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Cells adapt to changing environments by sensing ligand concentrations using specific receptors. The
accuracy of sensing is ultimately limited by the finite number of ligand molecules bound by receptors.
Previously derived physical limits to sensing accuracy largely have assumed that the concentration was
constant and ignored its temporal fluctuations. We formulate the problem of concentration sensing in a
strongly fluctuating environment as a nonlinear field-theoretic problem, for which we find an excellent
approximate Gaussian solution. We derive a new physical bound on the relative error in concentration ¢

which scales as 6c/c ~ (Dact)™'/*

with ligand diffusivity D, receptor cross section a, and characteristic
fluctuation timescale 7, in stark contrast to the usual Berg and Purcell bound &c/c ~ (DacT)~'/? for a
perfect receptor sensing concentration during time 7. We show how the bound can be achieved by a

biochemical network downstream of the receptor that adapts the kinetics of signaling as a function of the

square root of the sensed concentration.
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Cells must respond to extracellular signals to guide their
actions. The signals typically come in the form of changing
concentrations of various molecular ligands, which are
conveyed to the cell through ligand binding to cell surface
receptors. A lot of ink has been expended on deriving the
fundamental limits to the precision with which a cell can
measure the concentrations from the activity of its recep-
tors, constrained by the stochasticity of ligand binding and
unbinding [1-4]. In particular, it has become clear that the
temporal sequence of binding-unbinding events carries
more information about the underlying ligand concentra-
tion than just the mean receptor occupancy, typically used
in deterministic chemical kinetics models [5]. In particular,
such precise temporal information allows cells to estimate
the concentration of a cognate ligand even in a sea of weak
spurious ligands [6-8], as well as to estimate concentra-
tions of multiple ligands from fewer receptor types [9,10],
and molecular network motifs able to perform such com-
plex estimation exist in the real world, even potentially
taking advantage of cross talk between receptor-ligand
pairs [11].

Importantly, concentrations of ligands are worth meas-
uring only when they are a priori unknown, or, in other
words, if they change with time, allowing, for instance, cells
to adapt their behavior accordingly and maximize their long-
term growth [12]. Chemotacting microorganisms may
experience sudden and unpredictable changes in the con-
centration of attractants and repellents within seconds
as they navigate through complex environments [13] shaped
by microbial communities [14]. Likewise, during fly
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development, cells choose their fate within minutes by
sensing time-varying maternal gradients [15]. However,
with the exception of a recent study on the optimal resource
allocation for sensing time-varying concentrations [16], all
previous analyses have focused on the regime with a clear
timescale separation, where the concentration is constant or
constantly changing [17] during the period over which it is
estimated. In this Letter, we calculate the accuracy with
which a temporally varying ligand concentration may be
estimated from a sequence of binding and unbinding events.
This requires assumptions about the timescale over which
significant changes of the concentration are possible. In our
formulation, the optimal sensor performs a Bayesian com-
putation, formalized mathematically as a stochastic field
theory. Crucially, we show how simple biochemical circuits
can perform the relevant complex computations.

Field theory of concentration sensing.—We associate
to the ligand concentration c(¢) a field ¢(z) through
c(t) = cye~?"), where ¢, is an irrelevant reference con-
centration. Ligand concentration controls the ligand-recep-
tor binding rate r(¢) = 4Dac(t) = 4Dacye™*"") = rye=?"),
where 4Da is the diffusion-limited binding rate per molecule
of the ligand to its target receptor, modeled as a circle of
diameter a on the cell’s surface, and D is the ligand
diffusivity. This binding rate can be readily generalized to
N receptors by using instead r(7) = 4NDac(t). All our
results will then hold with this additional N factor. We
assume that the concentration follows a geometric random
walk, with characteristic timescale 7: dp = 7~'/2dW, with
W a Wiener process. This choice is justified by the fact that
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in many biological contexts, such as bacterial chemotaxis,
concentrations may vary over many orders of magni-
tude [18,19].

