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We make a comparison between results from numerically generated, quasiequilibrium configurations of
compact binary systems of black holes in close orbits, and results from the post-NewfNjaapproxima-
tion. The post-Newtonian results are accurate through third PN ¢fl@r/c)® beyond Newtonian gravily
and include rotational and spin-orbit effects, but are generalized to permit orbits of nonzero eccentricity. Both
treatments ignore gravitational radiation reaction. The enEBrgnd angular momentudhof a given configu-
ration are compared between the two methods as a function of the orbital angular fre€ueRay small(},
corresponding to orbital separations a factor of two larger than that of the innermost stable orbit, we find that,
if the orbit is permitted to be slightly eccentric, wiiranging from~0.03 to~0.05, and with the two objects
initially located at the orbital apocentémaximum separationour PN formulas give much better fits to the
numerically generated data than do any circular-orbit PN methods, including various “effective one-body”
resummation techniques. We speculate that the approximations made in solving the initial value equations of
general relativity numerically may introduce a spurious eccentricity into the orbits.
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I. INTRODUCTION AND SUMMARY Numerical simulations of compact binary inspiral start
with a solution of the initial valuglV) equations of Ein-

The late stage of inspiral of binary systems of neutronstein’s theory; these provide the initial data for the evolution
stars or black holes is of great current interest, both as aquationgsome simulationf10] solve in addition one of the
challenge for numerical relativity, and as a possible source ofix dynamical field equationsThe initial state is assumed to
gravitational waves detectable by laser interferometric antereonsist of two compact objectaeutron stars or black holes
nas. Because this stage, corresponding to the final few orbiia an initially circular orbit. The circular-orbit condition is
and ultimate merger of the two objects into one, is highlyimposed by demanding thatr/dt=0 initially, wherer is a
dynamical and involves strong gravitational fields, it must bemeasure of the orbital separation. More precisely, the system
handled by numerical relativity, which attempts to solve theis presumed to have an initial “helical Killing vector”
full Einstein equations on computefsee Refs[1,2] for re-  (HKV), which corresponds to a kind of rigid rotation of the
views). binary system. This amounts to ignoring initially the effects

The early stage of inspiral can be handled accurately usef gravitational radiation reaction. It also implies that the
ing post-Newtonian(PN) techniques, which involve an ex- black holes are corotating, a condition which is astrophysi-
pansion of solutions of Einstein’s equations in powerseof cally unlikely, albeit computationally advantageous. To make
~(v/c)>~Gmirc?, wherev, m, andr are typical velocity, the problem tractable numerically, it is also generally as-
mass and separation in the system, respectively. By expandumed that the spatial metric is conformally flat. This ap-
ing to very high powers o€, increasingly accurate formulas proximation is usually justified by the neglect of radiation
can be derived to describe both the orbital motion and theeaction in the initial state. For black hole binaries, suitable
gravitational waveform. Currently, results accurate througthorizon boundary conditions must be imposed, while for
3.5 PN ordef O(e’?) beyond Newtonian gravifyare known neutron star binaries, equations of hydrostationary equilib-
[3-9]. rium and an equation of state must be provided.

An important issue in understanding the full inspiral of  One important product of these initial value solutions is a
compact binaries is how to connect the PN regime to theelationship between the ener§yand angular momentuih
numerical regime. This is a nontrivial issue because the PNf the system as measured at infinity, and the orbital fre-
approximation gets worse the smaller the separation betweaqpuency(). As all quantities are well-defined and gauge in-
the bodies. On the other hand, because of limited computasariant, they are useful variables for making comparisons
tional resources, numerical simulations cannot always beith PN methods.
started with separations sufficiently large to overlap the PN We have developed a formula f&() andJ(Q) using
regime where it is believed to be reliable. PN methods. Our analytic formula includes point-mass terms

through 3 PN order, but ignores radiation reaction. It also

includes rotational energy and spin-orbit terms for the case in
*Electronic address: tmora@clipper.ens.fr which the bodies are rotating. For black holes, tidal effects
TElectronic address: cmw@wuphys.wustl.edu can be ignored. In contrast to previous wdtkl,12), our

0556-2821/2002/68.0)/1015015)/$20.00 66 101501-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

T. MORA AND C. M. WILL PHYSICAL REVIEW D 66, 101501R) (2002
formulas apply to general eccentric orbits, not just to circular Il. ORBITS AT THE TURNING POINT IN POST-
orbits. NEWTONIAN GRAVITY

We then compare this formula with HKV numerical solu-
tions for corotating binary black holes obtained by Grand-
clementet al. [10], for the regime where the black holes are

