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Using equations of motion accurate to the third post-Newtor®®N) order[ O(v/c)® beyond Newtonian
gravity], we derive expressions for the total eneEygnd angular momentuthof the orbits of compact binary
systemgblack holes or neutron starfor arbitrary orbital eccentricity. We also incorporate finite-size contri-
butions such as spin-orbit and spin-spin coupling, and rotational and tidal distortions, calculated to the lowest
order of approximation, but we exclude the effects of gravitational radiation damping. We describe how these
formulas may be used as an accurate diagnostic of the physical content of quasiequilibrium configurations of
compact binary systems of black holes and neutron stars generated using numerical relativity. As an example,
we show that quasiequilibrium configurations of corotating neutron stars recently reported byetdlecan
be fit by our diagnostic to better than one percent with a circular orbit and with physically reasonable tidal

coefficients.
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I. INTRODUCTION AND SUMMARY regime where it is believed to be reliable. This has given rise

to the so-called intermediate binary black hdBBH) prob-

The late stage of inspiral of binary systems of neutronlem [15], for example, which seeks new techniques or in-
stars or black holes is of great current interest, both as aights to attempt to bridge the gap between the end of con-
challenge for numerical relativity, and as a possible source dfidence in PN methods and the beginning of realistic
gravitational waves detectable by laser interferometric antemumerical simulations. On the other hand, if it can be dem-
nas. Because this stage, corresponding to the final few orbitsnstrated that PN approximations converge sufficiently rap-
and ultimate merger of the two objects into one, is highlyidly, especially for comparable-mass binary systems, then
dynamical and involves strong gravitational fields, it must belBBH techniques may not be needed. Blancfi8,17] has
handled by numerical relativity, which attempts to solve therecently argued that, for comparable-mass systems, the PN
full Einstein equations on computefsee Refs[1-3] for  approximation seems to be more accurate than might be ex-
reviews. pected based on experience with the test-body limit. For bi-

The early stage of inspiral can be handled accurately usaary neutron stars, this is less of an issue, because neutron
ing post-Newtonian techniques, which involve an expansiorstars are much larger objects, so the numerical simulations
of solutions of Einstein’s equations in powers @f (v/c)®>  necessarily commence at larger separations, where PN meth-
~Gm/rc?, wherev, m, andr are the typical velocity, mass ods are presumably more reliable.
and separation in the system, respectively. By expanding to Numerical simulations of compact binary inspiral start
very high powers ok, one can derive increasingly accurate with a solution of the initial value equations of Einstein’s
formulas to describe both the orbital motion and the gravitatheory; these provide the initial data for the evolution equa-
tional waveform. Currently, results for the orbital motion ac- tions (some initial-data modelsl8] solve in addition one of
curate through 3.5 post-NewtonidB.5PN order[O(e”?  the six dynamical field equationsThe initial state is as-
beyond Newtonian gravifyare known[4—14)]. sumed to consist of two compact objecteutron stars or

An important issue in understanding the full inspiral of black hole$ in an initially circular orbit. For stellar-mass
compact binaries is how to connect the PN regime to thesystems that have evolved in isolation for eons, gravitational
numerical regime. This is a nontrivial issue because the PMadiation is expected to leave the orbit in an accurately cir-
approximation gets worse the smaller the separation betweeanlar state, apart from the adiabatic inspiral induced by the
the bodies. On the other hand, because of limited computdess of orbital energy; that inspiral is ignored in the initial-
tional resources, numerical simulations cannot always belata models(Miller has analyzed the consequences of this
started with separations sufficiently large to overlap the PNoarticular assumptiofil9].)

The circular-orbit condition is imposed by demanding that
dr/dt=0 initially, wherer is a measure of the orbital sepa-
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condition which is astrophysically unlikely, albeit computa- For values ofGmQ/c® ranging from 0.03 to 0.06, corre-
tionally advantageous, while others assume that the bodiesponding to orbital//c between 0.3 and 0.4, or orbital sepa-
are irrotational, i.e. nonrotating in an inertial frame. To sim-ration between 10 and 6mv/c?, nearly perfect agreement
plify the problem, an approximation for the spatial metric iswith the binding energy and the angular momentum could be
generally made; one is the assumption of conformal flatnessbtained with eccentricities that range from 0.03 to 0.05.

an approximation that is known to be invalid in full general  The concordance within fractions of a percent between
relativity. This approximation is usually justified by the ne- the various 2PN, 3PN and resummation PN results matches
glect of radiation reaction in the initial state. Other approxi-expectation, sincegnvrc?)3~10"3. Presuming that all rel-
mations, derived from post-Newtonian theory, or from sumsevant physical effects have been included, we argued that the
of Kerr geometries, have also been used. For black hole bPN results in this range oBmQ/c® are robust. We sug-
naries, suitable horizon boundary conditions must be imgested the possibility that the approximations made in most
posed, while for neutron star binaries, equations of hydronumerical initial-data models could lead to an apparent ec-
stationary equilibrium and an equation of state must be proeentricity in what was expected to be a quasicircular orbit. At
vided. present, however, the discrepancy between the two ap-

One important product of these initial value solutions is aproaches can only be considered a hint of possible eccentric-
relationship between the energyand angular momentud ity, because the results §18] did not include quantitative
of the system as measured at infinity, and the orbital freerror bars for the variableg(Q) andJ(Q).
quency(). The energy could be the total energy as measured These results motivate us to propose a “post-Newtonian
at infinity, consisting of the masses of the two stars plus theliagnostic,” a tool that can be used to extract physical infor-
orbital energy, or it could be the total energy less the energynation from numerical simulations, and that may also be an
of the same two stars in isolation. The latter quantity wouldaid to guide some of the assumptions and approximations
be a measure of the orbital binding energy. As all quantitiesnherent in numerical initial data computations toward those
are well-defined and gauge invariant, they are useful varithat lead to the desired physical configuration, such as a true
ables for making comparisons with PN methods. quasicircular orbit.

We have developed formulas f&((}) andJ({}) using In this paper we provide the physical assumptions, math-
PN methods. Our analytic formulas include point-mass termgmatical details, and justifications for the approximations
through 3PN order, but ignore radiation reaction. They alsahat underly this proposed diagnostic tool. We give the de-
include rotational energy and spin-orbit and spin-spin termgailed foundations for the analysis carried out[2d] for
for the case in which the bodies are rotating. They furtheblack-hole binary systems, and also extend that work to the
include a Newtonian calculation of the effects of tidal andcase of neutron-star systems by including tidal effects. As an
rotational distortions, applicable to stars of arbitrary densityapplication of our diagnostic to neutron-star systems, we
distribution, expressed in terms of so-called “apsidal con-analyze recent numerical models of quasiequilibrium orbits
stants” (i.e. we do not restrict attention to homogeneous el-of neutron stars by Milleet al.[25]. In contrast to the black-
lipsoids[20]), and including effects at quadrupole and octu-hole case, we find that the orbital energy in the neutron-star
pole order. We verify that, for black holes, tidal effects caninitial-data models of25] can be fit to better than one per-
be ignored, while for neutron-star binaries, they must be in€ent, and importantly, within the error bars provided 2|,
cluded. In contrast to previous wofk6,21-23, our formu-  using circular orbits with physically reasonable tidal param-
las apply to general eccentric orbits, not just to circular or-eters appropriate to thd™=2" equation of state used in that
bits. numerical work. The results illustrate the robustness of the

In an earlier papef24], we compared this formula with PN approximation well into the strongly relativistic regime
HKV numerical solutions for corotating binary black holes of compact binaries, especially when augmented with physi-
obtained by Grandchaentet al.[18], for the regime where cally movitated finite-size effects. Application of this PN di-
the black holes are separated from the location of the innemagnostic to other numerical models will be a subject of future
most circular orbit by a factor of around two, where PN papers.
results might be expected to work welsm/rc?~0.1). We The remainder of this paper provides the details underly-
found that when we assumed circular PN orbits, our 3PNng these conclusions. In Sec. Il, we solve the post-
formulas forE(Q)) and J({)) agreed to within 0.5% with Newtonian equations of motion calculated to third post-
other PN methods, including our own formulas truncated aNewtonian (3PN) order, for general eccentric orbits.
2PN order, and 3PN formulas derived using resummation oNeglecting radiation reaction effects, we then express the
Padetechniques. However all PN methods consistently andotal conserved orbital energy and angular momentum in
systematically underestimated the binding energy and oveterms of a pair of “covariant” orbit elements (eccentricity
estimated the angular momentum, compared to the valuemnd ¢ (related to the semilatus rectiinin Sec. Ill, we cal-
derived from the numerical HKV initial-data models, by culate the effects of finite size in binary systems with bodies
amounts that were up to 10 times larger than the spreadhose spin axes are perpendicular to the orbital plane. These
among the PN methods. But when we relaxed the assumpAaclude tidal and rotational distortions, spin-orbit terms and
tion of a circular orbit and demanded only thdwt/dt=0, spin-spin terms. In Sec. IV, we analyze our diagnostic quan-
our PN formula could be made to agree extremely well withtitatively, and apply it to co-rotating, equal-mass binaries of
the numerical data by assuming that the system being simulack holes and of neutron stars. Two Appendixes provide
lated is initially at the apocenter of a slightly eccentric orbit. the detailed derivations of the expressions for the tidal and
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rotational distortion included in our diagnostic: Appendix A at perpetual periastron, thereby maintaining a constant sepa-
uses Newtonian gravity to solve the general problem of theationr. In an effort to avoid this anomaly, other authfg§)]
equilibrium configurations of gravitating bodies disturbed byadopted a “quasi-Keplerian” parametrization, which defined
an external force, paralleling the treatment in the classienultiple “eccentricities” to encapsulate different aspects of
monographs of Kopal26,27, and Appendix B specializes noncircular orbits at PN order.

the results to linear perturbations caused by rotational and In an effort to find a parametrization of noncircular PN

tidal disturbances. orbits that will be useful in comparing with numerical mod-
els, we[24] proposed an alternative measure of eccentricity
II. ENERGY AND ANGULAR MOMENTUM FOR “POINT” and semilatus rectum according to
MASSES TO 3PN ORDER
A. Orbits at the turning point in post-Newtonian gravity VQ,—VQ,
. . . . . €= ——,
Since our ultimate focus will be on orbits that are possibly \ /Qp+ VO,

eccentric, but that momentarily have=0, it will be useful

to review the characteristics of orbits at turning points in

Newtonian theory. In Newtonian gravity, the orbit of a pair m
of point masses may be described by the set of equations ¢ E

> (2.3

VmQ,+ \/mﬂa) e

p/r=1+ecoy¢— w),
where(}, is the value ofQ) where it passes through a local

r’Q=r?dg/dt=(mp)*? maximum (pericentey, and (), is the value ofQ) where it
passes through theextlocal minimum(apocenter
E=u(r2+r202)/2— um/r, These definitions have the following virtugd) they re-
duce precisely to the normal eccentriciyand semilatus
J=pu|xXxv], (2.2 rectump in the Newtonian limit, as can be verified from Egs.

