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Numerically generated quasiequilibrium orbits of black holes: Circular or eccentric?

Thierry Mora*
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We make a comparison between results from numerically generated, quasiequilibrium configurations of
compact binary systems of black holes in close orbits, and results from the post-Newtonian~PN! approxima-
tion. The post-Newtonian results are accurate through third PN order@O(v/c)6 beyond Newtonian gravity#,
and include rotational and spin-orbit effects, but are generalized to permit orbits of nonzero eccentricity. Both
treatments ignore gravitational radiation reaction. The energyE and angular momentumJ of a given configu-
ration are compared between the two methods as a function of the orbital angular frequencyV. For smallV,
corresponding to orbital separations a factor of two larger than that of the innermost stable orbit, we find that,
if the orbit is permitted to be slightly eccentric, withe ranging from'0.03 to'0.05, and with the two objects
initially located at the orbital apocenter~maximum separation!, our PN formulas give much better fits to the
numerically generated data than do any circular-orbit PN methods, including various ‘‘effective one-body’’
resummation techniques. We speculate that the approximations made in solving the initial value equations of
general relativity numerically may introduce a spurious eccentricity into the orbits.
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I. INTRODUCTION AND SUMMARY

The late stage of inspiral of binary systems of neutr
stars or black holes is of great current interest, both a
challenge for numerical relativity, and as a possible sourc
gravitational waves detectable by laser interferometric an
nas. Because this stage, corresponding to the final few o
and ultimate merger of the two objects into one, is high
dynamical and involves strong gravitational fields, it must
handled by numerical relativity, which attempts to solve t
full Einstein equations on computers~see Refs.@1,2# for re-
views!.

The early stage of inspiral can be handled accurately
ing post-Newtonian~PN! techniques, which involve an ex
pansion of solutions of Einstein’s equations in powers oe
;(v/c)2;Gm/rc2, wherev, m, and r are typical velocity,
mass and separation in the system, respectively. By exp
ing to very high powers ofe, increasingly accurate formula
can be derived to describe both the orbital motion and
gravitational waveform. Currently, results accurate throu
3.5 PN order@O(e7/2) beyond Newtonian gravity# are known
@3–9#.

An important issue in understanding the full inspiral
compact binaries is how to connect the PN regime to
numerical regime. This is a nontrivial issue because the
approximation gets worse the smaller the separation betw
the bodies. On the other hand, because of limited comp
tional resources, numerical simulations cannot always
started with separations sufficiently large to overlap the
regime where it is believed to be reliable.

*Electronic address: tmora@clipper.ens.fr
†Electronic address: cmw@wuphys.wustl.edu
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Numerical simulations of compact binary inspiral sta
with a solution of the initial value~IV ! equations of Ein-
stein’s theory; these provide the initial data for the evoluti
equations~some simulations@10# solve in addition one of the
six dynamical field equations!. The initial state is assumed t
consist of two compact objects~neutron stars or black holes!
in an initially circular orbit. The circular-orbit condition is
imposed by demanding thatdr/dt50 initially, where r is a
measure of the orbital separation. More precisely, the sys
is presumed to have an initial ‘‘helical Killing vector’
~HKV !, which corresponds to a kind of rigid rotation of th
binary system. This amounts to ignoring initially the effec
of gravitational radiation reaction. It also implies that th
black holes are corotating, a condition which is astrophy
cally unlikely, albeit computationally advantageous. To ma
the problem tractable numerically, it is also generally a
sumed that the spatial metric is conformally flat. This a
proximation is usually justified by the neglect of radiatio
reaction in the initial state. For black hole binaries, suita
horizon boundary conditions must be imposed, while
neutron star binaries, equations of hydrostationary equi
rium and an equation of state must be provided.

One important product of these initial value solutions is
relationship between the energyE and angular momentumJ
of the system as measured at infinity, and the orbital f
quencyV. As all quantities are well-defined and gauge i
variant, they are useful variables for making compariso
with PN methods.

