joint distribution P!,n for the size and duration of avalanches is obtained by summing over
K t + ! +1 , . . . , K t + ! + v! 1 as in Eq. H23, and restricting to non-zero avalanches (! > 0).

Appendix I: Model learning

The procedure described in the previous section allows
us to calculate the marginals and thermodynamic quanti-

ties for a given set of parametersh(K ) and Ju (K, K ). We
want to solve the inverse problem, which is to Þnd these
parameters for a given set of marginalsPu (K t , K t + u ). To
do this we implement the following iteration:

h(K ) " h(K ) + #[Pdata (K ) ! Pmodel (K )] (I1)

Ju (K t , K t + u ) " Ju (K t , K t + u ) + #[Pdata (K t , K t + u ) ! Pmodel (K t , K t + u )] , (I2)

after which we enforce our constraints (Eqs. F7, F8, F9) by:

h(K ) " h(K ) +
v!

u=1

"
!

K "

P(K ")Ju (K, K ") +
!

K "

P(K ")Ju (K ", K )

#

(I3)

h(K ) " h(K ) !
!

K "

P(K ")h(K ") (I4)

Ju (K, K ") " Ju (K, K ") !
!

K ""

P(K "")Ju (K "", K ") !
!

K ""

P(K "")Ju (K, K "") +
!

K "" ,K """

P(K "")P(K """)Ju (K "", K """)(I5)

Note that only the Þrst step I1,I2 actually modiÞes the
model. At each step,Pmodel must be re-calculated from
the new set of parameters (h, Ju ).

We initialize the algorithm by setting Ju = 0 for u > 1.
This corresponds to the casev = 1, for which h(K ) and
J1(K, K ") can be deduced directly fromP(X t |X t ! 1).

This procedure is equivalent to a gradient descent al-
gorithm on the log-likelihood [6], and therefore is guaran-
teed to converge to the solution provided that # is small
enough.
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FIG. S4: E!ect of window size on the speciÞc heat. Same as Þgure 2 of the main text, for a window size ! t = 5 ms.
(a) SpeciÞc heat c(! ) of spike trains of the entire population ( N = 185), as a function of temperature 1 /! , for an increasing
temporal range v. (b) Comparison with the curves obtained for ! t = 10 ms, with the same temporal range v ! ! t expressed
in seconds (=10 ms for cyan curves, 20 ms for the red curves). Solid lines are for ! t = 5 ms, and dashed line for ! t = 10 ms.
(c) SpeciÞc heat of spike trains of subnetworks of increasing sizesN , for v = 4. Each point is averaged over 100 random
subnetworks for N " 50, and shows one representative network forN = 61 and 97. The error bars show standard deviations.
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FIG. S5: E!ect of window size on Þnite-size scaling.
Same as Þgure 3 of the main text, for a window size ! = 5
ms. (a) Position of the peak 1/! in speciÞc heat as a function
of network size N , for an increasing temporal range v. (b)
Normalized variance of the surprise as a function of N , for an
increasing temporal range v.

Appendix J: Inferred parameters, and choice of v

To assess the performance of the model, we can ask
how well it predicts the correlations of K at di!erent
times. The mutual information, deÞned as:

MI( K t , K t + u ) =
!

K,K !

Pu (K, K !) log
Pu (K, K !)

P(K )P(K !)
, (J1)

is a non-parametric measure of these correlations. Fig. S2
shows this mutual information per unit time estimated
from the data, as well as its prediction for models with
di!erent v. Note that by construction, the agreement is
perfect for u ! v. The v = 3 and v = 4 model predictions
are fairly good even for largeru, indicating that a larger
v would not improve the model prediction much.

The inferred Ju (K t , K t + u ) are represented in Fig. S3
for v = 4 and N = 185. They become smaller asu in-
creases, indicating that the e!ective interactions between
time windows decay with the time di!erence. This can
be quantiÞed using the Direct Information, which mea-
sures the strength of interaction between two variables

in a complex interaction network [5]. The direct pairwise
distribution is deÞned as:

Pdir
u (K, K !) = eJ u (K,K ! )+ ! (K )+ ! ! (K ! ) , (J2)

where ! (K ) and ! (K !) are chosen so that"
K Pdir

u (K, K !) = P(K !), and
"

K ! Pdir
u (K, K !) =

P(K ). This distribution corresponds to the e!ect that
K t and K t + u would have on each other if they were
not interacting with K t ! at other times t!. The direct
information is then deÞned as the mutual information in
this pairwise distribution:

DI( K t , K t + u ) =
!

K,K !

Pdir
u (K, K !) log

Pdir
u (K, K !)

P(K )P(K !)
. (J3)

This quantity is represented in gray in Fig. S2, and
shows a sharp decay as a function ofu, a further indica-
tion that v = 4 is su"cient.

Appendix K: E!ect of the window size

Both the thermodynamic approach and the model used
to describe spike trains depend on the window size #t.
We repeated the analysis with a shorter window size of
# t = 5 ms. The results are shown in Figs. S4 and S5.

In the limit of small window sizes, we expect that mod-
els with di!erent # t, but with the same temporal range in
seconds,v" # t, should yield similar predictions. Fig. S4b
shows that this is indeed the case. This indicates that the
results of our analysis do not depend much on the choice
of window size.

Appendix L: White noise stimulus

We tested our method on another stimulus, composed
of rapidly ßickering random checkerboard. This kind of
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FIG. S6: SpeciÞc heat under a white noise (random
checkerboard) stimulus. The speciÞc heat c(! = 1), or
variance of the surprise Var(log P)/NL , as a function of tem-
perature 1/! , as in Fig. 2a, for a stimulus made of rapidly
ßickering random checkerboards.

stimlus is equivalent to white noise, and elicits an attenu-
ated response from the retina compared to more natural
stimuli. Besides, all correlations, spatial and temporal,
are absent. Thus, one expects much smaller correlations
both across neurons and time in the retinal response.
Nonetheless, the peak in speciÞc heat gets very close to
to one as one extends the temporal range, and becomes
very sharp, especially compared to the case where tem-
poral correlations are not included, as shown Fig. S6.
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