(2.1); (2) they are constant in the absence of radiation reac-
wherep=a(1—e¢?) is the semilatus rectuma(is the semi- tion; (3) they are somewhat more directly connected to mea-
major axig, w is the angle of pericentem=m;+m, is the  surable quantities, sinc@ is the angular velocity as seen
total mass,u=mym,/m is the reduced mass, aftlandJ  from infinity (e.g. as measured in the gravitational-wave sig-
are the total orbital energy and angular momentum, respeaal) and one calculates only maximum and minimum values,
tively (henceforth we use units in which=c=1). Acircu-  without concern for the coordinate location in the orbit; and
lar orbit corresponds t@=0, with r=a= constant,)? (4) they are straightforward to calculate in a numerical model
=m/a®, E/u=a’0%2—m/a=—-(mQ)?%2, and J/u  of orbits without resorting to complicated definitions of “dis-
= Jma=(m/Q)¥2, However, if we demand only that the tance”between bodies. o o
orbit be at apocenter, so that=0 only, we haved=w They have the defect that, when radiation reaction is in-
+ o, r=pl(1—e), 02=(m/p%)(1—e)*, so that, in terms of cluded, they are not local, continuously evolving variables,
Q. the angular velocity at apocenter, but rather are some kind of or‘lfnt—avgrag,(’ed quantitiesthis

reason, they may not be as “covariant” as they seem—see
213 Sec. Il E below. Nevertheless, when an eccentric orbit de-

cays and circularizes under radiation reaction the definition
of e has the virtue that it tends naturally to zero when the
orbital frequency turns from oscillatory behavior to mono-
-3 tonically increasing behaviofi.e. the maxima and minima
(2.2  merge.
By virtue of these definitions; has the further property
that
To obtain expressions in terms Qf,, the angular velocity at

mQ,

1 2
Elu=——(1l—e
“ 2( )

(1-e)?

mQ,
(1—e)?

J um=

per_lcenter, one makes the replacemefis—(, and e mQ. |28 ma. |23
——ein Egs.(2.2. _ P _ a (2.4
However, at higher PN orders, neither the orbital eccen- (1+e)? (1—e)? '

tricity e nor the semilatus rectumis uniquely or invariantly

defined. One definition of eccentricity used by Lincoln and ) ] ] )

Will [29] in their analysis of orbits at 2.5PN order was that of e will derive expressions for orbital energy and angular
a Newtonian orbit momentarily tangent to the true ottiie ~Momentum in terms of these parameterand {; for com-
“osculating” eccentricity; it had the unusual property that it Parison with numerical models of quasiequilibrium param-
did not tend to zero for a circular PN orbit, but tended towardetrized in terms of) atr=0 ({, or (1), one can simply

a constant value of ordemn/p, while the rate of pericenter substitute for{ from Eg.(2.4). In this section we will focus
advance approached the same rate of rotation as the orliit 3PN expressions for point masses; in the next section, we
itself. In this language, the true orbit was a noncircular orbitwill incorporate effects due to rotation and finite size.
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B. 3PN equations of motion X1 =[my/m+(ném/2m)(v2—m/r)+ (2PN)+ - - - X,

We use the standard form of the equations of motion,
written in a “Newtonian-like” manner. The acceleration of X,=[—my/m+(pdm/2m)(v2—m/r)+(2PN)+ - - - X,
body 1 is given schematically by

(2.6
d’x; m, 5.
_ _ where = u/m=mm,/m* is the reduced mass parameter
=——=—{n[—-1+ + +(2. + .
& a2 r2 {n[=1+(PN)+(2PN)+(2.5PN)+(3PN) (0<n=1/4), andém=m;—m,. The result is a set of equa-
tions of motion in terms of relative coordinates:
+(3.5PN)+ - -]+ V[(PN)+(2PN) +(2.5PN)
+(3PN)+(3.5PN) + - - - ]}, 2. d>x m
( )+ ) Iy 29 a=—2:—2[(—l+A)n+Bv], (2.7
where x, and m, denote the position and the mass of the = r

body a, r is the separation between the two bodies,(x;

—Xp)/r is the unit vector from 2 to 1, and=v;—v, the  whereA andB represent post-Newtonian terms. To date, the
relative velocity. The equation for body 2 is obtained bytwo-body equations of motion have been computed up to and
making the replacement2. The notatiomPN represents including 3.5PN order. In an appropriate harmonic gauge,
the nth post-Newtonian correction to Newtonian gravity. writing A=A;+A,+--- andB=B;+B,+ - - -, the expres-
These equations are valid only for pointlike, nonspinningsions forA andB read[31]

bodies.
Post-Newtonian term#PN include even(integey and m 3
odd (half-odd integer, such as 2.5PN, or 5/2 Pdders. A=2(2+ 77)7—(1+37;)v2+§7;r2, (2.8a

Even terms are conservative, in the sense that the equations
of motion admit conserved quantities such as energy and
angular momentum. Odd terms correspond to gravitational p,— — _(12+ 2977)<
radiation reaction, and therefore are not conservative. In par-
ticular, they will cause the orbit to shrink, and the eccentric- 5 1 m
ity to decrease. —En(1—377)r4+ En(13—477)Tv2

We convert the two-body problem to an effective one-
body problem. For this purpose we choose the origin to be at ,m., 3 0: s
the center of mass of the system, which is defined by an +H(2+257+27°) 17+ 5 n(3—4n)vTe, (28D
integral of the motior{a conserved quantity to the 3PN order
of approximation to which we will be working We then
change all variables to the relative coordinaiesx;—X, A 8 T 1_7T+3
using relations of the type 5257 v?

2
—n(3—4n)v?

(2.809

3r

As= 152116 "

139
16+( L — ) n
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B =—§ T BT+ 2 (2.909

512 577r r v -
. 5849 123 5 5| [m)?

Bs=r{|4+ %4-577 n—257°—87y T

1 o 4 15
+ 57/(65— 1529—48n°)v*+ En(3—877
. m
—29%)r'+ p(15+ 277+ 107°) - v?
m.
—(329+ 177+ 1081;2)Tr2

3 2\, . 2.2
— 2 7(16-377= 167702, (2.90

2+ ! 313
2_8(

B _3,mi 1325+ 5467)|
BN 25 7) T
+42n)v 4+75r4——(205+7771;)—v

+l 205+ 424 M2 3 113+ 2 79)v?r?
1—2( W)Tr 4_1( el

(2.9¢

1, m
EO/MZEU —T,

2 m.

3 1-374 13 ,m 1
+g(1=3n)v + B+ v+ 59

1/m
E1//.L=§ T

3

1 m
E,/u=— Z(2+ 15%) T

2 a1 m,, 3 m .,
+= (21 23n— 277]) v +477(1—157])Tv r —57](1—37])Tr ,

6747 41

3 18469 ]/m\* [5
T 280 64"

E3/“:[§+W” i

4
(m3
><_
r

128

16

M & 1 > M- 1
+ 325y )Tv +E7;(5—25n+2577 )Tr - —

r
r

+—(1-79+13 2)06+E(14—55 +47?) o
16 7+ 137 8 n+4n7)| 7
2) 21

L1 2 s 3| M)? 1 L (m\?,
Te(12+2487— 8157 = 3247%)| | v?r?— 2o n(731-4927—2887%)| | T

m .. 1
_ 2\ 4.2 T
16 721+ 75— 375y) vt
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At 3PN order, the computation implemented by Blanchet
et al. [8,9] produced logarithmic terms, proportional to
In(r/r;) and In¢/r}), wherer; andr are constants related to
a scale of radius for each body. In obtaining E@8) and
(2.9, we removed these logarithms using a 3PN coordinate
transformatiorx ,—x,+ ox,,, with [9]

(2.10

where y,=|x—x,| denotes the coordinate separation be-
tween the considered point and the bady\Ve note that we
have [Jéx, =0, except at the location of the two bodies.
This ensures that the harmonic condition is still respected in
the new gauge to the required order. In addition, the param-
eter\, which was initially undetermined if8,9,31 has now
been fixed to bex=—1987/3080 by different techniques
[11,13,32; that value has been incorporated into all equa-
tions.

In the absence of the 2.5PN and 3.5PN terms, these equa-
tions of motion admit conserved total ener§yand total
angular momentund. Writing E=Eq+E;+E,+E3 andJ
=Jo+J;+ I+ 3, we have

(2.113
(2.11b
2 2
2 1 2 T "2
v +8(4+697;+1277) ; r
(2.110
, 1, m32 3 (2321 123 , 51 7
PEAE L I R PR b R KA R A R

m 2
r +—(35 413p+ 16667>—22617°)v8+ 6(135—19477+406772—108773)(T) vt

2
1
+ E(ss— 215y + 1167?

7(9—84n+ 165,;2)Tv2'r4
16 r '

(2.119
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Jo/ = (xXV), (2.12a
m 1
Ji /= (xxV)|(3+ 77)?+ E(1—377)02 , (2.12b
1 ,(m|? 3 o4 1 ,m o, 1 m.,
Jo /= (XXV) Z(l4—417y+4n ) T +§(1—77;+1377 )u +§(7—1077—977 )Tv _57’(2+57’)Tr ,
(2.129
Jalu= >_ (3199 H, 7%+ 7 31559 23872 —3237°)v°
slu=(XXV)\ |5 = | 5gg ~ 3™ |7 T+ 07 || | + (5~ 99n+2387"—32377)v
1 2 3 m 2 2 1 2 3 m 2'2
+1—2(135—3221;+3157; —1087°) r +ﬂ(12_ 2877— 951y —324%°) i
1 2 3 m 4 1 2 m 2.2 3 2 m'4
+§(33— 1425+ 1067°+ 1957 )TU —Zn(12—777—751; )TU r +§77(2—277—117; )Tr . (2.129
|
C. Solution of the 3PN equations of motion o X
In order to solve these equations, we shall initially adopt TmW T
the method of osculating orbital elements, which is well-
adapted to the perturbed two-body Kepler problem. The os- o y
culating orbit elements are defined by the Keplerian orbit B=- mUx
that is tangent to the actual trajectory at a particular moment
of time. In the Newtonian case, the osculating elements are — o2/m
constants of the motion; in a perturbed Newtonian problem, p=o-im,

they change smoothly with timésee[29] for more details R
about the method of osculating elements applied to the post- o=(XXV)-Z. (2.14
Newtonian problem

From the equations of motion we can easily deduce thaPne additional expression will be useful:
the trajectory is planar, which allows us to reduce the number )
of variables from six to four. If we assume that the plane of r=(m/p)YAasing— B cose). (2.15
the motion is perpendicular ta (x,y,z being a standard ) ]
Cartesian coordinate systgmour new set of variables We note that the vectora(B) has as its norm the ordinary
(a,B,p, ) is related to the old set(y,v,,v,) by the defi- Keplerian osculating eccentricigyand as its phase angle the

nitions (some of which are redundant directionw of the Keplerian osculating periastron, so that we
have a=ecosw and B=esinw.
X=I C0S¢, In what follows, we will use the parameter= m/p rather
than p. Note thatu is of ordere~m/r. In the Newtonian
y=rsine, case,u, « and B are constants of the motion; in the post-
Newtonian problem, these parameters vary according to the
__ 112 . following “Lagrange planetary equations(so-called from
Ux (M/p) "B +sing), their extensive use in solar-system stuglies
vy=(m/p)“Aa+cose), du
—=-2u’B
do '
r=p(l+acos¢+pBsing) 1,
2 12 d—azAsin ¢+ 2u'?B(a+cose)
Reciprocally, we can deduce the osculating elements from dp i _
the orbital variables by using the following relations: aé- —Acos¢+2u"B(B+sing), (2.19

where we have used EqR.7), (2.13 and(2.15. When the
definitions ofx andv [Egs. (2.13] are substituted into the

- y
b= arctarE X
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PN expressions foA andB [Egs.(2.8) and(2.9)], we geta use a two-scale approadi83]. We define a variable§
set of coupled first-order differential equations in the vari-=e¢, and we assume that the osculating elements can be
ablesa(¢), B(¢) andu(¢). written as functions off and ¢ in the generic formu

The planetary equations derived from E(&.16) are too  — (), 2(6),B(), $), with 8 and ¢ now treated as inde-

long to be reproduced hefthey can be found through 2.5PN pendent variables. We then expand the elements in powers of
order in[29]). However we can schematically write them in .

