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Post-Newtonian diagnostic of quasiequilibrium binary configurations of compact objects
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Using equations of motion accurate to the third post-Newtonian~3PN! order @O(v/c)6 beyond Newtonian
gravity#, we derive expressions for the total energyE and angular momentumJ of the orbits of compact binary
systems~black holes or neutron stars! for arbitrary orbital eccentricity. We also incorporate finite-size contri-
butions such as spin-orbit and spin-spin coupling, and rotational and tidal distortions, calculated to the lowest
order of approximation, but we exclude the effects of gravitational radiation damping. We describe how these
formulas may be used as an accurate diagnostic of the physical content of quasiequilibrium configurations of
compact binary systems of black holes and neutron stars generated using numerical relativity. As an example,
we show that quasiequilibrium configurations of corotating neutron stars recently reported by Milleret al. can
be fit by our diagnostic to better than one percent with a circular orbit and with physically reasonable tidal
coefficients.
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I. INTRODUCTION AND SUMMARY

The late stage of inspiral of binary systems of neutr
stars or black holes is of great current interest, both a
challenge for numerical relativity, and as a possible sourc
gravitational waves detectable by laser interferometric an
nas. Because this stage, corresponding to the final few o
and ultimate merger of the two objects into one, is high
dynamical and involves strong gravitational fields, it must
handled by numerical relativity, which attempts to solve t
full Einstein equations on computers~see Refs.@1–3# for
reviews!.

The early stage of inspiral can be handled accurately
ing post-Newtonian techniques, which involve an expans
of solutions of Einstein’s equations in powers ofe;(v/c)2

;Gm/rc2, wherev, m, andr are the typical velocity, mas
and separation in the system, respectively. By expandin
very high powers ofe, one can derive increasingly accura
formulas to describe both the orbital motion and the grav
tional waveform. Currently, results for the orbital motion a
curate through 3.5 post-Newtonian~3.5PN! order @O(e7/2)
beyond Newtonian gravity# are known@4–14#.

An important issue in understanding the full inspiral
compact binaries is how to connect the PN regime to
numerical regime. This is a nontrivial issue because the
approximation gets worse the smaller the separation betw
the bodies. On the other hand, because of limited comp
tional resources, numerical simulations cannot always
started with separations sufficiently large to overlap the
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regime where it is believed to be reliable. This has given r
to the so-called intermediate binary black hole~IBBH! prob-
lem @15#, for example, which seeks new techniques or
sights to attempt to bridge the gap between the end of c
fidence in PN methods and the beginning of realis
numerical simulations. On the other hand, if it can be de
onstrated that PN approximations converge sufficiently r
idly, especially for comparable-mass binary systems, t
IBBH techniques may not be needed. Blanchet@16,17# has
recently argued that, for comparable-mass systems, the
approximation seems to be more accurate than might be
pected based on experience with the test-body limit. For
nary neutron stars, this is less of an issue, because neu
stars are much larger objects, so the numerical simulat
necessarily commence at larger separations, where PN m
ods are presumably more reliable.

Numerical simulations of compact binary inspiral sta
with a solution of the initial value equations of Einstein
theory; these provide the initial data for the evolution equ
tions ~some initial-data models@18# solve in addition one of
the six dynamical field equations!. The initial state is as-
sumed to consist of two compact objects~neutron stars or
black holes! in an initially circular orbit. For stellar-mass
systems that have evolved in isolation for eons, gravitatio
radiation is expected to leave the orbit in an accurately
cular state, apart from the adiabatic inspiral induced by
loss of orbital energy; that inspiral is ignored in the initia
data models.~Miller has analyzed the consequences of t
particular assumption@19#.!

The circular-orbit condition is imposed by demanding th
dr/dt50 initially, wherer is a measure of the orbital sepa
ration. One way to achieve this is to require that the syst
have an initial ‘‘helical Killing vector’’~HKV !, which corre-
sponds to a kind of rigid rotation of the binary system. So
initial-data models assume that the objects are corotatin
©2004 The American Physical Society21-1
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condition which is astrophysically unlikely, albeit comput
tionally advantageous, while others assume that the bo
are irrotational, i.e. nonrotating in an inertial frame. To si
plify the problem, an approximation for the spatial metric
generally made; one is the assumption of conformal flatn
an approximation that is known to be invalid in full gener
relativity. This approximation is usually justified by the n
glect of radiation reaction in the initial state. Other appro
mations, derived from post-Newtonian theory, or from su
of Kerr geometries, have also been used. For black hole
naries, suitable horizon boundary conditions must be
posed, while for neutron star binaries, equations of hyd
stationary equilibrium and an equation of state must be p
vided.

