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Local equilibrium in bird flocks
Thierry Mora1*, Aleksandra M.Walczak2, Lorenzo Del Castello3,4, Francesco Ginelli5,
Stefania Melillo3,4, Leonardo Parisi4,6, Massimiliano Viale3,4, Andrea Cavagna4 and Irene Giardina3,4

The correlated motion of flocks is an example of global order emerging from local interactions. An essential di�erence
with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically
rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on
actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique,
based on the principle ofmaximum entropy, which accommodates network rearrangements and overcomes the problem of slow
experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling
flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly,
equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We
conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground
for the applicability of statistical physics in certain active systems.

Animal groups moving in concert, such as mammal herds,
fish schools, and bird flocks show that in biology, just as in
physics, local coordination can result in large-scale order1–3.

However, flocks differ from classical statistical physics in that their
constituents are active: they constantly move by self-propulsion,
pumping energy into the system and keeping it out of equilibrium4–7.
The key element is the rearrangement of the interaction network
due to the active motion of individuals relative to each other,
continuously changing their neighbours. Theoretical studies show
that network rearrangement hasmajor consequences, which include
enhancing collective order, reducing the lower critical dimension
from 3 to 2, and affecting the critical exponents4,8.

However, the importance of activity must be assessed with
respect to the relevant timescales of the system. The impact
of network rearrangement depends on the interplay between its
characteristic timescale, τnetwork, defined as the average time it takes
an individual to change its interaction neighbours, and the local
relaxation timescale, τrelax, defined as the time needed to relax
locally the order parameter if the interaction network were fixed.
If τnetwork≤ τrelax, the interaction network rearranges at least as fast
as the order parameter relaxes, and the system remains far from
equilibrium. If, on the other hand, τrelax� τnetwork, the relaxation
of the order parameter is adiabatic, closely following the network
as it slowly evolves. In this case, even though the system behaves
in an out-of-equilibrium manner on the longest scales, it locally
obeys a condition of equilibrium, and we expect some of the tools of
equilibrium statistical physics to be applicable.

Here, we explicitly address the impact of network activity by
developing a new inference method based on the exact integration
of maximum-entropy dynamical equations, thus accounting for the
reshuffling of the network. We apply the method to data of starling
flocks of up to 600 individuals9–12 (see Methods and Supplementary
Table 1 for data summary), inferring the relevant parameters of
the interactions between individuals. We find that the alignment
relaxation time, τrelax, is more than one order of magnitude shorter

than the network rearrangement time, τnetwork. Consistently, we show
that the parameters learnt from the dynamics are consistent with
those obtained by an equilibrium-like inference, which assumes a
fixed network13. Our results suggest that natural flocks are in a state
of local quasi-equilibriumover the interaction length scale,meaning
that the relatively slow rearrangement of the local interaction
network does not affect the ordering dynamics up to certain scales.

To compare the relevant timescales of the ordering process in
flocks, we first need to learn the dynamical rules of their behaviour.
Learning these rules usually relies on inferring the parameter of a
chosen model directly from the data, as has been recently done in
surf scoters14 and fish schools15–19. Although in these studies the local
rules of interaction were often learnt using small groups, in some
cases they could also be used to predict large-group behaviour17,19.
Here, instead of assuming a model a priori, we apply the principle
of maximum entropy to the trajectories of all birds in the group20.
We look for a distribution of the stochastic process that is as
random as possible, while agreeing with the data on a key set of
experimental observables.