the general form:
du U= eu+ e2uy(a,B,U, )+ €uy(a, B, U, )+ - - -,
e UZDul(a!Bv¢)+U3Du2(arﬂa¢)

do ~ -~~~ -~~~
B:B+Eﬁl(a1B1u1¢)+Gzﬁz(aaﬂvuy¢)+ Ty
+u5/2Du5/2(a1B1¢)+ R
q a=a+ eal(a,AB',Al:l,qB)+ ezaz(;z,:é,rj,cf))-i- <. (219
o
- = + 2
do UDay(a, B, )+ uDaz(a, B, b) Notice that, by its very naturei begins at ordee. We write
U Dag . Bod)+ -, the derivative with respect tg in the form
ds d J N Jd
e 4e—
dé~ uDBy(a, B, $) +U*DBy(a,B,¢) d¢ dp a6
+USPDBe S, By )+ - -, (2.17) _ 0, [dao dB o dud
5/2 (9¢>+6 d055+d0323+d0¢9§' (2.20
whereDu,,, Da, andDB, (ne{1,2,5/2,3,7/2) are polyno-
mials in « and B and simple trigonometric functions @f. We also expand the derivatives with respectm pow-
We quote, for illustration, the first post-Newtonian expres-ers of e:
sions for these polynomials:

: du - .. e
Du;=4(2—n)(Bcosp—asing), gg= dua(e,B,u) + eduy(a, B,u) + -,
Da;=—3B+(3—7n)sind+(5—47)(asin2¢— B cos 2p) 5

dg -~ ~ -~ e~
1 _:d 1 + d 1/ + - “
+ S[(56-477) o’ (8+217) Blsin dp_ dPul@ B+ edBp(en )
1 3 de - . .
—2(32—137;)aﬁcos¢+§77(ﬂ —a“)sin 3¢ d—0=da1(a,,8,u)+edaz(a,,B,u)+~-~. (2.21

Now we have reduced our study to the searchdfar B; , u;
on the one hand, which will give the dependencei8, U,
and¢, andda; , dB;, du;, on the other hand, which will give
differential equations allowing solution for thé depen-

1 dence, or long-term variation of the parameters. Note that
—gl(56- 477) B~ (8+21n) a®]cose this is not the only way to decompose the problem, but is a
natural way, given the split into orbital and secular evolution

3
+ 2 na B cos 3p,

DB1=3a—(3—n)cos¢— (5—4n)(acos 2+ Bsin2p)

1 i 3 s 5 of the variables.
+7(32-13n)apsing+ g n(a”—p%)cos 3p We now define the average and the average-free part of a
function f(¢) by

3

+ 7 napsin3¢. (2.18 1 (2=
(=52 6100,

We want to solve these equations iteratively. At zeroth
(Newtonian orderu, « and3 are constants of the motian AF(F)(¢)=1(p)—(f), (2.22
@ and B, and can be related to the initial state of the orbit.
Post-Newtonian effects cause them to vary slowly over avhere the “independent” variabled is held fixed. (An
post-Newtonian time scale or a radiation-reaction time scalegquivalent procedure would be to convert all functionspof
related to the orbital phaseé by &/ and ¢/€%? respec- into 2x-periodic functions and constants\Ve rewrite Egs.
tively. Superimposed upon this will be variations on an or-(2.16 with our new variables, and we collect terms of com-
bital time scale. To take these two effects into account, wanon powers ofe. At first order ine we get

104021-7



T. MORA AND C. M. WILL PHYSICAL REVIEW D 69, 104021 (2004

Using this procedure systematically up to 3.5PN order, we
completely determinex(«,B,u, ), B(«,B,uU,¢) andu(a,
B,u,4), as well as §a/d$)(a,B,u), (dB/d¢)(a,B,u) and
(du/d¢) (@, B,u). From this and Eqs2.13 we can deduce
the explicit expressions fox, v, r, etc.

To 3.5PN order, the secular evolution wfande is gov-
B erned by radiation reaction, and is given by the coupled
¢ =UDBy(a,B, ), (2.23 equationgwe now sete=1)

~auy o,
dU1+ %ZU 'Dul(a,ﬁ,d)),

da
da1+

70 —=UDa,(a,B.¢),

B+

where the expressions on the right-hand side are given by _
ith i i du o~ 2759 379 127 \.
Egs.(2.18, with « replacinge, and so.on. R~ead|ng of~f the Y9Y_ g (8+7e2)u7’2—[( +677) _(_+ _n)ez
average parts of Eqgs(2.23, we find du;=0, da; dé 42 21 6
=-3I:l;é, and d731=3ﬁa. Defining a=ecosw and ’B (1483 79 ) ,
— I:lg 2},

=4

=esinw we find, to first PN order that 336 "6 7€
du/de=0,
- B de ~ e, | (18049
de/d6=(ada/do+ BdBId6)/e=0, 46~ 187° (304+ 1216?) %%~ | | ——+ 636y
dw/do=(adB/do— Bdal/d6)/e?=3u. 2.2 4346 1829 \.. [2251
w/d6=(adp/do—Sdaldo) (2.24 ( e, 18 n)ez_( 2 +26977) 7,2]

These results express the well-known fact that the orbital
eccentricity and semilatus rectum do not evolve secularly to (2.28
1PN order; in fact, this holds true at 2PN and 3PN order;
they only evolve secularly as a result of radiation reaction.

h le of peri ~ | lar] der vi We note that the eccentricity decreases as the orbit
-L € angde Od p(ejncent@ EVO Ves selcu arly at 1§N order V'abshrinks. The periastron advance is driven by the conservative
the standard advance; there are also 2PN and 3PN contri art of the equations:

tions, but no radiation-reaction contributions to the advanc
of », through 3.5PN order.
Then, integrating the average-free parts of Eg23, we do

~ 3 —
obtain, for example, =3u-— Z[lo+ 45— (1+109)e?u?

d¢
aleFU AF(Dal)(d))dd;). (2.29 +[8_7_(1_57_ 23772) 302
2 4 32
The role of the secondiF is to get rid of the constant of 123 93 .
integration. The same method yields similar results fggr —{45 23+ 1_2877 n+ 5772 e
andu;.
At second order ire, we obtain equations of the form 3 ~al~3
+§n(12—25n)e u®. (2.29
day ~, dDaq dDay
da2+ w—u Da2+u Ja Qg Wﬂl +U1Da1
D. Energy and angular momentum in terms of new orbit
day ~ dag ~  dag ~ elements
——=0a;— —=< 17 = dUl
da B Ju We now wish to convert from the osculating orbit ele-
L mentsu ande to our alternative quantities defined in Egs.
=fy(a,B,U,¢), (2.26 (2.3 (cf. Sec. Il A. Using the formula
wherea;, B1, Uy, da,, dB; anddu,; are known from the mQ=m*p¥?r2=10%31+a cos¢+Bsing)?, (2.30
first order solution. For the same reasons as previously we

have
we can easily show that the maxima and minimd&bccur

da,=(f,), at ¢=w (pericenter and ¢=w+m, (apocenter respec-
tively. We then express), and {),, and thence our new

_ orbit element® and{ as functions o€ andu. To 2PN order,
az_AF( f AF(fZ)(¢)d¢)' (2.2 the relationships are given by
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1 -]~
+ E(13—477)+(1—377)e2 u

[ 4 e
{=uj1-3[E=n+(1-127e’u

1 ~
+| 7(52-1297) + 7£(157-3377+ 11675°%)e?

1 1 ~
+| 5(198+397+ 267°)— 36(1092-977p+ 2767%)e?

1 ~ )~
+7(4-197+ 487%)e* |u?

1
] , (2.31a §(2 277—187%e*(u

] (2.31b

Notice that a circular orbit correspondséde- e=0.

We invert these relations and substitute the expressiors(&t) andu(e,¢) into the solution of the equations of motion.

The results fom/r andr?¢ to 3PN order are too long to be reproduced here. However, in order to give an idea of what they
look like, we quote them to 2PN order, expressed in terms of our new orbit elements.

m
T={1+ecos¢’}§+ 1-

Lt L (4-3pet 2[(9- )+ (1-3p)e? T e2coq2¢') | &
37+ 73(4-3mEH S[(9-47) +(1-3n)e?lecoss’ —e’cos24') ¢

65 1
11157+ 5,(356- 3197+ 487%)e?+

12

192(25& 2657+ 459°%)e*

1 1
+ 1—2(96— 231p+879°) + 4—8(323— 3517+ 1807%)e®+ 112(5+ 127n)e*|ecose’

1 2, 7 2
~| 5560+ 159~ 167%) + 25(29-27n)e

1
ezcos(zqs')—E(1+19n—4772)e3cos(3¢')

—6—”4<1—3n>e4cos4¢'>]53,

.. m 2 2
r2¢= T 1—|§(3— 7)+ 5(1—377)e2+(4—277)ecos¢>'J l
{
1 1 1
+ E(6+5377+21;2)— 5228+ 117y—487p%)e*+ g(z— 17n+67%)e*
1 1
- 5(6—5377—2772)—£(32—2111;+54772)e2 ecos¢’
1 U
+ g(36— 13n+47n?)e’cod2¢’) — §(3+ 27n)edcog3¢’) { 2|, (2.32
|
where ¢'=¢—w. The leading term corresponds to the v=(m/p)¥ —sin(¢p—w)e,
Newtonian solution. Note that, e and w are now ourpost- R
Newtonianorbital elements, and should not be mistaken for +(e+cogd—w))g,+ dv], (2.33

the Newtonian ye and w introduced in Sec. Il A.

An alternative method for integrating the post-Newtonian
equanns of motion was deve|0ped by Wagoner and W|||\Nherep, e and w are constants. Taklng a time derivative of
[28]. In that method, perturbations of the velocity and anguoth equations, substituting the 3PN equations of mdfign

lar momentum were defined by the equations noring radiation reaction termsconverting to derivatives
with respect tap and integrating, one obtains expressions for
r2dg/dt=|xxv|=(mp)Y31+ sh), the perturbed2d¢/dt andv. One then integrates the iden-
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tity (d/d¢)r t=—(r?d¢/dt) *(n-v) with respect tog, dw
setting the constants of integration at each PN order so tha%: 3¢+
the identityd(rn)/dt=v is reproduced. In terms of the bare
orbit elementse, U=m/p and w, the orbit equations look
different at each PN order from those derived above in terms
of e, U andw. But when the solution so derived is used to
identify 2, andQ), and thence to define new orbit elements [137 (337 123 )

1 1
(9= 14p)+ 7(19- 187)e?

G n+ 7772

2

4 32

27 (481 123

from Eqgs.(2.3), the resulting orbit solution in terms of our 4

new orbit elements igentical to Egs.(2.32, through 3PN
order.

§2

PHYSICAL REVIEW D 69, 104021 (2004

1
The equations describing the evolution with time of our + —(20+877+45772)e4)§3. (2.39
new orbit elements then become 8
df 8 o 72 | 743 1186 685 | , Now the problem is entirely solved. Equatio232 pushed
d¢ 57 (8+7€){™ | 45 +227- 63 6 7/ to 3PN order, characterize the motion, while E@s34) give
the pericenter advance and effect of radiation reaction on the
(18001 163 et 1o orbital elements.
1008 6 " ' We now ignore the effects of radiation reaction, express
all the orbital variables, x, v, r to 3PN order in terms of our
de 1 5505 3796 new orbit elements and the angfe and substitute into the
Fra 1—57;e{ (304+ 121e?) {5~ [T - expressiong2.11) and(2.12. As expectedE andJ are con-
stant (independent of¢g) through 3PN order. Defininde
(12499 17741 o 46289 4379 |t (772 =E/u andJ=|J|/um, with J=|J|2, we find for a general
21 6 168 ' eccentric orbit:
|
O PP DU L I 11,
27 19 1 17 1 1 29 1
[ 2| o220 | o T T 2| R4 2
[8 g 7t T\t g ¢t (2t 2 8”)6 ¢
675 (34445 205 2| 155 2, 35 3y 7 2369+ 41 2|, 11951 5 25 3|
64 | 576 967 /7" 967 "5184" "6a \576 " 96" |7 864 7 5767 )¢

815 7619 1499 . 25 |\ (35 143 57 5 | ] -
“\576 17287 2887 647 )€ “\518a 10277327 & /€ (¢ | (2353
_ 1 31 (11,
parm —{ 14| =4+ === Zp]e
Harm \/Z 2 677 6 27] g
27 19 12(2331 1, (1% 1
== — gt =2 | —— — - — 2|+ | —— —p——7n?|e
8 87 247 "\12 67 4" 22 247 g7 )%t
135 (6889 41 31 7 299 (10003 41 3013 5
t o= | ——— =7 | gt — Pt — P+ | —— | ——— = 72|+ —— P~ — 3| €?
16 | 144 24 24" " 1296 16 | 144 24 216 7 144
77 6497 853 5 |\ (7 1 1 1 | ]
| = ——pt — 2+ — 3| e~ | ——+ —pt+ =~ — | e8| 3} 2.35
144 4327 727 " 16" 1296 167 87 167 )¢ |* (2.35
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Notice thatEj,m is proportional to (+e?) through 3PN
order, indicating thaE,,,=0 for the limiting unbound orbit
e=1; this is another appropriate feature of our “covariant”
eccentricity. The energy and angular momentum are well-
defined, physically observable quantities, so one can alterna-

tively express our orbit elementsande as functions ofE

andJ. Here we give the results to 1PN order, but the calcu-
lation can be done to 3PN order:

1

“3

2 e
1+ —(4+27—(1-39)EI?)|,
3J?