One important product of these initial value solutions is
relationship between the energyE and angular momentumJ
of the system as measured at infinity, and the orbital
quencyV. The energy could be the total energy as measu
at infinity, consisting of the masses of the two stars plus
orbital energy, or it could be the total energy less the ene
of the same two stars in isolation. The latter quantity wo
be a measure of the orbital binding energy. As all quanti
are well-defined and gauge invariant, they are useful v
ables for making comparisons with PN methods.

We have developed formulas forE(V) and J(V) using
PN methods. Our analytic formulas include point-mass te
through 3PN order, but ignore radiation reaction. They a
include rotational energy and spin-orbit and spin-spin ter
for the case in which the bodies are rotating. They furt
include a Newtonian calculation of the effects of tidal a
rotational distortions, applicable to stars of arbitrary dens
distribution, expressed in terms of so-called ‘‘apsidal co
stants’’ ~i.e. we do not restrict attention to homogeneous
lipsoids @20#!, and including effects at quadrupole and oc
pole order. We verify that, for black holes, tidal effects c
be ignored, while for neutron-star binaries, they must be
cluded. In contrast to previous work@16,21–23#, our formu-
las apply to general eccentric orbits, not just to circular
bits.

In an earlier paper@24#, we compared this formula with
HKV numerical solutions for corotating binary black hole
obtained by Grandcle´ment et al. @18#, for the regime where
the black holes are separated from the location of the in
most circular orbit by a factor of around two, where P
results might be expected to work well (Gm/rc2;0.1). We
found that when we assumed circular PN orbits, our 3
formulas for E(V) and J(V) agreed to within 0.5% with
other PN methods, including our own formulas truncated
2PN order, and 3PN formulas derived using resummation
Padétechniques. However all PN methods consistently a
systematically underestimated the binding energy and o
estimated the angular momentum, compared to the va
derived from the numerical HKV initial-data models, b
amounts that were up to 10 times larger than the spr
among the PN methods. But when we relaxed the assu
tion of a circular orbit and demanded only thatdr/dt50,
our PN formula could be made to agree extremely well w
the numerical data by assuming that the system being s
lated is initially at the apocenter of a slightly eccentric orb
es
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For values ofGmV/c3 ranging from 0.03 to 0.06, corre
sponding to orbitalv/c between 0.3 and 0.4, or orbital sep
ration between 10 and 6Gm/c2, nearly perfect agreemen
with the binding energy and the angular momentum could
obtained with eccentricities that range from 0.03 to 0.05.

The concordance within fractions of a percent betwe
the various 2PN, 3PN and resummation PN results matc
expectation, since (Gm/rc2)3;1023. Presuming that all rel-
evant physical effects have been included, we argued tha
PN results in this range ofGmV/c3 are robust. We sug-
gested the possibility that the approximations made in m
numerical initial-data models could lead to an apparent
centricity in what was expected to be a quasicircular orbit.
present, however, the discrepancy between the two
proaches can only be considered a hint of possible eccen
ity, because the results of@18# did not include quantitative
error bars for the variablesE(V) andJ(V).

These results motivate us to propose a ‘‘post-Newton
diagnostic,’’ a tool that can be used to extract physical inf
mation from numerical simulations, and that may also be
aid to guide some of the assumptions and approximati
inherent in numerical initial data computations toward tho
that lead to the desired physical configuration, such as a
quasicircular orbit.

In this paper we provide the physical assumptions, ma
ematical details, and justifications for the approximatio
that underly this proposed diagnostic tool. We give the
tailed foundations for the analysis carried out in@24# for
black-hole binary systems, and also extend that work to
case of neutron-star systems by including tidal effects. As
application of our diagnostic to neutron-star systems,
analyze recent numerical models of quasiequilibrium orb
of neutron stars by Milleret al. @25#. In contrast to the black-
hole case, we find that the orbital energy in the neutron-
initial-data models of@25# can be fit to better than one pe
cent, and importantly, within the error bars provided in@25#,
using circular orbits with physically reasonable tidal para
eters appropriate to the ‘‘G52’’ equation of state used in tha
numerical work. The results illustrate the robustness of
PN approximation well into the strongly relativistic regim
of compact binaries, especially when augmented with ph
cally movitated finite-size effects. Application of this PN d
agnostic to other numerical models will be a subject of futu
papers.