In a flock of size N , we call Esi(t) the three-dimensional
flight orientation of bird i at time t . The maximum-entropy
distribution over possible flock trajectories that is consistent with
the correlation functions 〈Esi(t) ·Esj(t)〉, as well as their derivatives
〈dEsi(t)/dt ·Esj(t)〉, can be exactly mapped, in the limit of strong
polarization P≡ (1/N )‖

∑
iEsi‖≈1, onto the following stochastic

differential equation (see Supplementary Information and ref. 20):

dEsi
dt
=

∑
j

JijEsj+Eξi


⊥

(1)

where Eξi is a random white noise, and where the projection
Ex⊥≡Ex−Esi(Ex ·Esi) onto the plane perpendicular to Esi ensures that Esi
remains of norm 1. Equation (1) can be viewed as a generalization of
the Vicsek model21: each bird modifies its flight direction according
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to a weighted average of the directions of its neighbours. The
interaction matrix Jij encodes how much bird i is influenced by
(that is, interacts with) bird j. Given the experimentally measured
correlation functions, entropy maximization yields equations that
fix the values of the noise amplitude and the interaction matrix Jij.
Thismatrix has toomany parameters to be reliably determined from
the data, but we can reduce its complexity by parametrizing it. It was
shown in ref. 22 that the interaction decays exponentially with the
topological distance kij between birds,

Jij= J exp(−kij/nc) (2)

where kij denotes the (time-dependent) rank of bird j among the
neighbours of bird i ranked by distance. This interaction matrix has
just two parameters: nc is the topological interaction range, while J
is the overall strength of the interaction. The noise is uncorrelated
among birds and of uniformmagnitude T , by analogy with physical
temperature: 〈Eξi(t) · Eξj(t ′)〉= 2dTδijδ(t− t ′), where d is the space
dimension (d=3 in the following).

In principle, to learn the parameters of equation (1), one
needs actual continuous-time derivatives. In practice, we only have
configurations separated by the finite experimental sampling time
dt . A common solution is to use Euler’s approximation:

Esi(t+dt)≈Esi(t)+dt
∑

j

JijEsj⊥+
√
2T dtEηi⊥ (3)

where Eηi is a normally distributed vector of variance 1 in each
direction. The conditional likelihood of the data given the model,
P[{Esi(t + dt)}|{Esi(t)}], can be written in Gaussian form after ex-
panding equation (3) in the spin-wave approximation (see Meth-
ods). Maximizing this likelihood yields values for the alignment
parameters nc, J andT (see ref. 20 and Supplementary Information).

Euler’s approximation is used by virtually all methods that try to
fit a dynamical equation to a discrete time series15–17. However, it
is inappropriate when the experimental sampling time, dt , is larger
than the intrinsic relaxation timescale, τrelax. In this case information
spreads between subsequent frames beyond the directly interacting
neighbours and Euler’s approximation overestimates the range of
the interaction, as we shall see below. To overcome this issue, we
rewrite equation (1) by formally subtracting

∑
l JilEsi⊥=0 from it:

dEs
dt
=−J3Es⊥+Eξ⊥ (4)

Bold symbols denote vectors and matrices over bird indices; the
matrix 3ij≡ δij

∑
l nil − nij, where nij= e−kij/nc is the connectivity

matrix (2). 3 is analogous to a Laplacian defined on a lattice,
and obeys the sum rule:

∑
j3ij= 0. In the spin-wave approxima-

tion, where all orientations Esi point in almost the same direction,
this relation ensures that 3Es has almost no contribution along the
common direction of flight, implying (3Es)⊥≈3Es (seeMethods and
Supplementary Information). Equation (4) is now linear and it can
be integrated exactly:

Es(t+dt)= e−J3dtEs(t)+
∫ dt

0
due−J3(dt−u)Eξ⊥(t+u) (5)

This result assumes a constant Jij in the interval dt , which is a good
approximation if dt� τnetwork. Fortunately, this same condition is
necessary for the very possibility to collect data: tracking requires
one to follow each individual across time, which is possible only
if individuals do not significantly change their neighbourhood
between consecutive frames. The integrated noise in the right-
hand side of (5) is Gaussian, of mean zero and covariance
4T

∫ dt
0 du e−J3ue−J3†u. Using the exact solution (5) we can write

an explicit expression for the (Gaussian) conditional likelihood
P[{ Esi(t + dt)}|{ Esi(t)}], which can then be maximized over the
parameters of the model (see Methods).