1 E o
1-————@4+2yp—(1-39)EZ
2 14+ 2EJ3?

e=\1+2EJ?
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- 1 3 1 1 1 )
JADMI\/—Z{1+ §+g77—(g—577)e {
27 19 1 23 35 1 1 17 1
. §_§”+Zt7’2+(1_2_1_277_Zn2)ez+(21_2_47’_5772)64}5
135 (6889 41 31 7 299 (1025 41 2077 5
. E‘(m‘z—ﬂz) ot Fge”3+(§_(?_ﬁ”2)”+%”2_ —144’73)62
77 1337 271 7 7 3 1
: m‘4—32"+W“l—a”a)e“‘(ﬁ‘@”*g”z‘fws ¢ 5"‘}- (2409

We observe two features of the harmonic and the ADM

versions of these expressiong) the “circular” parts (e

Ill. EFFECTS OF FINITE SIZE

A. Estimates for compact binaries

=0) of the formulas coincide. In that case the angular ve-

locity 2 =Q .= is the same as that observed from infinity
for both harmonic and ADM coordinate@i) the expressions
also coincide forp—0, i.e. in the test-mass limit. As men-

In reality, the bodies in our binary system cannot be
treated as purely point masses. They may be rotating, and
thus subject to a number of effects, including rotational ki-

tioned before, the differences between the formulas only oc?€tic energy, rotational flattening, and spin-orbit and spin-
cur at 2PN and 3PN orders. It is actually possible to relatéPin interactions. Furthermore, there will be tidal deforma-
the coordinate positions and velocities in the two gauges. I§ONS- These effects will not only make direct contributions to

particular, the relation betweeppy and dram: Harm, €tc.
allows us to find a relation betweeresoy ,{apm) and
(enarm: {Harm)» @nd thus account for the differences in the
coefficients oft andJ. We found that a transformation of the

type

o _ylg MO oo 16 7\(m\* (17

Prom= O\ ez T T 2)lv) e
21 239 7 \m o [-om
_77])044‘(%4-57] TU2+r2f(r2,T,U2) ],

(2.41

where we have dropped the subscript “Harm” in the right-
hand side of Eq(2.41), and wherd is a function, was com-

patible with the differences observed in the expressions of

both the energy and the angular momentum. Sine® at
the apastron and periastrdrjoes not need to be determined
explicitly for our purposes. In the circular orbit limit, where,
from Eq.(2.7), v2=m/r[(1—(3— »)m/r] to PN order, it is
easy to see thabapy = Gram. Equation(2.41) demonstrates
that our definitions ok and ¢ are not truly covariant. Nev-

the energy and angular momentum of the system, they may
also modify the equations of motion, and thereby modify the
expressions for our alternative eccentricity and semilatus rec-
tum. However because they depend on the size of the bodies,
which, for neutron stars and black holes, are of omewe
expect these effects to be “effectively” of high PN order,
even if they are Newtonian in origin, such as tidal effects. To
see this, we estimate each finite-size effect in turn and com-
pare it with the Newtonian orbital energgy~m?/r. We
assume that the rotational angular veloaityof each body
ranges from zero to the orbital angular velocity, given by
Q~(m/r®)2 and we let the radius of each body be of the
form R,~qgm,, whereg~1 for black holes(in harmonic
coordinatey andg~5 for neutron stars.

Rotational kinetic energyEgq~ 1 w2/2<mR(m/r3)
~ENg?(m/r)2. This is effectively 2PN order. There will
be PN corrections to the kinetic energy, given Byq.pn
~Epof Rw)?>~mRw*~Eyg*(m/r)5. These are effec-
tively 5PN order, but, because of tre dependence,
could be important for neutron stars.

Rotational flatteningE g~ 8l w?/2, whereé is a mea-
sure of the deformation of the body, given by the ratio of
rotational to gravitational energyi~ (I w?)/(m?/R), so
that Ep,~ 0*R°<ENg®(m/r)®. There is an equivalent
contribution of rotational flattening to the gravitational in-

ertheless, the coordinate transformations that connect differ-
ent formulations of the post-Newtonian equations of motion
cause changes beginning only at 2PN order. This is reflected
in Eq. (2.41) where the difference between the two angular
velocities is of 2PN order. Furthermore, for the small eccen-
tricity orbits that we wish to consider, the corrections are
proportional toe, and are thus further suppressed. Thus we
argue that our definitions afand{ are “almost” covariant.

ternal energy. These are effectively 5PN order, but be-
cause of they® dependence, could be important for neu-
tron stars.

Tidal deformationsEqig~ (8'm)?/R, wheres’ is the
ratio of gravitational energy due to the tidal force of the
companion to the internal gravitational energy of the
body, & ~(mR/r3)/(m/R)~(R/r)3. Thus Erga
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~m?(R/r)®/R~ENg®(m/T)°. There is also a contribution B=6m"5(R3km, /m; + RSkPm, /m,),

from the rotational kinetic energy of the tidal bulge, given

by Exebuige™ 9’| w’~mRw?/r3< ENq5(r_n/rl)_5. These C=8m~"(RIKYmy/m, + Rk@m, /m,). (3.2
are effectively 5PN order, but could be significant for neu-

tron stars. For each bodyR, denotes its radiuk'® andk{?) denote the

Spin-orbit coupling: Eg o~LS/r3~(mr2Q)(mR2w)/  “apsidal constants” for angular harmonid¢s=2 and|=3,
r3<Eyng?(m/r)3. This is effectively 3PN ordef34], and  respectively, and, denotes the body’s angular velocity at a
generally must be included. chosen point in the orbi{see Appendix B for details
Apsidal constants are dimensionless coefficients that depend
on the degree of central condensation of the star, and that
determine the size of distortion of a given angular dedree
produced by a given external perturbation. Note thAat

A parallel heirarchy of finite-size effects applies to the <R®m?r3~q®(m/r)3, so that, despite appearances, this
total angular momentum of the system. term, like the purely tidal term fronB, is effectively 5PN

The largest effect in principle is that due to the rotationalorder. The energy and angular momentum that are conserved
kinetic energy of the bodies and thus requires some care. Faay virtue of the full fluid equations of motion are given by
black holes, we can apply the general formulas for mass and
angular momentum of isolated Kerr black holes, in terms ofE = Egeit Epistortt ETr,0rbit
the irreducible mass and angular velocity. For neutron stars,
no such general formula exists, so it may be necessary to rely _ 1T N }

: === W +(1=2)
upon numerical results for energy and angular momentum of | 2
isolated rotating neutron star models in order to take accurate

Spin-spin  coupling: Egg~S;S,/r3~(mRw)?/r3
<Eng*(m/r)®. This is effectively 5PN order, but could
be significant for neutron staf84].

account of this effect. On the other hand, it does not directly 1 . m, 1

affect the equations of motion. +| ZRikVwl| wi+ 2| +(1=2) |+ Eﬁwz
Because the remaining effects are effectively of 3PN or- r

der and higher, our strategy will be to evaluate them analyti- m 1 /m\2 1 /(m\5 1 /m\7

cally to the lowest nontrivial order. For tidal and rotational |1+ -Al—=| +-Bl=] +—c| = }

flattening terms, this will mean using Newtonian theory. For r 3 \r 6 \r 8 \r

spin-orbit and spin-spin terms, we will use the well-known
1PN formulas. We will ignore any coupling among these J= S+ Jpisiort JTR Orbit
effects, or between these effects and the point-mass PN ef-

fects described in the previous section. Accordingly, we will

calculate the separate contribution of each effect to the en- :[|1Z’1+|2Z’2]+
ergy and angular momentum and simply add them all up.

2 5L(1)~ 2~2 m,

§R1k2 [OF} §w1+ ?—3 +(1‘:‘2)
B. Newtonian tidal and rotational effects ulxxvl, 3.3

n Appenc_iix A we derived the general form of the equa-where, for each body,, denotes the moment of inerti®y,
tions of motion _and the conserve_d energy and qngular madenotes the self-gravitational energy of the undistorted con-
mentum for a binary system of tidally and rotationally de-figyration, and denotes the orbital separation at the point at
formed bodies, and in Appendix B we specialized to linear

perturbations and multipole indicés=2 andl=3. We now which the star’s angular velocity i®. The chosen point in

specialize further to systems more relevant to the initial condUf case will be the pericenter or apocenter. In &48), the

figurations in numerical relativity which we wish to study, sg}l(;tg Tﬁg %é?}ztgilr(lﬁé(;;gg;géf:é;plnsar?(l; :[]h? bOEagr‘?é
namely binary systems in which the spin axes of both star istort Distort:

are perpendicular to the orbital plane. The equation of mo: < orbital terms is clear. The angular momentum compo-
tion (B9d) then takes the simplified form nents are all referred to the axis perpendicular to the orbital

plane.

m m\ 2 m\ 5 m\ 7 We now repeat the method of Secs. 1l C and Il D to obtain
a=——nl1+A|—| +Bl—] +C _> , (3.1 the general solution to the equations of motion to first order
r2 r r r in the tidal and rotational perturbations. We then obtain our

new orbit elementg and ¢ in terms of the bare elemenés

where the three perturbing terms correspond respectively t8ndu; for exampleeis given by
the effects of rotational distortions, quadrupole tidal distor-

tions (| =2) and octupole tidal distortiond € 3), with the _=la_ E i %2 124 E _ 8_5~2_ @4 ~5
coefficients given by e=ell 2 1 3e Au 4 1 12e 24e Bu
_ ~ 1 49., 147, 93L.| -,
A= m—Z(Rik(zl)w%/ml_‘_ ng(ZZ)wg/mz)v + 2 3— ge — ?e — EGG Cu'y. (3.4
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Since we are assuming that these effects edfectivelyof m 1 sm
5PN order, we can simply add the correction terms in Eq. a=— —n+ —[6n(n><v)- 2S5+ —A)
(3.4) to those in Eq(2.314. Tidal and rotational interactions re  rs m
are conservativéas long as we ignore dissipative processes 5 5
. . ) m . m
sfuch aiwscgsmy and therefore do not cause se(?ular evolu x| 7513 A 4 3% | 35+ A
tion of e or u; however they do produce a pericenter ad- m m
vance, given in terms of our new orbit elements by
3
do 5 3 1 ——nS;- S, (3.9
— A2, T A4 5 4
dé =A%+ - 1+2e+8e B¢ ur
7 15 15 where S=S;+S, and A=m(S,/m,—S;/m;). The indi-
1+_e2+_e4+ S_I. SZ (SZ 2 Sl l)