The remainder of this paper provides the details unde
ing these conclusions. In Sec. II, we solve the po
Newtonian equations of motion calculated to third po
Newtonian ~3PN! order, for general eccentric orbits
Neglecting radiation reaction effects, we then express
total conserved orbital energy and angular momentum
terms of a pair of ‘‘covariant’’ orbit elementse ~eccentricity!
and z ~related to the semilatus rectum!. In Sec. III, we cal-
culate the effects of finite size in binary systems with bod
whose spin axes are perpendicular to the orbital plane. Th
include tidal and rotational distortions, spin-orbit terms a
spin-spin terms. In Sec. IV, we analyze our diagnostic qu
titatively, and apply it to co-rotating, equal-mass binaries
black holes and of neutron stars. Two Appendixes prov
the detailed derivations of the expressions for the tidal a
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rotational distortion included in our diagnostic: Appendix
uses Newtonian gravity to solve the general problem of
equilibrium configurations of gravitating bodies disturbed
an external force, paralleling the treatment in the clas
monographs of Kopal@26,27#, and Appendix B specialize
the results to linear perturbations caused by rotational
tidal disturbances.

II. ENERGY AND ANGULAR MOMENTUM FOR ‘‘POINT’’
MASSES TO 3PN ORDER

A. Orbits at the turning point in post-Newtonian gravity

Since our ultimate focus will be on orbits that are possi
eccentric, but that momentarily haveṙ 50, it will be useful
to review the characteristics of orbits at turning points
Newtonian theory. In Newtonian gravity, the orbit of a pa
of point masses may be described by the set of equation

p/r 511e cos~f2v!,

r 2V[r 2df/dt5~mp!1/2,

E5m~ ṙ 21r 2V2!/22mm/r ,

J5mux3vu, ~2.1!

wherep5a(12e2) is the semilatus rectum (a is the semi-
major axis!, v is the angle of pericenter,m5m11m2 is the
total mass,m5m1m2 /m is the reduced mass, andE and J
are the total orbital energy and angular momentum, resp
tively ~henceforth we use units in whichG5c51). A circu-
lar orbit corresponds toe50, with r 5a5 constant,V2

5m/a3, E/m5a2V2/22m/a52(mV)2/3/2, and J/m

5Ama5(m/V)1/3. However, if we demand only that th
orbit be at apocenter, so thatṙ 50 only, we havef5v
1p, r 5p/(12e), V25(m/p3)(12e)4, so that, in terms of
Va , the angular velocity at apocenter,

E/m52
1

2
~12e2!F mVa

~12e!2G 2/3

,

J/mm5F mVa

~12e!2G21/3

. ~2.2!

To obtain expressions in terms ofVp , the angular velocity at
pericenter, one makes the replacementsVa→Vp and e
→2e in Eqs.~2.2!.

However, at higher PN orders, neither the orbital ecc
tricity e nor the semilatus rectump is uniquely or invariantly
defined. One definition of eccentricity used by Lincoln a
Will @29# in their analysis of orbits at 2.5PN order was that
a Newtonian orbit momentarily tangent to the true orbit~the
‘‘osculating’’ eccentricity!; it had the unusual property that
did not tend to zero for a circular PN orbit, but tended towa
a constant value of orderm/p, while the rate of pericente
advance approached the same rate of rotation as the
itself. In this language, the true orbit was a noncircular or
10402
e

ic

d

c-

-

f

d

bit
it

at perpetual periastron, thereby maintaining a constant s
rationr. In an effort to avoid this anomaly, other authors@30#
adopted a ‘‘quasi-Keplerian’’ parametrization, which defin
multiple ‘‘eccentricities’’ to encapsulate different aspects
noncircular orbits at PN order.