The probability of the temporal evolution of the con-
centration over the time interval [0, 7] is given by

Pusnl {00} = —eso | -5 [ ar(52)]. )

The receptor sees binding events at times ?{, 5, ..., t,, each
occurring with rate 4Dac(t;) = roe~*""). To simplify, let us
assume that unbinding is instantaneous (generalization to
finite binding times is discussed later). The posterior
distribution of the concentration profile then follows
Bayes’s rule (see Supplemental Material, Sec. A [20]):

1, {0(1)}) Porior {9(1)})
P(ty,...,1,)

~Leof- [ afs (42) s ]
- i};q)(ri)}, (2)

where Z is a normalization constant independent of ¢. The
term roe ?dt in the integral reflects the probability
exp(—roe~?dt) of not binding a ligand between 7 and
t + dt (except at times ¢;). The binding events at ¢t = t; are
generated by the true temporal trace of ligand concen-
tration, c¢*(f) = coe~? (). In the following the true trace
@*(t) will be distinguished from the field ¢, which refers to
our observation-based belief.

The one-dimensional field-theoretic problem (2) is a
particular case of Bayesian filtering [21]. When collecting
information from binding events, cells do not have access
to the future and cannot use the full span [0,7] of
observations to infer the concentration at time 7. Instead,
they must infer it solely based on past observation in the
interval [0, 7], which distinguishes our problem from the
mathematically similar inference of a continuous proba-
bility density [22-26]. This inference can be performed
recursively by the rules of Bayesian sequential forecasting,
similar to the transfer matrix technique, and also known as
the forward algorithm [21]. To do this recursion, we first

define
dep
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Considering past observations during the interval [0, 7], the
posterior distribution of ¢ at time ¢ reads

P(ty, ...,

P({g(1)}) =

P(p,t) = with  Z(1) = /_oo dp'Z(¢',1). (4)

When considering periods during which no binding
event was observed, we can write a recursion for Z(¢, ¢)
between ¢ and ¢ + dt. Taking the o6t — O limit yields, for
t # t; (see Supplemental Material, Sec. A [20])

2
an’;’ 0 _ —ro(e™? —(e7?))P(p.1) + %g—(;’ (5)

where (-) denotes an average over P(¢). When a binding
even does occur at time ¢;, the posterior distribution is
updated using Bayes’s rule:

e Pg.17)

CRON

where i refer to the values right before and after the
observation. The partition function Z(#) can be similarly
calculated (see Supplemental Material, Sec. A [20]) and
could in principle be used to infer the correct timescale 7 by
maximizing P(z|[{t;,....ty}) x Z (see Supplemental
Material, Sec. C [20]).

Gaussian solution.— Because of the P(¢) dependence in
(e7?), the equations for the evolution of the posterior
probability (5)-(6) are nonlinear. However, assuming a
Gaussian ansatz P(@.t)=[27z0(t)*]""/>exp{~[p—d(1)]*/
20(1)*}, which is accurate in the limit of long measurement
times (see below), gives a closed-form solution (see
Supplemental Material, Sec. B [20]), with

i,; =0 (r e~to?/2 Zé(r—t ) (7)

de®> 1 .
d;.;‘ = ; - 04r06_(/)+62/2. (8)

P(p,1) =

(6)

The maximum a posteriori estimator for the concentration
is then simply given by &(¢) = cye~?"), while o(¢)? defines
the Bayesian uncertainty on the estimator.

To check the validity of the Gaussian solution, we
simulated Eqs. (5) and (6) numerically, starting from a
uniform distribution [P(¢,0) = 1/2 for ¢ € [-1,1] and 0O
otherwise], with ror =50 and a true ¢*(¢) starting at
¢@*(0) = 0. The numerical solution quickly approaches
the Gaussian solution given by Eqgs. (7) and (8) starting
with »(0) = (@),_, and 6(0)? = Var(¢),_,. The Kullback-
Leibler divergence between the numerical and analytical
solutions falls rapidly [Fig. 1(a)] and the numerical solution
approaches the predicted Gaussian very closely [Fig. 1(a),
inset]. Thus, the Gaussian solution provides an excellent
approximation.