+ —

7
2 CZ. 39 vidual spins are constants of the motion when they are both

aligned perpendicular to the orbital plane. The conserved en-
Substituting the solutions for the motion into the orbital ergy and total angular momentum are given by
parts of Eqs(3.3), and converting to our new elements, we

a 8¢ " 6a°

obtain for the tidal-rotationa(TR) contributions to the or- 1 um 1 sm 1
bital parts ofE andJ, E=—-uv ——+—LN S+ —A)——Sl~sz,
2 r r m r3
1 1 3.9
Err o= #(1—€)| (3= €*) AL+ o (9+106°—3e) (39
1 J=Ly+S- { 3s+5 A) ! v2 S+ mA”
X B8+ — (13+4%%+ 7e4—5e6)C§8}, (3.6a N g 2" '
24 (3.9
2 2 _
_ < 2\ A #3124 £ 2 Ny where Ly=uxXv, and Eq.(3.9b denotes the component
Jrr orbit '“m[g (3+eDALTH g(3+10e7+3e7)BL perpendicular to the orbital plariéor the complete equations

of motion, see, for examplg85,36]). We define the dimen-

+ %(1+ 7e?+7e*+e8)C i3, (3.6b sionless quantities

where we have dropped the Newtonian orbital part, because D= Wi F= n&_m A = S15 (3.10

it is already included in the 3PN point-mass expressions of Ly m Ly 2
Egs.(2.35 or (2.40. The form of the self-terms depends on

where in the orbit we evaluate the stars’ angular velocities; where  D~F ~(R/r)2~q2(m/r)? and  G~(R/r)*
for pericenter or apocenter, we can use the Newtonian rela '

g*(m/r)#, making the spin-orbit and spin-spin terms effec-

tion thatm/r = {(1=e), respectively, to write tively 3PN and 5PN order respectivelg4]. With these defi-
1 nitions, the equation of motion takes the form of E®.7),
Eser= 75 Lo — Wi +(1=2), (379 With

5 5 A=(5D+3F—-3G)v?2-3(D+F-G)r3, (3.1)
S=I lwl+ | 2>, (37b)

! o oy M B=—2Dr. (3.12
Epistort= gmszik(zl)wi (Mwq)>+ Zméa(lieﬁ

Again we solve the equations of motion using the method of
+(1=2), (3.70 Secs. Il C and Il D and define our new orbit elements. In this
case, for example, the eccentricity is given by

2 ~ [ - m,
Joistor= g M Rk w3 2(mwy)?+3-—=¢%(1x ) T 8 -
g e=e 1+E[(1+4e2)D+(3+2e2)(F—G)]u .
+(1=2). (3.70 (3.13

C. Spin-orbit and spin-spin effects In terms of our new elements, the pericenter advance is given

Spin-orbit and spin-spin interactions produce correctiong)y
in the equations of motion that are formally of 1PN order.
For systems with the spins perpendicular to the orbital plane do L3F_
they are given by d¢ (7D +3F=3G)¢, (314
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while e and ¢ undergo no secular changes. When expressecz; E '
in terms of our new orbit elements, the spin-orbit and spin- F
spin contributions to the total energy and angular momenturr

an ener;

have the form g
L 2
ESpin=—§M(1—ez)[(7—282)D+(3—ez)(F—G)]§2, s
(3158 2
= .
. - _’/ -7 lﬁﬁﬁ 1 M:
- _—— 2] ual Mass
Jspin=— —pM[5(7+e2)D+(15+)F-43+AGIE. £ 10°F e AT I
° B E B P 2PN, 1=0 E
(3.15h é _ /// - — - 3PN, =0
Q 7
Inserting the Newtonian expression fog, we have that © 0t 0.{)2 0"04 0.6 3 o.los o

Angular frequency (m£2)

D=(S/m?) V¢, F=(smim)(A/m?)Vz,
FIG. 1. Contributions of 1PN, 2PN and 3PN terms to the energy,
G=(S;/my)(S,/my)m~2¢. (3.16 expressed as a fraction of the Newtonian energyngs. Circular
L ) orbits are assumed. Shown are the equal mass egsd/@) and
D. Other finite-size corrections the point-mass limit §=0).

In deriving the “point-mass” equations of motion, the un-
derlying assumption was that the masses that enter the edUsfons to the total energy and angu|ar momentum of the sys-
tions are the total mass of each body, comprised of baryonigem in terms of the “covariant” orbit elementsand ¢, to-
mass, gravitational binding energy and rotational kinetic engether with the relationships connecting the valug afith
ergy, if any. Thus, eachn, should be writterm,=m5—W,  the orbital angular velocity at a turning point of the orbit,
+ER®. In many numerical approaches, sequences of modeisamely {=(mQp)2R(1+e)*? or (=(mQy)?¥(1-e)*?
are constructed in which the totédr ADM) mass of each corresponding to pericenter and apocenter, respectively. The
corresponding nonrotating star is held fixed along the seingredients are:
guence. Thus, for making comparisons with such sequences,
we should replace eaah, in Eqgs.(2.39 or (2.40 with mg
+1,02/2 (or, in the case of black holes, with a suitable for-
mula in terms of the irreducible mass ang). But because

2.2 3 : - ; . -,
lawa~q*(m/r)°, the main contribution, at effectively 3PN panyeen the two versions are negligible for all cases of

order, comes from making this replacement in the Newtonian  jnterest. Henceforth we will adopt the harmonic version
expressions. Expressingy and Jy in terms of () as Ey of Egs. (2.35.

=—3ym(1-e)(mQ,)?(1-e)"  and Jy=nm¥(1 | |
—e)2¥(mQ,) ¥ and making the above replacement, we Self terms Equations(3.7a and (3.7b. We add a suit-

find the corrections to the Newtonian energy and angular @ably defined total “rest” mass for the bodies to the defi-
momentum nition of Eges. Because the rotational kinetic energy and

the spin angular momentum are effectively of 2PN order,

Point-mass orbital contributions through 3PN order
Equations(2.395 or (2.40. It is straightforward to show
that, because the harmonic and ADM versions differ by
2PN terms proportional tg¢e? and higher, the differences

1 LY m; . they will have to be treated with some care.
En.cor=~ z1(1-€9¢ m (1_ 3m Hlﬁz)}’ Constant distortion term<£Equations(3.7¢ and (3.74d).
(3.173 Tidal-rotational orbit terms Equations(3.6).
Spin-orbit and spin-spin term&quations(3.15.
pmily my Newtonian correction termsEquations(3.17).
Inconr=—F=| —o1| 1- |+ (1=2)|, (3.17b . - - .
2\/2 m; 3m In order to assess the applicability of this diagnostic, we

first study the sizes of various effects for systems of interest.
where all masses now are those of the equivalent nonrotating general we will consider systems of solar-mass scale neu-
body. For neutron stars, this would be that of the same barytron stars or black holes, in circular or small-eccentricity
onic mass; for black holes, it would be that of the sameorbits, in the vicinity of the onset of an unstable plunge and

irreducible mass. merger. This corresponds fo-m/r <1/5 for black holes, or
to {<m/(2R)~ 1/q for neutron stars. Fay between 4 and 6,
IV. A POST-NEWTONIAN DIAGNOSTIC FOR the two ranges are comparable. Both correspondnfo
QUASIEQUILIBRIUM CONFIGURATIONS <0.1. We will generally choose a range 00m(2<0.1.

First we look at the relative contributions of point-mass
PN corrections. Figure 1 shows the contribution, relative to

We now have all the ingredients to formulate a post-the Newtonian orbital energy, of the 1PN, 2PN and 3PN
Newtonian diagnostic for quasi-equilibrium configurations ofterms in the energy, fop=0 and »=1/4, as a function of
compact bodies. The ingredients are the various contribun(). Results for the angular momentum are similar. While

A. Estimates of effects
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FIG. 2. Contributions of tidal and spin terms to the energy for £ 4. Same as Fig. 2 but for corotating black-hole binaries,
corotating neutron star binaries, expressed as a fraction of the New;:, q=1.
tonian energy, vsn(}, for q=R,/m,=4. Circular orbits are as-

sumed. Shown are the PN contributions for comparison. comparable to the 2PN and 1PN terms only around
the 1PN terms are essentially insensitivertoand the 2PN ~0.09, whlle_thel =3_ter_ms are an order of magnitude
smaller. Fog=6, thel =2 tidal terms exceed the 1PN terms

terms are only 15% smaller for equal masses than for thé , _
Iready bym(Q~0.05, while thel =3 terms are small, ap-

test-mass limit, the 3PN terms are suppressed for equ :
masses by more than a factor of 10 coFr)nppared to the ?esp_roachlng the ZPN. terms only.at the I_argest allowsf)
mass limit. As Blanchdil6,17] has argued, this suggests that ~0.07, co_rresponcﬂng to_the point at er'Ch these Iarger stars
the 3PN approximation may be quite accurate forare touching. For irrotational starso{=w,=0), the tidal
comparable-mass systems, without the need for sophisticat&dfects are very similar. _
resummation techniques. At the largest angular velocity con- These curves illustrate that tidal effects need to be taken
sidered, 3PN terms contribute less than one per cent of tH8to account carefully in an accurate diagnostic for neutron
total binding energy and angular momentum of the orbit. Star binaries, but are not so large that they invalidate our
Next we consider the effects of tidal and rotational distor-2PProximation scheme. Their modest size also supports our
tions. We consider systems of identical bodies,£m,)  use of Newtonian theory to calculate them. They only be-
which are corotating %= @,=0). For neutron stars, we come problematical for the largest neutron stars near the very
adopt the maximum values of the apsidal consta;h¢§ ( gndpomt of their ms_plral. It should also be pointed out that,
—3/4 andk,=3/8, see Appendix B3 and choose two rep- in making these estimates, we have adopted the largest val-

resentative values af=R,/m, for neutron star models with ues of the apsidal constants, corresponding o uniform-
a’ . a density stars. While neutron stars are not as centrally con-

reasonable equations of state, namely4 andq=6. The densed as, say, nondegenerate stars, they are also not uniform

results, plotted as a fraction of the Newtonian orbital terms . . )
L . . . “density, so th&; may well be smaller than their maximum
are shown in Figs. 2 and 3, along with the PN contributions . r
. : .. values. For example, for a Newtonian polytrogeskp',
for comparison. As expected, tidal effects are very sensitive

N T DA with I'=2, k,=0.26, so theq=6 tidal terms in Fig. 3 are
to the stellar radii. Foq=4, thel=2 tidal terms become reduced by a factor of three, bringing them to a level at or

below the 1PN terms over the whole rangenaf). On the
other hand, very little, if anything, is known about the values
of k, for general relativisticneutron stars over a range of
equations of state. This is a subject that we are currently
investigating.

Figure 4 shows the effects of tides for corotating black-
hole binaries. There we choogse=1 (R=m in harmonic
coordinates k,=3/4 andkz=3/8 (for slowly rotating black
holes,k, from rotational distortions happens to be precisely
3/4; see, e.d.37]). We see, not surprisingly, that tidal effects
are utterly negligible over the entire rangerof).

Finally, we examine spin effects. Again we consider iden-
tical, corotating bodies. For neutron stars, we assume that
S,=1,Q, with the moment of inertia given by that for a
uniform density body) ,= (2/5)m,R2=(2/5)q?m. The re-
sults are shown also in Figs. 2 and 3. Fpr4, spin-orbit

FIG. 3. Same as Fig. 2, with=6. effects are small but significant, just below the 2PN terms,
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while spin-spin effects are negligible. Fq=6, spin-orbit  mass, M:Mirr/[1_4(Mirrw)2]1/2a S= 4M.3Frw/[1
terms exceed 2PN terms log()~0.04 and become compa- —4(M;,w)?]*2 The total energy and angular momentum of
rable to the 1PN terms by the maximum angular velocitythe system are then given by

while spin-spin terms barely exceed the 3PN effects.