In an effort to find a parametrization of noncircular P
orbits that will be useful in comparing with numerical mo
els, we@24# proposed an alternative measure of eccentric
and semilatus rectum according to

e[
AVp2AVa

AVp1AVa

,

z[
m

p
[S AmVp1AmVa

2
D 4/3

, ~2.3!

whereVp is the value ofV where it passes through a loc
maximum ~pericenter!, and Va is the value ofV where it
passes through thenext local minimum~apocenter!.

These definitions have the following virtues:~1! they re-
duce precisely to the normal eccentricitye and semilatus
rectump in the Newtonian limit, as can be verified from Eq
~2.1!; ~2! they are constant in the absence of radiation re
tion; ~3! they are somewhat more directly connected to m
surable quantities, sinceV is the angular velocity as see
from infinity ~e.g. as measured in the gravitational-wave s
nal! and one calculates only maximum and minimum valu
without concern for the coordinate location in the orbit; a
~4! they are straightforward to calculate in a numerical mo
of orbits without resorting to complicated definitions of ‘‘dis
tance’’ between bodies.

They have the defect that, when radiation reaction is
cluded, they are not local, continuously evolving variabl
but rather are some kind of orbit-averaged quantities~for this
reason, they may not be as ‘‘covariant’’ as they seem—
Sec. II E below!. Nevertheless, when an eccentric orbit d
cays and circularizes under radiation reaction the definit
of e has the virtue that it tends naturally to zero when t
orbital frequency turns from oscillatory behavior to mon
tonically increasing behavior~i.e. the maxima and minima
merge!.

By virtue of these definitions,z has the further property
that

z5S mVp

~11e!2D 2/3

5S mVa

~12e!2D 2/3

. ~2.4!

We will derive expressions for orbital energy and angu
momentum in terms of these parameterse and z; for com-
parison with numerical models of quasiequilibrium para
etrized in terms ofV at ṙ 50 (Va or Vp), one can simply
substitute forz from Eq. ~2.4!. In this section we will focus
on 3PN expressions for point masses; in the next section
will incorporate effects due to rotation and finite size.
1-3
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B. 3PN equations of motion

We use the standard form of the equations of moti
written in a ‘‘Newtonian-like’’ manner. The acceleration o
body 1 is given schematically by

a15
d2x1

dt2
5

m2

r 2
$n@211~PN!1~2PN!1~2.5PN!1~3PN!

1~3.5PN!1•••#1v@~PN!1~2PN!1~2.5PN!

1~3PN!1~3.5PN!1•••#%, ~2.5!

where xa and ma denote the position and the mass of t
body a, r is the separation between the two bodies,n5(x1
2x2)/r is the unit vector from 2 to 1, andv5v12v2 the
relative velocity. The equation for body 2 is obtained
making the replacement 1
2. The notationnPN represents
the nth post-Newtonian correction to Newtonian gravit
These equations are valid only for pointlike, nonspinni
bodies.

Post-Newtonian termsnPN include even~integer! and
odd ~half-odd integer, such as 2.5PN, or 5/2 PN! orders.
Even terms are conservative, in the sense that the equa
of motion admit conserved quantities such as energy
angular momentum. Odd terms correspond to gravitatio
radiation reaction, and therefore are not conservative. In
ticular, they will cause the orbit to shrink, and the eccentr
ity to decrease.

We convert the two-body problem to an effective on
body problem. For this purpose we choose the origin to b
the center of mass of the system, which is defined by
integral of the motion~a conserved quantity to the 3PN ord
of approximation to which we will be working!. We then
change all variables to the relative coordinatesx5x12x2
using relations of the type
,

ns
d

al
r-
-

-
at
n

x15@m2 /m1~hdm/2m!~v22m/r !1~2PN!1•••#x,

x25@2m1 /m1~hdm/2m!~v22m/r !1~2PN!1•••#x,

~2.6!

where h5m/m5m1m2 /m2 is the reduced mass paramet
(0,h<1/4), anddm5m12m2. The result is a set of equa
tions of motion in terms of relative coordinates:

a5
d2x

dt2
5

m

r 2
@~211A!n1Bv#, ~2.7!

whereA andB represent post-Newtonian terms. To date,
two-body equations of motion have been computed up to
including 3.5PN order. In an appropriate harmonic gau
writing A5A11A21••• andB5B11B21•••, the expres-
sions forA andB read@31#

A152~21h!
m

r
2~113h!v21

3

2
h ṙ 2, ~2.8a!