We first tested our dynamical inference method on synthetic
data simulated using the model of equation (1), with τrelax≈ 0.7,
for various values of the interaction range nc (see Methods). We
infer the parameters of the model using either Euler’s rule or the
result of exact integration, for different values of the sampling time
ranging from dt = 0.2 to dt = 0.8. The method based on exact
integration predicts the interaction range nc well, regardless of
dt (Fig. 1a,b), while the method based on Euler’s approximation
largely overestimates nc at large dt (Fig. 1b). We can now apply our
dynamical inference to real flocks and learn the model parameters.
First, we used data of natural flocks to check the effect of changing
the sampling time dt , from the real sampling time of our set-up,
dt=0.2 s (see Methods), to 0.8 s. Although we cannot compare the
inferred value of nc to the ground truth as in simulations, we observe
a similar trend as a function of dt (Fig. 1c), with the exact integration
and Euler’s approximation methods agreeing only at small dt . This
suggests that the sampling time of 0.2 s is of the same order as the
orientation relaxation time τrelax, as we will confirm below. It also
indicates that the inference method based on exact integration is
extracting the parameters of alignment reliably.

Using the model parameters learnt from the data, we evaluate
the two timescales of interest for activity, namely relaxation
of the orientations and network rearrangement. We estimated
the network rearrangement time τnetwork experimentally for each
flocking event as the characteristic decay time of its autocorrelation
function Cnetwork(t)=

∑
ij nij(t0)nij(t0 + t), by fitting Cnetwork(t)≈

C0 exp(−t/τnetwork) (Supplementary Fig. 1).
Working out the timescale of relaxation is more subtle. The

relevant quantity is the product of the interaction strength J , which
has units of inverse time, by the dimensionless connectivity matrix,
3, as can be seen from equation (4). Since there are nc neighbours
acting on each individual, the total alignment force is of order
Jnc, suggesting that the characteristic timescale of relaxation of
the orientations is τrelax ∼ (Jnc)

−1. This result, however, seems at
odds with the well-known fact that systems with spontaneously
broken continuous symmetry—such as flocks—have correlation
length and relaxation time that diverge with the system size L
(Goldstone theorem23). On the other hand, we do not expect the
large-scale modes responsible for this divergence to affect the local
relaxation dynamics and its interplay with network reshuffling.
To clarify this issue we calculate the dynamical autocorrelation
function of the fluctuations of the order parameter, Crelax(t) =
〈δEsi(t0) · δEsi(t0 + t)〉, where δEsi =Esi − 〈Esi〉. We consider a fixed
lattice, because we need to gauge relaxation in the absence of
network rearrangements, resulting in the autocorrelation function
(see Supplementary Information):

Crelax(t)=
∫ 1/a

1/L
ddk

e−Ja2nck2t

Ja2nck2
(6)

where a is the lattice spacing. The infrared divergence at small k,
which correspond to large-scalemodes,makes the integral divergent
in the L→∞ limit for d = 2 (Mermin–Wagner theorem24). For
d=3 the integral is finite, but the correlation function is a power
law, so that the relaxation time diverges with L. The small k modes
in (6) correspond to long-wavelength fluctuations spanning the
entire flock, causing the local order parameter to relax slowly.
However, these long-wavelength fluctuations do not contribute to
the disordering of the local interaction network: if the wavelength of
a fluctuation is much larger than the interaction range, all directions
of motion in the interaction neighbourhood fluctuate in unison,
causing no change in the mutual positions of the birds.We conclude
that the autocorrelation function that impacts on local network
rearrangements includes only contributions from wavelengths up
to the local interaction range (let us call it rc). This amounts to
restricting the integral in (6) to the modes r−1c ≤ k≤ a−1, thus
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Figure 1 | Performance of the inference methods on the predicted interaction range nc. a, Inferred versus real nc obtained by applying our new inference
method to simulated data generated with equation (1) at various interaction ranges. The method performs well for di�erent values of the sampling rate dt.
The dashed line is identity. b, Dependence of the inferred nc on the sampling time dt. On simulated data with nc= 10 (dashed line), the inference method
based on exact integration (red points) performs well regardless of the sampling time dt. By contrast, the inference method based on Euler’s integration
method (green points) overestimates the true interaction range at large dt. c, A similar trend is observed when we apply the two inference procedures to
real flocking data, as illustrated here on one flocking event. Note that in this case the true value is not known. Error bars represent standard errors over
time frames.