For black holes, we use the fact th=4m3(Q. Figure 4 Etot=Eseirt Enarm™ En,cont Espins
shows that the spin-orbit terms lie between the 2PN and 3PN
contributions and thus must be included, while spin-spin J10t= S+ Iarm™ In, cont Ispins 4.1
terms are negligibléthough larger than the tidal terps where
B. Corotating, identical black holes 1 5 3 4
ey . . o Eser™ M| 1+ = (M Q)2+ = (M, Q)4+ - - - 4.2
For black hole binaries, we ignore tidal and spin-spin ef- _>¢" Mhir Z(m'" ) 8(m'rr ) ’ (4.23

fects. We sem;=m,, »=1/4, andw;=w,= . We exploit
the fact that there exist exact formulas for the energy and S=mi.0
spin of isolated Kerr black holes in terms of the irreducible i

1 3
1+ (mier)2+ g(mier)4+ o '}r (42b)

1 1
Ettarm= — g Minr(1- e 1- 2887~ e - 38 4(1069— 934e?+ 12%%) 2
1
R 2_ 4_ 6
+| 331774 1427365 1824%% — 6225~ 2300%°) — o )) ¢ } (4.20
1 .1 1 1
Jharm=— —m2,—| 1+ —(37 e?){+ —(1069+ 234e?— 127" 2
T
1 Alm?
—| ———(285473- 181852+ 205682*+ 231%°) — —(1+ e?) ¢ (4.20
82944 96

5 [24] to compare with the numerical HKV quasiequilibrium
En.con= ~ zgMin(1~ e%) (M )?¢, (4.28  solutions of Grandclmentet al.[18]. WhenEy andJy, are
scaled bym;, and mﬁr respectively, there remains only one
5 free parameter, the eccentricity of the orbit, and we found
I, conr=— M&, (M Q)% Ve, (4.2f)  [24] that a substantially better fit to the numerical data was
24 obtained for nonzero values ef of the order of 0.03, with
the system at apocenter, than ®+0. We suggested that
4.29 such apparent eccentricity could be a result of the inevitable
' approximationgsuch as the conformally flat approximatjon
and numerical errors in such initial-data models, but, in the
5 ) absence of detailed estimates of the sizes of those errors, it
Ispin= = 5 Mir(5+€) (M 1) ¢, (420 was difficult to draw firm conclusions. On the other hand,
those engaged in numerical models of black hole binaries
wheremy, is the total irreducible mass of the system, givencould use our diagnostic as a guide to know when, say, a
by (M) 1+ (mi,),. In Egs.(4.29 and (4.2b), we have ex- suitable circular orbit has been achieved, or whether further
panded the Kerr formulas favl and Sin powers ofm;, {2, numerical experiments with different grid sizes or larger
assumed to be small compared to unity, keeping as man§omputational domains are necessary to reach the desired
higher-order terms as needed to reach a precision comparalf@ysically meaningful state.
to our 3PN formulas. To obtaik, and Jq,; at a turning
point as functions ofQ), we substitute=(m;;Q,)%% (1
—e)* or ¢=(m;,Q,)#¥(1+e)*? for apocenter or peri-
center, respective]ﬁn Ca|cu|ating EN,Corr and JMCO”’ we For neutron Stars,~We TUSt include tidal effects. We set
have already changed the dependence iftom the total m;=m,, »=1/4, andw,=w,={); we let the apsidal con-
mass of the rotating bodies to the total irreducible mass o$tants and radius factors be common for both stars, given by
the nonrotating counterpa)tsThese are the formulas used in k,, k3, and g, respectively, and express all quantities in

1
ESpin: 1_2mirr( 1- e2) ( 7= 292) ( mier) 55/2!

C. Corotating, identical neutron stars
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terms of the total massi,= (mg) 1+ (mMg), of two nonrotat-

ing stars with the same equation of state. We also define fol

each star the coefficiet, = | a/maRi, and also assume it to
be common for both stars. The result is

ETot: ESeIf+ EHarm+ EN,Corr+ ESpin+ ETR,Orbit+ EDistorti

J1ot= S+ IparmtJ N,Corr ‘]Spin+ ‘JTR, orbitT JDistort 3

where the 3PN point-mass expressid)s,, and Jyam are
given in Egs.(4.29 and(4.2d), and where

1
Egeir=Mg+ gaqzmo(moﬂ)z, (4.49
1 5,5
S= Zaq my(Mo(2), (4.4b
5 2y 2 2

EN,Corr: - szo(l_e )aq (mOQ) g, (4-40

° 2 2
Incor= g Moad?(Mo(2) N, (4.49)

1
Espin= 7gMo(1-€%)(7-2e*) aq®(meQ)*? (449

S 2 2 2
Jspin=— %m0(5+e Yaq (my) ¢, (4.41)
1 2 1 2\ ~5 2+3
ETR,Orbit:3_2m0(1_e ) 5(3—3 )9Ko(Me2) =L
1
+5(9+ 10e?—3e*) g%k, 28
1
+ﬂ(13+49e2+7e4—5e6)q7k3§8}, (4.49
1 2 2 2\ ~5 2 +3/2 2 2
J 1R, 0mit= 320 5(3"‘9 )9Ko(MeL2) <L +§(3+10€‘

2
+ 3e4)q5k2§9’2+§(1+ 7e2+7e*+ e6)q7k3§13’2} ,

(4.4h

1
Epistort™ Emoqskz(moﬂ)z[(moﬂ)z‘Fu_ €e)3%], (4.4)

Jn: 2 5|( ( Q)[!]( Q)Z 3(] )3 3]
Distort ]44“ 00~ K2(Mg Mo €e g .
( . j)
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FIG. 5. Comparison of PN diagnostic with numerical initial-data
models of] 25].

formally flat approximation. They used a polytropic equation
of state withI'=2. Among other quantities, they report an
“effective” binding energy, given by E,=[Mppm
—2Mps(Q)]1/My, as a function ofMyQ), where M ppy is

the total ADM mass of the configuration, aMlg((2) is the
ADM mass of a uniformly rotating isolated neutron star of
the same baryonic masd,, as each star in the binary con-
figuration, but rotating with angular velocit§2. Since the
rotational kinetic energy of the stars is already removed, we
can compare the numerical results with the PN diagnostic
Epiag= [ Evot— Esell/Mp. Since ourm, is twice the ADM
mass of a nonrotating neutron star, we must ségleby

M o/2M ppm-ns s WhereM apu.ns IS the ADM mass of an iso-
lated, nonrotating neutron star. In the models of Mikesl,,

M apm-ns= M /1.067. We also need to fix the coefficiemts
and a. From data provided by Millet,the radius of each
isolated nonrotating star in isotropic coordinates is given by
R,=6.7™ ppy ; While the baryonic moment of inertia, cal-
culated using isotropic coordinates, is given Hy
=9.412M3. We work in harmonic coordinates, but since
Ry=R,(1+ M3, /4R?), the difference between the two co-
ordinates is only of order 1/2%, so we read @ 6.77. The
ADM moment of inertia can be identified a$spy
=(Mapm/Mg)lg = 9.41M ppyM3 = 9.412(1.06 7JM 3y -
Thus we can read oflrq?=9.412(1.0673 and hencea
=0.234, or around half of the uniform-density value of 2/5.
(Miller also calculates the same quantities in terms of cir-
cumferential, or Schwarzschild radius; after transforming to
harmonic coordinates, the results fipand « are consistent
with these to within a few perceit.

Inserting these values @f and « into our diagnostic, we
compare various PN configurations with those reported by
Miller et al, as shown in Fig. 5. The numerical results are
shown as “” with error bars, estimated by Milleet al.
from the results of a range of convergence tests. Four curves
show the energy for circular orbits, for various values of the
apsidal constants. Neither the uniform-density valuks (

We illustrate the use of this diagnostic by comparing with=3/4, k3=3/8), nor the point mass value&,&0,k;=0)

numerical data recently reported by Millet al. [25]. They

constructed a sequence of general relativistic, quasiequilib=——
rium configurations of corotating neutron stars, in the con- Private communication.
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gives a good fit at all, except at low angular velocitiesge  whereY,,,({}) are spherical harmonics corresponding to the

separationswhere tidal effects are smaller, and all circular- direction ©. and where the dimensionless distortion func-
orbit curves converge toward the numerical result. Modelstionsf ha,ve the propert§* =(— 1)™f
Im Im™— l,—m-

with half the uniform-density values fd, andks; give mar- on eneral rounds  we  expectf,~(R/r)'*1

ginal fits. However, a very good fit is achieved with values _ '*1(m?r)'“ for ?idal effects. and fgl—zlmf 02

k,=0.260 anck;=0.106; these are precisely the values for 0 \0V1) 3 > dfitl, 'WI= 2, Tom™ @ 1P
~(R/r)*~qg°(m/r)*° from rotational effects. The effect of

Qeﬁggﬁagfrsjafe Eggg?ﬁ?ﬁﬁami?r n?mgt](lgr n'f(’) dtgli these distortions on the external potential of a body is of
N ‘ " order f(R/T)'~g? " 1(m/r)?*1. Forl=2, this means ef-

Also shown Isa model with the sal fe=2 ap5|da_l con- fectively 5PN order] =3 effects would be effectively 7PN
stants, but with a nonzero eccentricéy= 0.02 and with the :
grder, and so on. However, for neutron stars, wjth4 and

system at apocenter. This marginally fits the numerical datm/r~0.1, anl=2 distortion effect becomes numerically

;vétgggi\}ginzrrrgesbars, but consistently gives lowenore comparable to a 2PN term, while=3 is comparable to a
We conclude that these quasiequilibrium neutron-star ConC}PN”termr.hFor .bl"’}[ﬁk holgs, W'tq.<" T( the eriflfeczts argl TgCh
figurations are fit to better than one percent by our PN diag-Sma er. Thus, In the end, we will keep orlly = andi=

nostic with a circular orbit, and with physically reasonable diStortion terrpfi Alslo+,1non l'r,‘f?r correctionsfig, would be
tidal terms of order R/r) " ~qg' " *(m/r)' ™" smaller than the dominant

In future work we plan to compare this diagnostic with linear effects, and thus, effectively of 8PN order fer2 (for

results of other numerical models of quasiequilibrium black€utron stars, these nonlinear corrections would be numeri-
hole and neutron star binaries. Our 3PN equations of motiorﬁaIIy sm_allgr than 3PN The exception to this is in the 'nter'
together with tidal and spin terms, augmented by radiatiof}!@ 9ravitational energy Ozf eachzbody, Wh;frfla quadratic con-
reaction terms, can also be used to develop a “dynamicalifibution yields */R)fj,~(m*/r)(R/r)="%, which is
diagnostic, to compare with numerical simulations of evoly-Comparable to the other effectively 5PN contributions Ifor
tions from the quasiequilibrium initial daf@25,3§. < ) _ ) )

We begin, however, with a general analysis, keeging
arbitrary, and working to second order in the small quantities
fim. Later (Appendix B we will specialize tol=2 andl

We are grateful for useful discussions with Emanuele=3 linear perturbations. To second order, it is straightfor-
Berti, Luc Blanchet, Eric Gourgoulhon, Sai lyer, Mark ward to show that, for anp,
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00-96522. T.M. was supported in part by theole Normale r=a 1+n|2m [Fim(@)+(N=D)Xim]Yim(2) ¢,
Supeieure. C.M.W. thanks the Institut d’Astrophysique de (A2)

Paris for its hospitality during the academic year 2003—-2004. h
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APPENDIX A: NEWTONIAN TIDAL AND ROTATIONAL 1 |
EFFECTS Xin=5 BE , Capiyolaslye. (A3)
apiy