We have developed a formula forE(V) andJ(V) using
PN methods. Our analytic formula includes point-mass ter
through 3 PN order, but ignores radiation reaction. It a
includes rotational energy and spin-orbit terms for the cas
which the bodies are rotating. For black holes, tidal effe
can be ignored. In contrast to previous work@11,12#, our
©2002 The American Physical Society01-1



la

u-
d
re
b

d

la

a
t
th

10

nd
-
em
ric
,
l

-
um

t

es
e

-
tio
e

in
p

se
d
e

ble

ly
o
ne
as
na

st
ox
rd

h

th
la
ub

es

rgy
the

ed

n-

er

RAPID COMMUNICATIONS

T. MORA AND C. M. WILL PHYSICAL REVIEW D 66, 101501~R! ~2002!
formulas apply to general eccentric orbits, not just to circu
orbits.

We then compare this formula with HKV numerical sol
tions for corotating binary black holes obtained by Gran
clémentet al. @10#, for the regime where the black holes a
separated from the location of the innermost circular orbit
a factor of around 2, where PN results might be expecte
work well (Gm/rc2;0.1). We find the following two re-
sults.

~i! When we assume circular PN orbits, our PN formu
for E(V) and J(V) agree to within 0.5% with other PN
methods, including those using resummation or Pade´ tech-
niques. However all PN methods consistently and system
cally underestimate the binding energy and overestimate
angular momentum, compared to the values derived from
numerical HKV simulations, by amounts that are up to
times larger than the spread among the PN methods.

~ii ! When we relax the assumption of a circular orbit a
demand only thatdr/dt50, our PN formula agrees ex
tremely well with the numerical data. In this case the syst
is found to be initially at the apocenter of a slightly eccent
orbit. For values ofGmV/c3 ranging from 0.03 to 0.06
corresponding to orbitalv/c between 0.3 and 0.4, or orbita
separation between 10 and 6 Gm/c2, nearly perfect agree
ment with the binding energy and the angular moment
can be obtained with eccentricities that range from 0.03
0.05.

There are a number of possible interpretations of th
results. One isthat the PN approximation is wrong. Ev
though the PN expansion is a weakly converging~and pos-
sibly only asymptotic! approximation to solutions of Ein
stein’s equations, the various 2PN, 3PN and resumma
results agree with each other by amounts in accord with
pectation, since (Gm/rc2)3;1023. Presuming that all rel-
evant physical effects have been included~see below!, we
view the PN results in this range ofGmV/c3 as robust.

Another possibility is that the approximations made
most numerical simulations, the main one being that the s
tial metric is conformally flat, result in errors, one of who
manifestations is an apparent eccentricity. At present, the
crepancy between the two approaches can only be consid
a hint of possible eccentricity, however. It is entirely possi
that circular PN orbitsare consistent with the HKV results
within the errors of the numerical simulations. This can on
be decided if and when the numerical groups that carry
these simulations publish quantitative error bars determi
by studying the convergence properties of the solutions
function of grid size, domain size and other computatio
assumptions.

In this case, our results may provide a useful diagno
tool, helping to guide some of the assumptions and appr
mations inherent in numerical initial data simulations towa
those that lead to the desired physical configuration, suc
a quasicircular orbit.

The remainder of this paper sketches the arguments
lead to these conclusions. Detailed derivations and formu
and applications to neutron-star simulations, will be the s
ject of a future publication.
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II. ORBITS AT THE TURNING POINT IN POST-
NEWTONIAN GRAVITY

In Newtonian gravity, the orbit of a pair of point mass
may be described by the set of equations

p/r 511e cos~f2v!,

r 2V[r 2df/dt5~mp!1/2,

E5m~ ṙ 21r 2V2!/22mm/r ,

J5mux3vu, ~1!