eliminating the infrared divergent modes k∼ 1/L. The resulting
correlation function is exponentially decaying (see Supplementary
Information for the calculation of the integral), with finite relaxation
time equal to τrelax = (Jnc)

−1, consistent with our initial guess.
We note that, by considering wavelengths up to the interaction
range, we are still dealing with a coarse-grained field theory, as in
most biological systems the scale of interaction extends over tens
of neighbours.

We can now proceed with the comparison of τnetwork and τrelax.
Results are summarized in Fig. 2. The two timescales clearly
separate, with local relaxation almost two orders ofmagnitude faster
than network reshuffling. This separation of timescales suggests
that flocks are in a state of local equilibrium. The network of
interactions changes slowly enough for the dynamics of flight
orientations to catch up before neighbours reshuffle. In other words,
the orientation dynamics tracks network changes adiabatically. Note
that this statement holds only locally, at the scale of the interaction
range, as both τnetwork and τrelax are defined on that scale.

Since flocks behave as if they were in local equilibrium, an
equilibrium inference procedure, which takes as input the local
spatial correlation computed from a snapshot of the birds’ flight
orientation13, should be consistent with the results of the dynamical
inference. To check this prediction, we recall the equilibrium-
like inference method of ref. 13. For symmetric Jij, equation (1)
is the Langevin equation derived from the Hamiltonian of the
Heisenberg model

H=−
1
2

∑
i,j

JijEsi ·Esj (7)

When Jij varies slowly in time, the fluctuations of Esi are in quasi-
equilibrium and distributed according to Boltzmann’s law:

P(Es1, . . . ,EsN )∼exp(−H/T ) (8)

We recognize the maximum-entropy distribution consistent with
the local correlation index

∑
ij nij〈Esi ·Esj〉 fitted in ref. 13. In practice,

the equilibrium inference consists in maximizing the likelihood
of equation (8) over its parameters nc and J/T (see Methods
and Supplementary Information). If the variations of nij are slow
compared to the dynamics of Esi, τnetwork � τrelax, this inference
procedure should give an accurate estimate of the alignment
parameters. If, however, the two timescales are comparable, we
expect the equilibrium inference to overestimate the true nc, as
the frequent exchange of neighbours results in an effective number
of interaction partners that is larger than the instantaneous one.
We verified both these expectations on simulated data, by showing
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Figure 2 | Comparison between the two relevant timescales of active
matter, as inferred in 14 natural flocks using our inference method based
on exact integration. Histograms of the neighbour exchange time τnetwork
versus the local alignment time τrelax= 1/Jnc, show that the relaxation of
orientations is much faster than the turnover of neighbours. Note that the
experimental sampling time dt=0.2 s (dashed line) is of the same order as
the alignment time, justifying the use of exact integration. Inset: the
scatter plot of τrelax versus τnetwork shows no correlation between the
two quantities.

that the equilibrium inference is accurate for τnetwork∼100τrelax, but
overestimates nc for τnetwork∼τrelax (see Supplementary Fig. 2).When
applied to empirical data, the dynamical and equilibrium inferences
give consistent results, and predict the same interaction range,
nc, and coupling-to-noise ratio, J/T (Fig. 3). Note that, while the
dynamical inference provides the strength of the interaction, J , and
the strength of the noise, T , separately, the equilibrium inference
gives only the ratio J/T , which is the quantity to compare. To
better appreciate this result, recall that the two inference procedures
are based on independent pieces of information: the equilibrium
inference uses instantaneous orientations, while the dynamical
inference exploits how these orientations change in time. Their
agreement confirms that the alignment dynamics of flocks are in an
effective state of equilibrium over the range nc.