A252
3

4
~12129h!S m

r D 2

2h~324h!v4

2
15

8
h~123h! ṙ 41

1

2
h~1324h!

m

r
v2

1~2125h12h2!
m

r
ṙ 21

3

2
h~324h!v2ṙ 2, ~2.8b!

A5/25
8

5
h

m

r
ṙ S 17

3

m

r
13v2D , ~2.8c!
A35F161S 1399

15/21
841

16
p2Dh
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B5/252
8

5
h

m

r S 3
m

r
1v2D , ~2.9c!

B35 ṙ H F41S 5849

840
1

123

32
p2Dh225h228h3G S m

r D 2

1
1

8
h~652152h248h2!v41

15

8
h~328h

22h2! ṙ 41h~15127h110h2!
m

r
v2

2
1

6
h~3291177h1108h2!

m

r
ṙ 2

2
3

4
h~16237h216h2!v2ṙ 2J , ~2.9d!

B7/25
8

5
h

m

r F 1

42
~13251546h!S m

r D 2

1
1

28
~313

142h!v4175ṙ 42
1

42
~2051777h!

m

r
v2

1
1

12
~2051424h!

m

r
ṙ 22

3

4
~11312h!v2ṙ 2G .

~2.9e!
10402
At 3PN order, the computation implemented by Blanch
et al. @8,9# produced logarithmic terms, proportional t
ln(r/r18) and ln(r/r28), wherer 18 andr 28 are constants related t
a scale of radius for each body. In obtaining Eqs.~2.8! and
~2.9!, we removed these logarithms using a 3PN coordin
transformationxm→xm1dxm , with @9#

dxm52
22

3
m1m2]mFm1

y2

lnS r

r 18
D 1

m2

y1

lnS r

r 28
D G ,

~2.10!

where ya5ux2xau denotes the coordinate separation b
tween the considered point and the bodya. We note that we
have hdxm50, except at the location of the two bodie
This ensures that the harmonic condition is still respected
the new gauge to the required order. In addition, the par
eterl, which was initially undetermined in@8,9,31# has now
been fixed to bel521987/3080 by different technique
@11,13,32#; that value has been incorporated into all equ
tions.

In the absence of the 2.5PN and 3.5PN terms, these e
tions of motion admit conserved total energyE and total
angular momentumJ. Writing E5E01E11E21E3 and J
5J01J11J21J3, we have
E0 /m5
1

2
v22

m

r
, ~2.11a!

E1 /m5
1

2 S m

r D 2

1
3

8
~123h!v41

1

2
~31h!v2

m

r
1

1

2
h

m

r
ṙ 2, ~2.11b!

E2 /m52
1

4
~2115h!S m

r D 3

1
5

16
~127h113h2!v61

1

8
~14255h14h2!S m

r D 2

v21
1

8
~4169h112h2!S m

r D 2

ṙ 2

1
1

8
~21223h227h2!

m

r
v41

1

4
h~1215h!

m

r
v2ṙ 22

3

8
h~123h!

m

r
ṙ 4, ~2.11c!

E3 /m5F3

8
1

18469

840
hG S m

r D 4

1F5

4
2S 6747

280
2

41

64
p2Dh2

21

4
h21

1

2
h3G S m

r D 3

v21F3

2
1S 2321

280
2

123

64
p2Dh1

51

4
h21

7

2
h3G

3S m

r D 3

ṙ 21
1

128
~352413h11666h222261h3!v81

1

16
~1352194h1406h22108h3!S m

r D 2

v4

1
1

16
~121248h2815h22324h3!S m

r D 2

v2ṙ 22
1

48
h~7312492h2288h2!S m

r D 2

ṙ 41
1

16
~552215h1116h2

1325h3!
m

r
v61

1

16
h~5225h125h2!

m

r
ṙ 62

1

16
h~21175h2375h2!

m

r
v4ṙ 22

1

16
h~9284h1165h2!

m

r
v2ṙ 4,

~2.11d!
1-5
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J0 /m5~x3v!, ~2.12a!

J1 /m5~x3v!F ~31h!
m

r
1

1

2
~123h!v2G , ~2.12b!