wherep5a(12e2) is the semi-latus rectum (a is the semi-
major axis!, v is the angle of pericenter,m5m11m2 is the
total mass,m5m1m2 /m is the reduced mass, andE is the
total orbital energy~henceforth we use units in whichG
5c51). A circular orbit corresponds toe50, with r 5a
5const, V25m/a3, E/m5a2V2/22m/a52(mV)2/3/2,
and J/m5Ama5(m/V)1/3. However, if we demand only
that the orbit be at the apocenter, so thatṙ 50 only, we have
f5v1p, r 5p/(12e), V25(m/p3)(12e)4, and

E/m52
1

2
~12e2!F mVa

~12e!2G2/3

,

J/mm5F mVa

~12e!2G21/3

, ~2!

whereVa is the angular velocity at the apocenter. The ene
and angular momentum expressions when the orbit is at
pericenter may be obtained by lettingVa→Vp and e→
2e.

At 1 PN order, the equations of motion can be solv
using either the direct approach of Wagoner and Will@13#, or
the ‘‘perturbed osculating orbit elements approach’’ of Li
coln and Will @14# to yield the orbit equations

p̃/r 511ẽ cos~f2v!1 z̃@2~32h!1~119h/4!ẽ2

1~7/22h!ẽ cos~f2v!13ẽf sin~f2v!

2~h/4!ẽ2cos~2f22v!#1O~ z̃ !2,

r 2V5~mp̃!1/2@12 z̃~422h!ẽ cos~f2v!1O~ z̃ !2#,

E5m~ ṙ 21r 2V2!/22mm/r 1
3

8
mv4~123h!1

1

2
m~m/r !2

1
1

2
mh ṙ 2m/r 1

3

2
m~v2m/r !~11h/3!1O~m/r !4,

J5mux3vu H 11 1
2 v2~123h!1

m

r
~31h!1O~m/r !2J ,

~3!

where v25 ṙ 21r 2V2, h5m/m, and z̃5m/ p̃. The limit ẽ
→0 corresponds to a circular PN orbit. However, at high
1-2
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PN orders, neither the orbital eccentricityẽ nor the semilatus
rectump̃ is uniquely or invariantly defined. One definition o
eccentricity used by Lincoln and Will@14# was that of a
Newtonian orbit momentarily tangent to the true orbit~the
‘‘osculating’’ eccentricity!; other authors@15# define multiple
‘‘eccentricities’’ to encapsulate different aspects of noncirc
lar orbits at PN order.

We define an alternative eccentricity and semilatus rec
according to

e[
AVp2AVa

AVp1AVa
,

z[
m

p
[SAmVp1AmVa

2 D 4/3

, ~4!

whereVp is the value ofV where it passes through a loc
maximum ~pericenter!, and Va is the value ofV where it
passes through thenext local minimum ~apocenter!. These
definitions have the following virtues:~i! they reduce pre-
cisely to the normal eccentricitye and semilatus rectump in
the Newtonian limit, as can be seen from Eqs.~1!; ~ii ! they
are constant in the absence of radiation reaction;~iii ! they are
somewhat more directly connected to measurable quanti
sinceV is the angular velocity as seen from infinity~e.g., as
measured in the gravitational-wave signal! and one calcu-
lates only maximum and minimum values, without conce
for the coordinate location in the orbit; and~iv! they are
straightforward to calculate in a numerical simulation of o
bits without resorting to complicated definitions of ‘‘dis
tance’’ between bodies. They have the defect that, when
diation reaction is included, they are not local, continuou
evolving variables, but rather are some kind of orb
averaged quantities~for this reason, they may not be as ‘‘co
variant’’ as they seem—this issue is under investigatio!.
Nevertheless, when an eccentric orbit decays and circular
under radiation reaction the definition ofe has the virtue that
it tends naturally to zero when the orbital frequency tu
from ocillatory behavior to monotonically increasing beha
ior ~i.e. the maxima and minima merge!.

By virtue of these definitions,z has the further property
that

z5S mVp

~11e!2D 2/3

5S mVa

~12e!2D 2/3

. ~5!