Error estimate.—To study the typical behavior of
Egs. (7) and (8), we now assume that the rate of binding
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FIG. 1. Numerical validations of analytical results. (a) The

Gaussian ansatz (7)—(8) is validated by simulating the general
equations for Bayesian filtering (5)—(6). The numerical solution
approaches the Gaussian solution rapidly, as indicated by the decay
of the Kullback-Leibler divergence Dy (P(¢)||PGaussian(®)) =
fd(pP((p) ln[P((p)/PGaussian((p))}' We used rr = Dact =50.
(b) Concentration sensing error as a function of concentration.
The error estimated from simulations follows closely the prediction
from Eq. (13), which is expected to be valid for 4Dacz > 1.

events is large compared to the rate of change of the
concentration, 4Dact = rr > 1. This regime is the bio-
logically relevant one: to sense concentration, cells need to
record many binding events over the timescale on which the
concentration fluctuates. In that limit the estimator ¢ is
close to the true value ¢*, and the Bayesian uncertainty o>
is small, allowing for two simplifications. First, Eq. (8)
relaxes over timescale r(¢)~! to a quasisteady state value

6>~ 1/+\/rye Pt < 1. Second, we can make a small noise
approximation for binding events: over some time interval
At, with r*(1)~! < At < 7, the number of binding events
has both mean and variance equal to r*(¢) At, allowing us to
replace discrete jumps in Eq. (7) by

d(Z 5(t— ri)) ~ roe~? dt 4 (rge™? ) /2dw’, (9)
i=1

where W’ is a Wiener process. As a result, the estimator @
tracks the true value ¢* according to

dp = (roe™? /1) (9" = @) +77'/2aW', (10)

where we have expanded at first order in ¢ — ¢*. In the
general case, the true field may evolve according to a
different characteristic timescale 7*, than the one assumed
by the Bayesian filter, 7, so that dgp* = (7*)~'/2dW. The
estimation error € = $ — ¢* then evolves according to

de = —(r/7)?edt + 7' 2dW' — (¢*)~12dw.  (11)

Intriguingly, the noises dW’ and dW have very different
interpretations, one being due to the random arrival of
binding events, and the other to the geometric diffusion of
the concentration. Yet they come in the same form in this
equation. Relying again on the assumption that 7z > 1, we
get an estimate of the error:

which has a minimum as a function of 7, reached for the
true value of the characteristic fluctuation time 7 = 7*:

(E=cP) o 11
2 () = VIt VA4Dact (13)

This error is equal to the Bayesian uncertainty o> =

1/y/rote™? ~ 1/v/4Dact and is consistent with the error
found using the saddle-point approximation in the related
problem of probability density estimate [22].

We checked the validity of our small-noise approxima-
tion by comparing the prediction from Eq. (12) with the
results of a numerical simulation of Egs. (7) and (8), in
which we averaged the error {(& — ¢*)?) as a function of ¢
for many realizations of the process. The agreement is
excellent, and gets better as rz = 4Dact becomes larger
[Fig. 1(b)].

The error in Eq. (13) sets a fundamental physical limit on
any concentration sensing device, biological or artificial, in
a concentration profile that follows a geometric random
walk. This bound is radically different from that obtained
by Berg and Purcell for the concentration sensing by a
single receptor integrating over time 7" [1,5]:

5¢? 1

2 - 4DacT

(14)

(in the limit where binding events are short so that the
receptor is always free).