J2 /m5~x3v!F1

4
~14241h14h2!S m

r D 2

1
3

8
~127h113h2!v41

1

2
~7210h29h2!

m

r
v22

1

2
h~215h!

m

r
ṙ 2G ,

~2.12c!

J3 /m5~x3v!H F5

2
2S 5199

280
2

41

32
p2Dh27h21h3G S m

r D 3

1
1

16
~5259h1238h22323h3!v6

1
1

12
~1352322h1315h22108h3!S m

r D 2

v21
1

24
~122287h2951h22324h3!S m

r D 2

ṙ 2

1
1

8
~332142h1106h21195h3!

m

r
v42

1

4
h~1227h275h2!

m

r
v2ṙ 21

3

8
h~222h211h2!

m

r
ṙ 4J . ~2.12d!
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C. Solution of the 3PN equations of motion

In order to solve these equations, we shall initially ado
the method of osculating orbital elements, which is we
adapted to the perturbed two-body Kepler problem. The
culating orbit elements are defined by the Keplerian o
that is tangent to the actual trajectory at a particular mom
of time. In the Newtonian case, the osculating elements
constants of the motion; in a perturbed Newtonian proble
they change smoothly with time~see@29# for more details
about the method of osculating elements applied to the p
Newtonian problem!.

From the equations of motion we can easily deduce
the trajectory is planar, which allows us to reduce the num
of variables from six to four. If we assume that the plane
the motion is perpendicular toẑ (x,y,z being a standard
Cartesian coordinate system!, our new set of variables
(a,b,p,f) is related to the old set (x,y,vx ,vy) by the defi-
nitions ~some of which are redundant!:

x[r cosf,

y[r sinf,

vx[2~m/p!1/2~b1sinf!,

vy[~m/p!1/2~a1cosf!,

r 5p~11a cosf1b sinf!21,

r 2ḟ[~mp!1/2. ~2.13!

Reciprocally, we can deduce the osculating elements f
the orbital variables by using the following relations:

f5arctanS y

xD ,
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m
vx2
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r
,

p5s2/m,

s5~x3v!• ẑ. ~2.14!

One additional expression will be useful:

ṙ 5~m/p!1/2~a sinf2b cosf!. ~2.15!

We note that the vector (a,b) has as its norm the ordinar
Keplerian osculating eccentricitye and as its phase angle th
directionv of the Keplerian osculating periastron, so that w
havea5e cosv andb5e sinv.

In what follows, we will use the parameteru5m/p rather
than p. Note thatu is of order e;m/r . In the Newtonian
case,u, a and b are constants of the motion; in the pos
Newtonian problem, these parameters vary according to
following ‘‘Lagrange planetary equations’’~so-called from
their extensive use in solar-system studies!:

du

df
522u3/2B,

da

df
5A sinf12u1/2B~a1cosf!,

db

df
52A cosf12u1/2B~b1sinf!, ~2.16!

where we have used Eqs.~2.7!, ~2.13! and~2.15!. When the
definitions ofx and v @Eqs. ~2.13!# are substituted into the
1-6
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PN expressions forA andB @Eqs.~2.8! and ~2.9!#, we get a
set of coupled first-order differential equations in the va
ablesa(f), b(f) andu(f).

The planetary equations derived from Eqs.~2.16! are too
long to be reproduced here~they can be found through 2.5P
order in@29#!. However we can schematically write them
the general form:

du

df
5u2Du1~a,b,f!1u3Du2~a,b,f!

1u5/2Du5/2~a,b,f!1•••,

da

df
5uDa1~a,b,f!1u2Da2~a,b,f!

1u5/2Da5/2~a,b,f!1•••,

db

df
5uDb1~a,b,f!1u2Db2~a,b,f!

1u5/2Db5/2~a,b,f!1•••, ~2.17!

whereDun , Dan andDbn (nP$1,2,5/2,3,7/2%) are polyno-
mials in a and b and simple trigonometric functions off.
We quote, for illustration, the first post-Newtonian expre
sions for these polynomials:

Du154~22h!~b cosf2a sinf!,

Da1523b1~32h!sinf1~524h!~a sin 2f2b cos 2f!

1
1

8
@~56247h!a22~8121h!b2#sinf

2
1

4
~32213h!ab cosf1

3

8
h~b22a2!sin 3f

1
3

4
hab cos 3f,

Db153a2~32h!cosf2~524h!~a cos 2f1b sin 2f!