It is then simple to show that the relation betweene and z
and the corresponding quantities used in the Wagoner-
solution ~3! is e5ẽ$11 z̃@9/22h1(123h)ẽ2#%, and z

5 z̃$124z̃@12h/31(1/32h)ẽ2#%. Applying these defini-
tions to Eqs.~3!, we find the 1 PN expression forE(V) and
J(V) for a non-circular orbit, expressed in terms ofV at the
apocenter or pericenter:
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1

2
~12e2!z1F3

8
1

h

24
1S 2

5

12
1

h

12De2

1S 1

24
2

h

8 De4Gz2,

J

mm
5

1

Az
H 11F3

2
1

1

6
h2S 1

6
2

1

2
h De2GzJ . ~6!

Note that in the circular orbit limit (e→0), E andJ satisfy
the expected relationdE/dV5VdJ/dV. We have extended
this result to 3 PN order using the 3 PN orbit equations
Blanchet and Faye@7#, using both harmonic-gauge and ADM
gauge expressions, but neglecting radiation-reaction term
2.5 PN order~details will be given in a future publication!.

For those numerical simulations in which the bodies
assumed to be corotating, we must include a number of
tational effects. First is the energy of rotation of the ind
vidual corotating bodies, of orderdErot /m;IV2/m;(m/r )
(R/r )2, whereR is the characteristic size of the body. F
compact bodies,R;M , so these effects are equivalent to
PN order and higher. For black holes, we will use the st
dard procedure of splitting the mass of each body into
irreducible mass and its rotational energy using the Kerr f
mulas M5M irr /@124(M irrV)2#1/2 and S54M irr

3 V/@1
24(M irrV)2#1/2 @11,12#. Also, since the sequences of n
merical simulations holdmirr5(M irr)11(M irr)2 fixed as they
vary V, we will expand the masses that appear in the Ne
tonian orbital contribution to the energy and angular mom
tum aboutmirr . These contributions together yield

dErot /m5~2/h!~123h!~mirrV!21~6/h!~125h15h2!

3~mirrV!42~12e2!~ 2
3 2h!z~mirrV!2,

dJrot /mmirr5~4/h!~123h!~mirrV!1~8/h!~125h15h2!

3~mirrV!31
1

Az
~mirrV!2~ 4

3 22h!, ~7!

where henceforth,z5@mirrVa /(12e)2#2/3, andm andh are
expressed in terms of irreducible masses. The first two te
in each of Eqs.~7! are the rotational terms, expanded
second order, while the third comes from expanding
Newtonian orbital term.

Similarly spin-orbit and spin-spin effects are of ord
dES.O./m;LS/mr 3 and dES.S./m;S1S2 /mr 3 where L de-
notes the orbital angular momentum andS denotes the bod-
ies’ spin. For corotating bodies, these effects can be show
be of order dES.O./m;(m/r )(mR2/r 3) and dES.S./m
;(m/r )(mR4/r 5), which for compact bodies are equivale
to 3 PN and 5 PN order, respectively. Henceforth, we w
ignore the spin-spin terms. Assuming corotating bodies w
spins aligned with the orbital angular momentum, includi
both the direct and orbital effects of the spin-orbit term
@16,17# as well as their effect on our definitions ofe andz,
we find
1-3
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dES.O.

m
5S 2

16

3
112h1

4

3
~5211h!e22

4

3
~122h!e4D

3~mirrV!z5/2.

dJS.O.

mmirr
5S 2

40

3
130h2

2

3
~4211h!e2D ~mirrV!z. ~8!

Apart from the generalization to eccentric orbits, the
methods parallel exactly those of Blanchet@11#.

For tidal interactions, the contribution to the orbital e
ergy is of orderdEtidal /m;(m/r )(R/r )5. For black holes,
tidal effects are thus equivalent to 5 PN order, and will
neglected. Rotational distortions contribute the same, s
Edistort/m;(m/r )(V2R5/mr2), while for corotation, V2

5m/r 3. For neutron stars,R;5M , and tidal and rotationa
effects must be included, however it is sufficient to use Ne
tonian gravity to calculate them. These will be discuss
elsewhere.