1. Distorted equilibrium configurations
and C'a”}g;y(s is defined in terms of Clebsch-Gordan coeffi-

To derive the effects of tidal and rotational flattening, Wecients

will adopt standard methods from Newtonian theory for bi-
nary systems, such as those detailed by K$pél27. We

assume that the time scale for changes in perturbing quanti—c|m_ _ (2a+1)(27+1)/ a v | )(a v | )
ties (such as the external tidal potential, seen either from the ~*#:7° 4m(21+1) \0 0 O/\B & m/
global inertial frame, or from the rotating frame of a given (A4)

body) is sufficiently long that each body can be assumed to )
be in hydrostatic equilibrium. In other words, we will ignore Note that the various angular momentum quantum numbers
dynamicaltides[39]. This is a reasonable assumption as longae connected by the constraidts o+ y,a+y-2,... Ja
as we are focusing on quasiequilibrium initial data. Consider- ¥/, and m=pg+¢; the CI}._; are symmetric under
one of the bodies in the binary system. From the equation ofa8)=(yd). Also note tha'rX00=(167r)_1’22aﬁfaﬁfzﬁ.
hydrostatic equiliboriumVp=pVW¥, wherep, p and¥ are We expand the gravitational potentidl of the body and
the pressure, density and total gravitational potential, respedhe disturbing potentiaV/ in the form
tively, we conclude thaV p X VW =0, and thus that surfaces
of constantp and¥ coincide. We label surfaces of constant 4 rl . N
p by the radial parametes, and let the equation of those U= — P(X')r|—+erm(9<)Y|m(Q>)d3X',

>

surfaces have the form im 21+1
A ~ 5 4 | .
r(a,6,¢)=a/1+ > fin(a)Yn(Q)|, (A1) v=ar2+S T gy, (), (A5)
I‘m Im 2|+1
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where the subscript> (<) corresponds to the larger 1 (s
(smalley of r andr’. The disturbing potential consists of a 2, M@fim(@-a Jo p(a™fin)'da
part, with disturbing coefficientd,,,, that corresponds to a

potential with V2V=0, such as the gravitational potential (A 1

from another body, or the Laplacian-free part of a centrifugal —-a j p(a® fiy)'da=a™" “diy+ Rim(a),
potential, plus the spherical part of a centrifugal potential, a

with coefficientd. We now substitute EqA1) and (A2) (A9)

into (A5), convert all expressions fromto a, and demand . o o
that, forl =0, the external gravitational potential of our body Where R, contains all contributions quadratic in small
have the formJ=m/r (i.e. the perturbation does not change quantities:

the mass of the bodyand that, foll #0, the total potential
U+V be constant at a givea. The first can be satisfied if

+1 -
’ 2
foot 2Xop=0, While the second holds if, fdr=0, am(a)Xim+2(21+1)dafim

2

a
L | 21+1 m(a) . +(I+2)a*'f p(a "X ym)'da
a’ Fm@+aBm@ - ——fim@+adn 0
A
21+1 —(I—l)a'*lf p(a® X, 'da.  (A10)
— ! Im —a—1
_01,32;75 2a+1caﬁ;y§f75[(a+1)a Faﬁ(a) a
21+1 m(a) Combining Eq.(A9) with various derivatives of it, one
—aa®(E,p(a)+d,p)]— 2——X|m(a) obtains the following useful equations, evaluated at the sur-
™ a facea=A of the star:
—2(21+1)da?f,,, (AB6) ,
(I+1)fim(A) = Afi(A) + P
where 47 (A ,
= A 'fo pla (it (1+2)Xim)]'da,  (Alla)
a
m(a):j 4mp(a)a’da, 4o
° Ifim(A) + Af{(A) = Q= ——= A" diry, (A11D)
a d s herem=fA4mpa2da, and
Fim(@)= | p(@)dag[a"3(fim+(1+2)Xm)], wherem=fg4mpa‘da, an
0
Pim=A%X[ (A)—1AX/[(A)
A d 2| 87~
Eim(a)= f pa)dag[a®" (fin+ (1) Xim)], +—GAT AT (A) = (1= D) fim(A)],
(A7)

Qum=A?Xn(A) + (1+ 1) AXn(A)]
andA denotes the surface of the body. The left-hand side of
Eq. (A6) is first order inf,,, while the right-hand side is

87~
NPT
second order. Dividing the first-order terms &Y differen- T AATATRA H(+2)fin(A)]. (AL2)

tiating with respect t@ and multiplying bya? 2, we obtain
the first-order result Another combination of first and second derivatives of
Eqg. (A9) yields a second-order differential equation fgy, ,
m(a)a' sometimes called Clairaut’s equation:
Fim(@)= [(|+1)flm_afllm]v (A8)
4 8 3
281 Wpa ’
a 1Elm"— m(a) (af|m+flm)_|(| +1)flm

where prime denotes differentiation with respectatdSub- 4
stituting this and the first-order solution of EGA6) back _ AT o
into the right-hand side of EdA6), it is straightforward to " m(a) [ Rim =1+ DRy ]- (AL3)

show that the term invoIvin@;ﬁ; s reduces tan(a) (2X,

—aX/y)/4ma, to second order. The basic equation for theFor a given density distributiop(a), this equation can be
distortion functiondf,,,, can then be written in the form of an solved, subject to the boundary conditions thatbe regular
integral equation ata=0, and that, at the surfacg,, satisfy Eq.(Allb).
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2. Energy and angular momentum of the system

Given a solution for the distortion functiorfg,,(a), we

PHYSICAL REVIEW D 69, 104021 (2004

Wy,=— W+% T A2 2% (AL9)

2|+1

can calculate all the quantities needed for the equations of
motion and the energy and angular momentum of the orbitwhere we define the self-gravitational binding enelyof
The external potential of our body, for example, is given bythe undistorted configuration by

E 4ar Y|m(Q)

m 2l+1 pltt

A
><f pla " 3(f it (14 2)Xm)] da
0

m A Ym(Q)
=—+3 | —[(|+1>f|m<A>

Im 2|+l r|+1
_Afl,m(A)+le]

8 A2|+1

2_

: 21+1 ﬁklmdlelm(Q)-
m r

(A14)

whereX’ denotes summation fdr= 0, and where we define
the “apsidal constantk,, by

_ E (I +1)f|m(A)_AfI,m(A)+,PIm
™2 1 (A) +AFL(A) — O

(A15)

The total gravitational energy of the system is given by

—3/

The self-energyV,; of body 1 can be written

p(X)p(X")
[x=x'|

d3Xd3X, = Wll+ W12+ ( 1# 2) .

(A16)

4

R
= — _ 1-1 0
Wi, §|m: 2|+1f0 prildrdQY, ()

f p'r2dr'dQYE (). (A17)

Substituting Eqs(Al) and(A2) we find no contribution lin-
ear inf,,,. To second order, we obtain

AmM
Wy=— Jl) %dm(a)

+>

fm 21+1

f p(a)ym(a)ada a?|f|,|2+2aff,f|.

+(1241=1)|fm2]. (A18)

Since the second term is already second order, we can int L
y 2 Vi Yim(n)=——

grate by parts and use the first-order versions of E4%1)
and(A13) to obtain the alternative form

W= f Am(_ad m(a (A20)

In W45, we substitute the external potential of body 2 evalu-
ated inside body 1, to obtain

lez—ifpds <—+2 P

2J1 Yo Im 2|+1 y|+1

xdZk <2’Y|m<92>>, (A21)

wherey,=X—X,, kf%) is the apsidal constant of body 2, and
dl(,f]) is the coefficient of the disturbing potential acting on
body 2. Since the interaction energy is smaller than the self
energy by a factor oR/r, we only need to keep terms linear
in the deformationd,,, or the disturbing coefficientd,,;
consequently we carry out a multipole expansion of, ih

the first term in Eq(A21), then convert fronm to a using Eq.
(A1), but we evaluate the second term at the center of mass
of body 1 and do the lowest-order spherical integral. Effec-
tively, we are ignoring multipole-multipole coupling between
the bodies, which can be shown to lead to effects of order
(A2 (AIr)2 2~ (m/r)1% or 10PN order fol =n=2.

The result is

1 mim,
Wip=— > - lE oI+ (mlAngdl(r%)kl(ri)
m
lon A2+ 14(1)(1) ( )
(-1 AT k)~ (A22)
where nowr = |x; —X,| andn=(x;—X,)/r. Combining Egs.

(A19) and(A22), the final result is

1 mm,
W= _Wl_ -
2 r

+ 2 m A2|+ld(l)k(l)
m 21+1

my
drP=2(=1)'——VYin(n) [ +(1=2),  (A23)
r

where, under the interchange; —n.

The kinetic energy of the system is given by
= [pv2d3x. Splitting the velocity of an element of fluid into
center-of-mass, rotational, and random parts, and noting that

+)N 2l+1
) n<L>n’<L>:—P|(n.n’),
41

(A24)
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wheren{" denotes an STF product bfinit vectors(a capi-
talized superscript denotes a multi-ingexhe product
n{“n’{") denotes contraction on all indices, aRgis a Leg-
endre polynomial, we may write

1 2, (1) 1 (R,
T:§m1U1+TThermal+ 3% 0 predrdQ

+(1=2), (A25)

41 “ . A
X| 1= 5 2 Yar(R) Yin(©)

whereA; =, /w;. Converting fromr to a using Eq.(A1),
recalling thatf o= —2X,0, and noting that? is already of

first order in disturbing quantities, we obtain, to second order

in small quantities,

1 1
_ 2 1 2
T= Emlvl"_Tgl'h)ermal"_ El 101

8 n
~ 15 TATY dinkiaYan(Ry) +(1=2),
(A26)

wherel ;= (2/3)f§1477pa4d a. _
The angular momentum of the system is given By

=X [pxIvk. Using the same split of the velocities, we ob-

tain, to the analogous order of precision,

J=myOaxvy) 10— 205A1 >, dipkiaZhn + (1=2),
(A27)

where we define the symmetric trace f&IF tensor

Ziy= f Yim(Q)Aa20, (A28)
with the following properties:
2 Yin(MZi =",
“ 47! -
)\LZ|<rI;1>= (2|+—1)”Y|m(7\). (A29)

3. Equations of motion
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1§ 1)1
—+ (-1 —]| V| -
my my r

mx 1

my, —

r3 i=2 1!

< (- (IS" P

m>, >,

i=4 p=2 p!(I—p)!

m_l m;
(A31)

wherem=m;+m, and the products of the multipole mo-
ment tensors are to be symmetrized on all indices and made
trace-free. For our distorted bodies, the STF multipole mo-
ments can be shown to be given by

I<1L>=2Af'+l% d(Dk(Dz(L) (A32)

With the coefficientsd,,~m/r'*%, we have thatl{
~mA2*1r!*+1 and therefore the multipole-multipole cou-
pling term in the equation of motiotA31) is of order
(m/r?)(Alr)?92; sinceq=4, this is 10PN and higher. As
before, we ignore multipole-multipole terms.

4. Multiple disturbance sources

We will want to consider both tidal disturbances as well
as rotation-induced disturbances. To see how this affects our
general results, we note that the nonlinear corrections to the
Clairaut equations never play a role to the order of accuracy
we require, only the linear functionf,,,, satisfying linear
differential equations, are needed in the end. Lgt=gim,
+hy,, where each disturbance function satisfies the linear-
ized Clairaut equation@A\13), with a boundary condition for
each determined by the linearized Ed\11b). From the
structure of the formulas for the external potential the
kinetic energy, the angular momentum, and the multipole
moments, it is clear that the coefficiesht,k;, can simply be
replaced byd(9k{® +dWk(" , whered{® is the amplitude
of the disturbing function for that disturbance, g is the
corresponding apsidal constant, determined from the linear-
ized Eq.(A15). However because it has a contribution qua-
dratic in disturbing functions, the gravitational self-energy
W, requires some care. Returning to the expresgiitB),
substitutingf,,= g,m+ h;, and carrying out the integrations
by parts, using the linearized Clairaut equations satisfied
separately by,,, andh,,,, one can show that the coefficient
|diml?kim Must be replaced by the coefficiend(%|?k(%

+ [ R+ KRR + KA

The Newtonian equations of motion for body 1 are given

by

1
X

-1 .
a'lz—f pd3Xfp'V' d3x’. (A30)
my Ja 2 |x—x'|

APPENDIX B: ROTATIONAL AND
DISTORTIONS

I=2,1=3 TIDAL

1. Disturbing coefficients and apsidal constants

We focus on the lowest-ordée=2 andl =3 tidal terms.