Theoretical studies of active matter indicate that out-of-
equilibrium effects induced by the rearrangement of the interaction
network play a major role in the ordering of the system4,5. In this
light, any attempt to understand the properties of active biological
systems based on equilibrium approaches may seem inappropriate.
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Figure 3 | Inference on natural flocks. a,b, For each of the 14 flocking events, the parameters of the model were inferred using either the dynamical
inference method presented here, with dt=0.2 s, or an equilibrium inference method as in ref. 13. Both methods agree well on the predicted value of the
alignment range nc (a). While the dynamical method infers the alignment strength J and the noise amplitude T separately, the equilibrium method infers
only their ratio J/T, the value of which is consistent between the two methods (b). Error bars represent standard errors over time frames.

Does it mean that we should we always relinquish the methods of
equilibrium statistical mechanics when dealing with active systems?
Our results address this question by showing that bird flocks are
in a state of local equilibrium, due to the rapid relaxation of
orientations compared to the slow rearrangement of the network,
over the local scale of interaction. As a consequence, an equilibrium
inference method, which assumes a fixed interaction network, gives
equivalent results to a full dynamical treatment.

Equilibrium inference seems to be justified in this system, not
only as a formal mathematical equivalence allowing for useful
insights and predictions, but as a tool to extract bona fide biological
parameters. The equilibrium approach is mathematically simpler
and computationally less expensive than the dynamical one in the
limit of strong polarization,making it easier to analyse larger groups.
Although a dynamical approach such as the one presented here is
still necessary for extracting the precise relaxation timescale of the
ordering mechanism, there may be more straightforward ways to
evaluate its order of magnitude and get a quick assessment of the
local equilibrium hypothesis.

Our results do not mean that natural flocks are in global
equilibrium and that network rearrangements play no role. The
interaction network, far from being fixed as if individuals were
linked by springs25, completely reshuffles on long timescales26. The
directions of motion relax on a faster timescale than the network
over the local scale of interaction, but the network does move on
longer timescales, and over larger length scales, with important
consequences. To appreciate this point we must stress again the
difference between local, short-wavelength modes, which set the
balance between relaxation and network rearrangement, and long-
wavelength modes, which govern the long-time and long-distance
correlations. Capturing these large-scale properties requires one
to describe the active fluid using a hydrodynamic approach4.
Equilibrium inference works despite the existence of these large-
scale modes because it uses only information at the local scale of
interaction, where relaxation is fast.

The local equilibrium we have uncovered in natural
flocks is not merely the consequence of the high degree of
polarization of this system. A high polarization certainly implies
slow network rearrangements, but it does not constrain the
relaxation time, which could be even slower, as illustrated in our
simulations (Supplementary Fig. 2). Conversely, there may be
unpolarized systems where local relaxation is faster than network
rearrangement—a limit easily obtained theoretically by considering
weakly interacting, slowly moving individuals. Midge swarms
may be such an example: they are not polarized, poised below the

ordering transition27, yet have been successfully analysed using
standard equilibrium tools of critical phenomena28. In general, one
must carefully quantify these two timescales to determine to what
degree the tools of equilibrium statistical mechanics may be applied
to a given active system.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Flocking data. The three-dimensional (3D) trajectories of all birds were
reconstructed using imaging techniques. Stereoscopic experiments on natural
flocks of European starlings were performed in the field in Rome using three
high-speed machine vision cameras shooting at 170 fps . The stereoscopic video
acquisitions were then processed using a novel purpose-built 3D tracking
algorithm based on a recursive global optimization method12. This algorithm is
extremely powerful, allowing for the reconstruction of full 3D trajectories of all
individuals in groups of several hundreds of individuals. We collected 3D data from
12 flocking events with sizes ranging from 50 to 600 individuals, and lasting from
2 s to 6 s (for details on the experiments and the data set see Supplementary Table 1
and refs 10,29). To avoid interference from birds flapping, which occurs at
frequency≈10Hz, we subsampled all the 3D sequences so that two snapshots are
separated by dt ′=0.1 s. The instantaneous flight orientations were estimated by
Esi(t)=[Eri(t+dt ′)−Eri(t)]/‖ri(t+dt ′)−Eri(t)‖. To avoid overlap between two
subsequent evaluations ofEsi(t), we used dt=2dt ′=0.2 s. The lower sampling rates
of Fig. 1c were obtained by taking dt ′=0.2, 0.3 and 0.4 s.