In Newtonian gravity, the orbit of a pair of point masses
may be described by the set of equations

separated from the location of the innermost circular orbit by p/r=1+ecod¢—w),
a factor of around 2, where PN results might be expected to
work well (Gm/rc2~0.1). We find the following two re- r2Q=r2d¢/dt=(mp)*?,
sults.
(i) When we assume circular PN orbits, our PN formulas E=pu(r?+r2Q2)/2— um/r,
for E(Q2) and J({}) agree to within 0.5% with other PN
methods, including those using resummation or Padé- J= u|xxv|, (h)

nigues. However all PN methods consistently and systemati-
cally underestimate the binding energy and overestimate th#herep=a(1—e?) is the semi-latus rectuma(is the semi-
angular momentum, compared to the values derived from thB1ajor axis, w is the angle of pericentem=m, +m is the
numerical HKV simulations, by amounts that are up to 10total massu=m;m,/m is the reduced mass, ardis the
times larger than the spread among the PN methods. total orbital gnergy(henpeforth we use units in whic®
(i) When we relax the assumption of a circular orbit and=¢=1)- A 2C|rcular3 orbit corrgspzonds te=0, with a2
demand only thadr/dt=0, our PN formula agrees ex- _ cONSt Q" =mia’, El%“:a Q5/2—mia=—(m)"2,
tremely well with the numerical data. In this case the systenfd /4= Vyma=(m/Q)'°. However, if we demand only
is found to be initially at the apocenter of a slightly eccentricthat the orbit be at the apocenter, so that0 only, we have
orbit. For values ofGmQ/c? ranging from 0.03 to 0.06, $=w+m, r=p/(1-e), Q*=(m/p%)(1-e)* and
corresponding to orbital/c between 0.3 and 0.4, or orbital

213

separation between 10 and 6 Grfy/ nearly perfect agree- Elu=— 5(1_62) m a2 ,

ment with the binding energy and the angular momentum 2 (1-e)

can be obtained with eccentricities that range from 0.03 to Q. -1

00> o . Ipm=| 02| (2
There are a number of possible interpretations of these (1-e)

results. One isthat the PN approximation is wrong. Even ) )

though the PN expansion is a weakly convergiagd pos- where(), is the angular velocity aft the apocenter. Th_elenergy
sibly only asymptotit approximation to solutions of Ein- anq angular momentum 'expressmns.when the orbit is at the
stein’s equations, the various 2PN, 3PN and resummatioRericenter may be obtained by letting,—(, and e—
results agree with each other by amounts in accord with ex= €:

pectation, since @m/rc2)3~10"3. Presuming that all rel- At 1 PN order, the equations of motion can be solved
evant physical effects have been includsee beloy, we  USing either the direct approach of Wagoner and Y4d], or
view the PN results in this range &mQ/c® as robust. the “perturbed osculating orbit elements approach” of Lin-

Another possibility is that the approximations made in€0/n and Will[14] to yield the orbit equations
most numerical simulations, the main one being that the spa- ~ ~ ~ ~5
tial metric is conformally flat, result in errors, one of whose ~ P/T=1tecos¢—w)+{[—(3—n)+(1+97/4)e
manifestations is an apparent eccentricity. At present, the dis- - _ ~
crepancy between the two approaches can only be considered +(7/2=n)ecog $—w) +3edsin(¢—w)
a hint of possible eccentricity, however. It is entirely possible (] 2cod2h—2 +0(7)2
that circular PN orbitsare consistent with the HKV results (7/4) 42¢~20)]+0(0)%,
within the errors of the numerical simulations. This can only
be decided if and when the numerical groups that carry out
these simulations publish quantitative error bars determined
by stgdying the convergence prpperties of the solution; as &= 44 (r2+r202)/2— pmir +
function of grid size, domain size and other computational
assumptions. 1 3

In this case, our results may provide a useful diagnostic 4+ =, »r2m/r + = (v 2mir) (1+ 7/3)+O(mir)4,
tool, helping to guide some of the assumptions and approxi- 2
mations inherent in numerical initial data simulations toward
those that lead to the desired physical configuration, such as . 124 m P
a quasicircular orbit. I=plxxvl| 1+ 2051 =37) + -(3+ 7))+ O(m/r)*

The remainder of this paper sketches the arguments that (©)]
lead to these conclusions. Detailed derivations and formulas, _ L _
and applications to neutron-star simulations, will be the subwhere v2=r2+r2Q2, »=pu/m, and Z=m/p. The limit e
ject of a future publication. —0 corresponds to a circular PN orbit. However, at higher

p g

r2Q=(mp)¥41-7(4—2n)ecod p—w)+0({)?],

3 41-3 ! /r)?
g/w( - 7))+§M(mr)
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PN orders, neither the orbital eccentricéyor the semilatus i