The major difference is that Berg and Purcell, as well as
most of the literature on concentration sensing, assume that
the sensed concentration does not change with time. Our
result can be reconciled with Berg and Purcell by defining

an effective measurement time Toi ~ +/7/4Dac—the geo-
metric mean between the mean time between binding
events and the timescale of the concentration variation—
which can be read off from the relaxation rate in Eq. (10),
(roe~?/7)'/? = T_}. This T realizes the optimal trade-off
between the requirement to integrate many binding events,
T > 1/(4Dac), but over a relatively constant concen-
tration, T < 7, as can also be anticipated from a semi-
quantitative argument using Fourier analysis [27,28] (see
Supplemental Material, Sec. F [20] for a derivation). A
similar trade-off was reported in a more detailed chemical
kinetics model of concentration sensing [16].

Plausible biological implementation.—Can cells imple-
ment the optimal Bayesian filtering scheme and reach the
bound set by Eq. (13)? To gain intuition, it is useful to
rewrite Egs. (7) and (8) in term of the concentration
estimator ¢, in the limit 4Dacz > 1, where 6% can be
eliminated:
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% = \/4Da6/1<4ll)a ;5@ —1) - e). (15)

Each binding event should lead to an increment of ¢,
followed by a continuous decay with a rate given
by 7! = \/4Dat /.

This scheme can be implemented by a simple biochemi-
cal network schematized in Fig. 2(a). The concentration
readout ¢, may be represented by the “active” (for instance,
phosphorylated) form A* of a chemical species. Binding
events cause the receptor to activate A into A*, which gets
subsequently deactivated. Both the activation and deacti-
vation of A are catalyzed by a second chemical species in its
active form, B*. Thus, upon a binding event, the concen-
tration of active A* is increased by

A[AT] = ki [A][B7], (16)
and it decays between binding events according to
djA’]
= —k[B*][A7], 17
= kB[] (17)

where k3 are biochemical parameters.

To implement Eq. (15), the concentration of B* must be
controlled by the square root of A*. This dependence can be
achieved by assuming that B is activated into B* through
the catalytic activity of A*, and that B* gets deactivated
cooperatively as a dimer:

d[B*]
dt

= kj [B][A*] — kp[B]. (18)

where k7 are biochemical reaction rates.

(@) (b)50
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W 40
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FIG. 2. Performance of adaptive biochemical network in
fluctuating ligand concentration. (a) Schematic of the biochemi-
cal network implementing optimal Bayesian filtering. The re-
ceptor-induced activation of the readout molecule A*, as well as
its deactivation are regulated by a second molecule B*, which is
made to scale like v/A* using a mechanism of deactivation by
dimerization (shaded box). (b) Simulation of the network readout
ca(f) < A*(f) in response to stochastic binding events in a
fluctuating concentration field c¢*(¢). The relative estimation
error (¢4 — ¢*)?)/c? behaves according to the theoretical bound

1/v4Dacrt (inset).

Assuming that the kinetics of B are fast compared to A,
we obtain B* = (Bk}; /kz)"/>\/A* and

= VEI(A -0 - ) )

with @ = k3 ([B]kj; /kz)'/? and g = (k[ [A]/ky). If A and B
are in excess, and thus approximately constant, then
this biochemical network exactly implements Eq. (15),
with 4Dac, = k;[A*]/k([A], and 7 =1, =1/(a?p) =
ky/ (kg ks ky[A][B]).

Interestingly, the amount of inactive (= total) B controls
the timescale of concentration fluctuations, and could be
tuned through gene regulation to adapt to different speeds
of environmental fluctuations. A biochemical network
might be able to find the optimal z and then adjust [B]
accordingly by empirically measuring the fold change of
r(t) (which can be done by biochemical networks, see, e.g.,
Ref. [29]) but with a delay, (r(¢ + At)/r(t)) = e*"/?%, and
then inverting the relationship to extract 7.