III. COMPARISON WITH NUMERICAL SIMULATIONS
OF COROTATING BINARY BLACK HOLES

We combine the PN, rotational and spin-orbit contrib
tions toE andJ, setVa5V so that the stars corotate at th
orbital angular frequency at the apocenter, seth51/4 for
equal-mass black holes, and plot (E2mirr)/mirr and J/mirr

2

versusmirrV, wheremirr denotes the total irreducible mas
The results are shown in Figs. 1 and 2. Fore50, we show
results both from the 3 PN orbital expressions, and fr
truncated 2 PN orbital expressions, while fore50.03 we plot
the full 3 PN results. The crosses denote the correspon
numerical data of Grandcle´mentet al. @10#; the other curve is
the 3 PN resummation result of Damouret al. @12# for cir-
cular orbits. We note that all circular-orbit PN estimates,
cluding conventional 2 PN and 3 PN approaches@11#, Pade´
and resummation approaches@12#, and our approach, agre
well among themselves, but are systematically displa
from the numerical points, both forE and forJ. This can also
be seen in Figs. 5 and 6 of@12#. By contrast, withe'0.03,

FIG. 1. Binding energy of equal-mass, corotating black holes
angular frequency.
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our PN estimate fits the curves perfectly for small values
mirrV. This fit is merely illustrative: if the numerical simu
lations do have some eccentricity, there is no reason why
eccentricity should be the same for each numerical po
Figure 3 shows the values ofe that best fit the numerical dat
over the range ofV considered.

The conclusions are not substantially different if we u
the Wagoner-Will type eccentricityẽ. Whatever definition
one uses,e50 gives a worse fit than a finite eccentricity.

IV. DISCUSSION

High-order post-Newtonian approximations for circul
orbits appear to give results for the energy and angular
mentum of corotating binary black holes well away from t
innermost orbit that are in excellent agreement with ea
other. This is illustrated in Fig. 4, which plots the ener
from four PN results quoted by Damouret al. @12#, and from
our 2 PN and 3 PN results, in the range aroundVmirr
;0.032. Apart from the one 2 PN result quoted by Damo
et al., all are within 0.5% of each other. This could b

s FIG. 2. Angular momentum of equal-mass, corotating bla
holes vs angular frequency.

FIG. 3. Values of eccentricity giving a match to numerical HK
simulations.
1-4
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viewed as an estimate of the accuracy of the PN approxi
tion in this regime. But all results are 4% displaced from t
numerical HKV data. In the absence of a quantitative e
mate of the accuracy of the numerical simulations in t
regime, it is difficult to decide if this difference is a signal
a physical effect, such as the small eccentricity suggeste
our work.

One way to test whether the orbits represented by
HKV numerical simulations are really eccentric would be
evolve the orbits numerically for a short period of time, s

FIG. 4. Comparison of PN calculations of energy for wide
separated black holes.
es
na
.

um
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1/4 of an orbit (df5p/2). For a nearly circular orbit of
equal mass bodies, gravitational radiation reaction sho
cause the parameterz5m/p5(mV)2/3 to evolve according
to dz/df5(16/5)z7/2 @see, for example Eq.~3.11a! of @14##.
Thus, over a quarter of an orbit,z should change by approxi
matelydz/z'(8p/5)z5/2'(8p/5)(mV)5/3'0.016, formV
;0.032. Hence the orbital separation should decrease
about 1.6% or the angular velocity should increase by 2.4
By contrast, if the orbit has an eccentricity of 0.03 and is
the apocenter, then in a quarter of an orbit, the separa
should decrease by 3%, while the angular velocity sho
increase by 6%. Even with radiation damping, the or
should pass through a distinct pericenter whendf'p, and
the orbital separation should increase, while the angular
locity decreases.
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