n
§+Z1+(_1_2+1_2

2

E 1 3
~ o . . —=——(1-e%¢{+ e
rectump is uniquely or invariantly defined. One definition of M 2
eccentricity used by Lincoln and Will14] was that of a
Newtonian orbit momentarily tangent to the true ortifie +(i_ 2) et 2
“osculating” eccentricity; other author$15] define multiple 24 8 ’
“eccentricities” to encapsulate different aspects of noncircu-
lar orbits at PN order. J 1 3 1 1 1
We define an alternative eccentricity and semilatus rectum —=—1+|z+Zn— ( ——= 77) e? {} . (6)
according to pwm oz 2 6 6 2
Note that in the circular orbit limitd—0), E and J satisfy
o VQp—=VQ, the expected relatiodE/dQ)=QdJ/dQ). We have extended
- /_Qp+ /_Qa' this result to 3 PN orde_r using the 3 Pl_\l orbit equations of
Blanchet and Fayg7], using both harmonic-gauge and ADM
gauge expressions, but neglecting radiation-reaction terms at
m mQ-+ Jma.\ 43 2.5 PN order(details will be given in a future publication
(= EE<%> , (4) For those numerical simulations in which the bodies are

assumed to be corotating, we must include a number of ro-
tational effects. First is the energy of rotation of the indi-
vidual corotating bodies, of ordefE,y/u~1Q2/ u~(m/r)
(R/r)2, whereR is the characteristic size of the body. For
compact bodiesR~M, so these effects are equivalent to 2
PN order and higher. For black holes, we will use the stan-

cisely to the normal eccentricityand semilatus rectupin ~ dard procedure of splitting the mass of each body into its
the Newtonian limit, as can be seen from E€8; (i) they irreducible mass and its rotaugnf}lzenergy using tge Kerr for-
are constant in the absence of radiation reactidn;they are ~ mulas M=M;, /[1-4(M;;Q)°]"* and S=4M; Q/[1
somewhat more directly connected to measurable quantities; 4(Mir©2)?1* [11,12]. Also, since the sequences of nu-
since() is the angular velocity as seen from infinig.g., as Merical simulations hold,=(Mi)1+ (M), fixed as they
measured in the gravitational-wave signahd one calcu- vary {2, we will expand the masses that appear in the New-
lates only maximum and minimum values, without concerntonian orbital contribution to the energy and angular momen-
for the coordinate location in the orbit; aré/) they are tum aboutm;,. These contributions together yield
straightforward to calculate in a numerical simulation of or-
bits without resorting to complicated definitions of “dis-  SEo/ = (2/7)(1—375)(M;; Q)2+ (6/7)(1—-57+57%7)
tance” between bodies. They have the defect that, when ra-
diation reaction is included, they are not local, continuously X (M Q)* = (1-e*) (53— ) {(mi )2,
evolving variables, but rather are some kind of orbit-
ave_raged quantitiedor this reason, they may nqt be as “(;0— 8Jrot! M= (417)(1—37) (M Q) + (8/7)(1—57+57?)
variant” as they seem—this issue is under investigation
Nevertheless, when an eccentric orbit decays and circularizes 3, 1 54
under radiation reaction the definition @has the virtue that X (mi )+ \/_Z(mirrﬂ) (3—27), ()
it tends naturally to zero when the orbital frequency turns
from ocillatory behavior to monotonically increasing behav-
ior (i.e. the maxima and minima merge

By virtue of these definitions] has the further property
that

where(), is the value ofQ) where it passes through a local
maximum (pericentey, and (), is the value of(Q) where it
passes through theextlocal minimum (apocenter These
definitions have the following virtuegi) they reduce pre-

where henceforth; =[m;,Q,/(1—€)?]?3, andx and 7 are
expressed in terms of irreducible masses. The first two terms
in each of Eqgs.7) are the rotational terms, expanded to
second order, while the third comes from expanding the
Newtonian orbital term.

ma. |23 ma. |23 Similarly spin-orbit and spin-spin effects are of order
= P - _< az) (5)  OEso/u~LS/ur® and SEgs/pu~S,S,/ur® whereL de-
(1+e) (1-e) notes the orbital angular momentum a®denotes the bod-

ies’ spin. For corotating bodies, theRsze e3ffects can be shown to
. . . be of order SEgo/u~(m/r)(mR/r) and JEgg/u

It is then simple to .ShOW that_ Fhe relathn betwezand { ~(m/r)(mR*r®), which for compact bodies are equivalent
and the correspongmg ciuantltles used in Ehe Wagoner-quo 3 PN and 5 PN order, respectively. Henceforth, we will
solution (3) is e=e{1+{[9/2= »+(1-37)e’]}, and {  ignore the spin-spin terms. Assuming corotating bodies with
={1-4{[1- 93+ (1/3— n)e?]}. Applying these defini- spins aligned with the orbital angular momentum, including
tions to Eqs(3), we find the 1 PN expression f@&({)) and  both the direct and orbital effects of the spin-orbit terms
J(Q) for a non-circular orbit, expressed in terms(fat the [16,17] as well as their effect on our definitions efand £,
apocenter or pericenter: we find
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FIG. 1. Binding energy of equal-mass, corotating black holes vs FIG. 2. Angular momentum of equal-mass, corotating black

angular frequency. holes vs angular frequency.