We tested the performance of the biochemical network
for sensing concentration by simulating Egs. (16)—(18) with
a fluctuating ligand concentration c(z) with characteristic
timescale 7. For concreteness, we set ¢*(0) = 10 nM,
=10s, k[[A] =001, ky=kf=kj=1uM"'s7,
and [B] = 10 uM, so that 7, = 7*. Figure 2(b) shows
the network estimate ¢, (¢) along with the true value ¢*(7).
The empirical error ((¢, —c*)?), as a function of c*
averaged over 10* s [Fig. 2(b), inset], again shows an
excellent agreement with the theoretical bound 1/+v/4Dacr.

Discussion.—For the sake of clarity our analysis made
simplifying assumptions which can be easily relaxed. Our
proposed biochemical implementation assumed a constant
burst of activity following each binding event, consistent
with the optimal estimation strategy. However, in real
receptors, stochasticity in the bound time is known to
double the variance in the estimate [5] (see Supplemental
Material, Sec. D [20]). Treating this effect simply adds a
factor v/2 in the noise term of Eq. (9) as well as in Eq. (13),
(8¢*)/c®> =~ 1/v/2Dact. We also ignored periods during
which the receptor was bound. During that time the
receptor is blind to the external world, and the posterior
evolves according to the prior: 9,P = (1/22)9;,P, 9,p = 0,
and 0,6 = 1/7. In our results, these “down times” renorm-
alize the effective observation time by the fraction of time
the receptor is free, pe. = (1 +4Dacu)™!, where u is the
average bound time, (5c¢?)/c?~1/v/4Dacpge.t (see
Supplemental Material, Sec. D [20]). Combining the two
effects (stochasticity in bound time and receptor availabil-
ity) would yield (5¢?)/c* ~ 1/1/2Dacpgeet. Our network
analysis also ignores noise in the readout molecules, as we
focused exclusively on the sensing noise itself. For a
thorough discussion of trade-offs between difference noise
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sources, see Ref. [30], and Ref. [16] in the context of time-
varying signals.

The field theory of Eq. (2) is mathematically similar to
the problem of estimating a density function from a small
sample set with a smoothing prior [22-24,26]. The main
difference lies in the domain of observations. In density
estimation the whole function {¢(f)}p 7 is inferred
together on the whole domain of 7, while sensors can only
learn from past observations, i.e., the # < ¢ half plane.
However, our solution can easily be generalized to deal
with the entire time domain using the forward-backward
algorithm (see Supplemental Material, Sec. E [20]).
Equations (5)-(6) and (7)—(8) can be solved both forward
(from O to ¢) and backward (from T to #, with time reversal)
in time, giving P_, (), ¢_,, 62, for the forward solution (the
one treated in this Letter), and P_(p), ¢._, o> for the
backward solution. The Bayesian posterior at any given
time is then given by « P_ (¢)P_(¢), of mean (62.¢_, +
6%.9._)/ (6% + 62) and variance 6262, /(6% + 62,) in the
Gaussian approximation. While this situation is not relevant
for concentration sensing, our general solution should be
applicable to problems of density estimation. The saddle-
point approximation usually made in that context [22-24]
is expected to work in the same limit as our Gaussian
ansatz; however, recent work has emphasized the impor-
tance of non-Gaussian fluctuations for small datasets [26].

The biological implementation we propose is specula-
tive. An interesting direction would be to identify square-
root or similar control of receptor signaling in real
biological systems, and interpret them in terms of optimal
Bayesian filtering. Another experimental test of our theory
could be to measure the accuracy of the chemotactic
response in a fluctuating ligand environment, for various
values of the mean concentration and fluctuation timescale.
Signaling pathways dealing with concentration changes
over several orders of magnitude, such as bacterial chemo-
taxis, typically use adaptation mechanisms to increase the
dynamic range of sensing [19]—a feature that is absent
from our approach as we neglect noise in the signaling
output. Combining adaptation design with ideas from
Bayesian estimation could help us gain insight into the
fundamental bounds and resource allocation trade-offs that
limit biological information processing.
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