Simulated data. Data were simulated in three dimensions with the continuous
Vicsek model of equation (1) with the interaction matrix of equation (2). The
positions Eri of individuals are updated according to dEri/dt=v0Esi, with v0=1. The
simulations were set in a 8×8×8 box with periodic boundary conditions, and
N=512 birds, so that density is exactly 1. We set

√
2T=0.15 to obtain a

polarization P≈0.99 similar to natural flocks. Equation (1) was integrated using
Euler’s method with a simulation step dtsim=0.01 that is much smaller than any
other timescale in the system. The interaction range nc varied from 7 to 25, and the
interaction strength was picked so that Jnc=1.5, hence τrelax= (Jnc)

−1
∼0.7. The

flocks were first brought to a steady state before taking snapshots for analysis.

Spin-wave approximation. The polarization P quantifies the level of order in the
system. When P≈1, we can expand eachEsi around the common direction of flight
En≡ (1/NP)

∑
iEsi. This expansion givesEsi= Eπi+

√
1− Eπ 2

i En≈ Eπi+ (1− Eπ 2
i /2)En,

with En · Eπi=0. At leading order in Eπi�1, equation (4) becomes

dEπi

dt
=−J

∑
j

3ij Eπj+Eξi⊥ (9)

with 〈Eξi⊥(t) ·Eξj⊥(t ′)〉=4Tδijδ(t− t ′). Similarly, the equilibrium distribution
(equation (8)) can be expanded into

P(Eπ)=
1
Z
e−(J/T )

∑
ij3ij Eπi·Eπj (10)

Since this distribution is Gaussian, Z can be calculated analytically and reads:
Z= (2πT/J )(N−1)

∏
λk>0 λ

−1
k , where λk are the eigenvalues of the matrix3ij.

Maximum likelihood inference. The equilibrium inference is performed by
maximizing the likelihood of the data given by equation (10) over the parameters
nc and (J/T ) (see Supplementary Information for detailed formulae).

The dynamical inference based on Euler’s rule is implemented by maximizing
the likelihood P({Eπi(t+dt)}|{Eπi(t)}) calculated from Euler’s formula
(equation (3)). This likelihood reads

(4πT dt)−N e−
1

4T dt
∑

i[Eπi(t+dt)−Eπi+J dt
∑

j3ij Eπj]
2

(11)

The dynamical inference based on exact integration uses equation (5), rewritten as
Eπ(t+dt)= e−J3dt Eπ(t)+Eε, where Eε is a zero-mean Gaussian vector of covariance
〈Eε ·Eε

†
〉=4T

∫ dt
0 due−J3ue−J3†u

=2X−1. The conditional likelihood
P({Eπi(t+dt)}|{Eπi(t)}) now reads

det(X)
(2π)N

e−
1
2 [Eπ(t+dt)−e

−J3dt
Eπ(t)]†X[Eπ(t+dt)−e−J3dt Eπ(t)] (12)

Depending on whether one uses Euler’s or exact integration rules, equation (11)
or (12) is maximized over J , T and nc (see Supplementary Information for
detailed formulae).

In all three inference procedures, the parameters are learnt for each time t . Then
the median and the associated standard error are calculated for each flocking event.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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