O0Eso. 16 4 , 4 4 our PN estimate fits the curves perfectly for small values of

— | 3 T127+ 3(5-11p)e’— 5 (1-2p)e m; Q. This fit is merely illustrative: if the numerical simu-
lations do have some eccentricity, there is no reason why the
X (M Q) 52 eccentricity should be the same for each numerical point.

Figure 3 shows the values ethat best fit the numerical data

8Jso. 40 2 5 over the range of) considered.

Mmm=( — 3 t30p—3(4-1lpe )(mirrﬂ)é- tS) The conclusions are not substantially different if we use

the Wagoner-Will type eccentricit?e. Whatever definition

Apart from the generalization to eccentric orbits, theseone usesg=0 gives a worse fit than a finite eccentricity.
methods parallel exactly those of Blanch#t].

For tidal interactions, the contribution to the orbital en- IV. DISCUSSION
ergy is of ordersEqy/u~ (m/r)(R/r)°. For black holes,
tidal effects are thus equivalent to 5 PN order, and will be High-order post-Newtonian approximations for circular
neglected. Rotational distortions contribute the same, sincerbits appear to give results for the energy and angular mo-
Egistord e~ (M/1) (Q2R%mr?), while for corotation, Q2  mentum of corotating binary black holes well away from the
=m/r3. For neutron starsR~5M, and tidal and rotational innermost orbit that are in excellent agreement with each
effects must be included, however it is sufficient to use NewOther. This is illustrated in Fig. 4, which plots the energy

tonian gravity to calculate them. These will be discussedrom four PN results quoted by Damoert al.[12], and from
elsewhere. our 2 PN and 3 PN results, in the range around,

~0.032. Apart from the one 2 PN result quoted by Damour

o o X
1. COMPARISON WITH NUMERICAL SIMULATIONS etal, all are within 0.5% of each other. This could be

OF COROTATING BINARY BLACK HOLES

0.07 . . | - =
We combine the PN, rotational and spin-orbit contribu- L — Mach 1o Energy }
tions toE andJ, setQ),=() so that the stars corotate at the [ b Match to Angular Momentum
orbital angular frequency at the apocenter, get1/4 for
equal-mass black holes, and pldE { m;,)/m;, and J/mﬁr I E
versusm;, ), wherem;, denotes the total irreducible mass.

The results are shown in Figs. 1 and 2. leer0, we show
results both from the 3 PN orbital expressions, and from &
truncated 2 PN orbital expressions, while &+ 0.03 we plot

the full 3 PN results. The crosses denote the correspondint
numerical data of Grandaieentet al.[10]; the other curve is 0.03|-
the 3 PN resummation result of Damoeiral. [12] for cir-
cular orbits. We note that all circular-orbit PN estimates, in-
cluding conventional 2 PN and 3 PN approachis, Pade 0.8 55 ' 008 ' 005 ' 006
and resummation approachigl?], and our approach, agree Qm
well among themselves, but are systematically displacea

from the numerical points, both f& and forJ. This can also FIG. 3. Values of eccentricity giving a match to numerical HKV
be seen in Figs. 5 and 6 §12]. By contrast, withe~0.03,  simulations.

Ec
o
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-0.0107 ' T v ' T - T ' 1/4 of an orbit @¢=m/2). For a nearly circular orbit of
— 2PN (Damour e af.) equal mass bodies, gravitational radiation reaction should
- 3PNEOB 120 Dunrrat)| ] cause the parametgr=m/p=(mQ)?? to evolve according
oo 3PN EOB Pade (Dmour el | to dZ/d¢=(16/5);"? [see, for example Eq3.114 of [14]].
N = 2PN (this work) Thus, over a quarter of an orbit,should change by approxi-

£ mately 6/~ (8/5)¢%?~ (87/5)(mQ)%3~0.016, formQ
EE ~0.032. Hence the orbital separation should decrease by
LI-J—t10109 about 1.6% or the angular velocity should increase by 2.4%.

By contrast, if the orbit has an eccentricity of 0.03 and is at
the apocenter, then in a quarter of an orbit, the separation

HKV Numerical
3 should decrease by 3%, while the angular velocity should

result: -0.011

o l increase by 6%. Even with radiation damping, the orbit
. I ! . ! . ! . should pass through a distinct pericenter widet~ 7, and
0.032 0.0322 0.0324 0.0326 0.0328 0033 the orbital separation should increase, while the angular ve-
Qm,, locity decreases.

FIG. 4. Comparison of PN calculations of energy for widely
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