We write x=x1+;and x’=x2+? and expand in a Taylor The grqvitqtional potential at a point in body 1 due to
series abouk, andx,. We define the STF multipole mo- POdy 2 is given by

ments! {2 = [ ,px'Qd% with 13=m, andl},=0. Finally, we
calculate the relative acceleratia=a)—a’,. After some
manipulation, we obtain the general result

V=m,>, —— —— (= 1)V (nYin(Q"), (B
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where we ignore the contributions t6from the distortions
of body 2 (ignore multipole-multipole coupling We thus
obtain the tidal coefficient for body 1,

df B =my(—1)"Y, (n)/r'+L, (B2)

with the coefficient for body 2 obtained by interchange.
Working to linearized order, we can factor out the azimuthal

m dependence by defininid,,= fY{;,(n), then the Clairaut

PHYSICAL REVIEW D 69, 104021 (2004

2. Energy, angular momentum and equations of motion

Substituting these results faty,,, d3,, anddy,, into
Eqgs.(A23), (A26), (A27), (A31), and(A32), and making use
of Eq. (A24), we obtain

2
SR
9 1

um
~ T W AT
r r6

equation and the outer boundary condition for body 1 take m%
the form —AKP—+(1=2) (B9a)
I,8
8mpa’
2¢Tn Tro ¢T\ _ T_
af)"+ m(a) (af)"+f)—1(+1)f =0, (B33 1 1
T= _ﬂU2+ T'(I'lh)ermal+ _Ilw%"_ _A?w%k(zl)
m, [ Ay I+1 2 2 3
Alf,T’(A1)+If|T(A1)=47r(—1)'m—(T) . (B3b)
1
2 m,
_ 2 _“ Y N2 N
Note that the apsidal constant depends onlyfbn and is X 3“’1 (3 [3(Ay-m)—1] +(1_2)}, (B9b)

thus independent ah, so

T
kT(l): I+1 i (Al) , (B4)
21+279[(A)
with a corresponding expression for body 2, where
d(Inf])
T—
"="d(na) - (B5)

Note that the overall scale éf has no effect on the apsidal
constant, to linear order.

For a uniformly rotating body, the disturbing potential at a

point x’ is the centrifugal potential

1 2
VROt_ 2 (1) [ A X ) ]
1 2,12 12 < A’
=g’ ——a) 2r 2 Y3.(N)Yom(Q). (B6)
Thus we read off the rotational coefficient for body 1
R (1) L
Ao = = Z01¥5m(A0) (87)

with the coefficient for body 2 obtained by interchangee
spherical coefficientl only contributes at second order in
small quantities Similarly defining f5,=fXY3 (\), we
find thatfge also satisfies EqB3a) for =2, but with the
boundary condition

. A 03IA3
AR (A +25(A 1)__? m, (B8)

The rotational apsidal constant is also independent,@&nd,
since the overall scale dIR(Al) is irrelevant, it is equal to
the 1=2 tidal apsidal constantk}XV=kJM=k{M . This

equality will not hold when nonlmear corrections are in-

_ _ 2
J'=,u(x><v)'+[ | L)+ 5Aﬁk(;)

2 X my . .
X| —wio)— — (3n'wy-n—w)) | +(1=2)}, (B9
r
o mn [ m mn' ;.
al=———1 —A%k"| 6——+—[n'—5n'(x;-n)?
r2 my reoort
o m m,n!
+28 A n]|+8—AlKD——+(1=2), (B9d)
my ro
1
<lk>_ 2A5k(1) ndk — _wz)\<lk> (B9e)
r3 3
1§KD = —2A7k(1> 2 i), (B9f)

r3

It is simple to show that the equation of moti@9d) admits
the two conserved quantities

1 pmm
E*=— -
ZMU r
ms 1 myw?
- A —— - [3(A;-n)2—1]
ré rs
m;
+A{k<31>—8 +(l\i2)] , (B109
r
*i= u(xXv) 4+ 2mAkNw2Bl () +(1=2),  (B10b

cluded (it will also not hold in general relativity, when where Bl(t) It (n><)\1) (n- Al)r‘*"dt where we assume

frame-dragging and other relativistic effects are inclyded

that the various quantities entering the perturbing terfs (

104021-23



Exact solutions of Radau’s equation are known for special

k(zl) wil, Xl etc) are constant in time to the order considered. - e
cases. For a homogeneous star, withconst, D=1, it is

By comparing Eqs(B9c¢) and (B10b), we see that the total

constant angular momentum can be written in the form easy to show thaty =I -2, and
J'=p(xxv) + 30+ 35+ {2mASkV w2B (1) + (1=2)}, k,Homogeneous. _ (B15)
(B11) 4(1-1)

where Ji and J}, are separately constant, defined By FOr @ point mass, withD=0 except at the origing, =|
— — .. +1, and hence, as expectég,°"=0. Generally, if the den-
=I|,w7, where the consb; is given by

sity nowhere increases outwardise. if p’(a)<0], then

. 2 ASKEH n(A) satisfies the inequalitie$—2=< 7 (A)<I+1. For
w'l=w'l+—
3 1
2 5 i m, ) ) o i
X gwlw'l——3(3n'w1-n—w'l)—3m2wlB'1(t) :
r
(B12)

Notice thatB/(t) is orthogonal tm andA;, and vanishes if
the body’s spin axis is perpendicular to the orbital plane.
Calculating the total energig=T+ W from Egs.(B9a) and
(B9b) and converting fromw to the constani) , we obtain
the final conserved energy, including tidal and rotational con-
tributions

1 mm 1
E=—uv?— —+{ =L oi—W
2# ; [2 1@, 1

2 2
ABKD)| Zgd 4 2 1m2w13)1 2_1
1K OF] 6 3r3[(1'n) ]
m3
—AZkgl)—8+(1:2) . (B13)
r

Modulo constants, this is identical #&*, Eq. (B103.

3. Clairaut’s equation and the apsidal constants

To determine the tidal and rotational distortion effects in
our binary system, it is sufficient to know the disturbing
forces(leading to the coefficientd,,,) and the apsidal con-
stants. To linear order, the apsidal constants can be obtained
from solutions of Eq(B3a), along with Eq.(B4); this applies
to both tidal and rotational perturbations. Because the scale
of f, is irrelevant to the value df,, it is useful to recast Eq.
(B3a) into a first-order differential equation fop,, some-
times called Radau’s equation

an'+6D(m+1)+9(n—-1)-1(1+1)=0, (B14)

where D=4mp(a)a’/3m(a)=p(a)/p(a), and where we
drop the superscript§ or R. Near the origin, wheré®—1,

the regularity of f; requires thatn(a)—I—2 as a—0.
Given a density profile for a spherically symmetric configu-
ration provided by a chosen equation of state, one integrates
Eq. (B14) from the center to the surface, thereby obtaining
7,(A), and thus; .



POST-NEWTONIAN DIAGNOSTIC @& . .. PHYSICAL REVIEW D 69, 104021 (2004

[1] G.B. Cook, Living Rev. Relativ3, 5 (2000. [23] T. Damour, E. Gourgoulhon, and P. Granadeént, Phys. Rev.
[2] E. Seidel, inBlack Holes and Gravitational Waves: New Eyes D 66, 024007(2002.
in the 21st Century, Proceedings of the 9th Yukawa Interna{24] T. Mora and C.M. Will, Phys. Rev. B6, 101501R) (2002.
tional Seminay Kyoto, 1999, edited by T. Nakamura and H. [25] M. Miller, P. Gressman, and W.-M. Suen, Phys. Rev68)

Kodama[Prog. Theor. Phys. Suppl36, 87 (1999]. 064026(2004.
[3] T.W. Baumgarte and S.L. Shapiro, Phys. R&p6, 41 (2003. [26] Z. Kopal, Close Binary System€hapman and Hall, London,
[4] P. Jaranowski and G. Sdea, Phys. Rev. 057, 5948(1998); 1959, Chap. 2. ) _

57, 7274(1998. [27] Z. Kopal, Dynamics of Close Binary SysterfReidel, Dor-
[5] P. Jaranowski and G. Sdiea, Phys. Rev. 350, 124003(1999. drecht, 1978 Chap. 2.

[6] T. Damour, P. Jaranowski, and G. StdraPhys. Rev. D62, [28] R.V. Wagoner and C.M. Will, Astrophys. 210 764 (1976;

. 215, 984 (1977.
021501R) (2000; 63, 029903E) (2001). . .
[7] T. Damour, P. Jaranowski, and G. $ Phys. Rev. D63 [29] C.W. Lincoln and C.M. Will, Phys. Rev. @2, 1123(1990.
) . ' : ' ’ ' [30] T. Damour and G. Sclier, Nuovo Cimento Soc. Ital. Fis., B
044021(2001); 66, 029901E) (2002.

101, 127(1988.
[8] L. Blanchet and G. Faye, Phys. Lett.271, 58 (2000. [31] L. Blanchet and B.R. lyer, Class. Quantum Gr&@, 755
[9] L. Blanchet and G. Faye, Phys. Rev.63, 062005(2002.

2003.
[10] V. de Andrade, L. Blanchet, and G. Faye, Class. Quantun[32] EI' ngour, P. Jaranowski, and G. SferaPhys. Lett. B513

Grav. 18, 753 (200]). 147 (200])_

[11] L. Blanchet, T. Damour, and G. Esposito-Farese, Phys. Rev. D33] c. M. Bender and S. A. Orszagdvanced Mathematical Meth-

(to be publishel gr-qc/0311052. ods for Scientists and EngineefdcGraw-Hill, New York,
[12] Y. Itoh, T. Futamase, and H. Asada, Phys. Re\63) 064038 1978, Chap. 11.

(200D. [34] In some contexts, spin-orbit and spin-spin effects are viewed
[13] V. Itoh and T. Futamase, Phys. Rev.68, 121501R) (2003. as effectively 1.5PN and 2PN order, respectively. In those con-
[14] M.E. Pati and C.M. Will, Phys. Rev. B5, 104008(2002. texts, the bodies’ spins are measured in terms of the maximum
[15] P.R. Brady, J.D.E. Creighton, and K.S. Thorne, Phys. Rev. D spinS~m? of a Kerr black hole, corresponding &~ 1/m. In

58, 061501(1998. our context, the bodies will never be more than corotating, so
[16] L. Blanchet, Phys. Rev. B5, 124009(2002. that spin effects are much smaller.

[17] L. Blanchet, inProceedings of the 25th Johns Hopkins Work- [35] L.E. Kidder, C.M. Will, and A.G. Wiseman, Phys. Rev.4J,
shop edited by I. Ciufolini, D. Dominici, and L. Lusanna R4183(1993.

(World Scientific, Singapore, 2003p. 411. [36] L.E. Kidder, Phys. Rev. 32, 821(1995.

[18] P. Grandclment, E. Gourgoulhon, and S. Bonazzola, Phys.[37] J.B. Hartle and K.S. Thorne, Astrophys.153 807 (1968.

Rev. D65, 044021(2002. [38] P. Marronetti, M.D. Duez, S.L. Shapiro, and T.W. Baumgarte,
[19] M. Miller, gr-qc/0305024. Phys. Rev. Lett92, 141101(2004.

[20] D. Lai and A.G. Wiseman, Phys. Rev. B, 3958(1996. [39] For discussion of tidal excitation of normal modes in neutron

[21] G.B. Cook, Phys. Rev. B0, 5025(1994. star binaries, see K.D. Kokkotas and G. Sehavion. Not. R.

[22] H.P. Pfeiffer, S.A. Teukolsky, and G.B. Cook, Phys. Rew62) Astron. Soc275 301(1999; and W.C.G. Ho and D. Laibid.
104018(2000. 308 153(1999.

104021-25