2
1

8
@~56247h!b22~8121h!a2#cosf

1
1

4
~32213h!ab sinf1

3

8
h~a22b2!cos 3f

1
3

4
hab sin 3f. ~2.18!

We want to solve these equations iteratively. At zero
~Newtonian! orderu, a andb are constants of the motionũ,
ã and b̃, and can be related to the initial state of the orb
Post-Newtonian effects cause them to vary slowly ove
post-Newtonian time scale or a radiation-reaction time sc
related to the orbital phasef by f/e and f/e5/2, respec-
tively. Superimposed upon this will be variations on an
bital time scale. To take these two effects into account,
10402
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use a two-scale approach@33#. We define a variableu
5ef, and we assume that the osculating elements can
written as functions ofu and f in the generic formu

5u„ũ(u),ã(u),b̃(u),f…, with u andf now treated as inde
pendent variables. We then expand the elements in powe
e:

u5eũ1e2u1~ ã,b̃,ũ,f!1e3u2~ ã,b̃,ũ,f!1•••,

b5b̃1eb1~ ã,b̃,ũ,f!1e2b2~ ã,b̃,ũ,f!1•••,

a5ã1ea1~ ã,b̃,ũ,f!1e2a2~ ã,b̃,ũ,f!1•••. ~2.19!

Notice that, by its very nature,u begins at ordere. We write
the derivative with respect tof in the form

d

df
5

]

]f
1e

]

]u

5
]

]f
1eS dã

du

]

]ã
1

db̃

du

]

]b̃
1

dũ

du

]

]ũ
D . ~2.20!

We also expand the derivatives with respect tou in pow-
ers ofe:

dũ

du
5dũ1~ ã,b̃,ũ!1edũ2~ ã,b̃,ũ!1•••,

db̃

du
5db̃1~ ã,b̃,ũ!1edb̃2~ ã,b̃,ũ!1•••,

dã

du
5dã1~ ã,b̃,ũ!1edã2~ ã,b̃,ũ!1•••. ~2.21!

Now we have reduced our study to the search fora i , b i , ui

on the one hand, which will give the dependence onã, b̃, ũ,
andf, anddã i , db̃ i , dũi on the other hand, which will give
differential equations allowing solution for theu depen-
dence, or long-term variation of the parameters. Note t
this is not the only way to decompose the problem, but i
natural way, given the split into orbital and secular evoluti
of the variables.

We now define the average and the average-free part
function f (f) by

^ f &5
1

2pE0

2p

f ~f!df,

AF~ f !~f!5 f ~f!2^ f &, ~2.22!

where the ‘‘independent’’ variableu is held fixed. ~An
equivalent procedure would be to convert all functions off
into 2p-periodic functions and constants.! We rewrite Eqs.
~2.16! with our new variables, and we collect terms of com
mon powers ofe. At first order ine we get
1-7
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dũ11
]u1

]f
5ũ2Du1~ ã,b̃,f!,

dã11
]a1

]f
5ũDa1~ ã,b̃,f!,

db̃11
]b1

]f
5ũDb1~ ã,b̃,f!, ~2.23!

where the expressions on the right-hand side are given
Eqs.~2.18!, with ã replacinga, and so on. Reading off th
average parts of Eqs.~2.23!, we find dũ150, dã1

523ũb̃, and db̃153ũã. Defining ã[ẽ cosṽ and b̃

[ẽ sinṽ we find, to first PN order that

dũ/du50,

dẽ/du5~ ãdã/du1b̃db̃/du!/ẽ50,

dṽ/du5~ ãdb̃/du2b̃dã/du!/ẽ253ũ. ~2.24!

These results express the well-known fact that the orb
eccentricity and semilatus rectum do not evolve secularly
1PN order; in fact, this holds true at 2PN and 3PN ord
they only evolve secularly as a result of radiation reacti
The angle of pericenterṽ evolves secularly at 1PN order vi
the standard advance; there are also 2PN and 3PN cont
tions, but no radiation-reaction contributions to the adva
of ṽ, through 3.5PN order.

Then, integrating the average-free parts of Eqs.~2.23!, we
obtain, for example,

a15AFS E AF~Da1!~f!df D . ~2.25!

The role of the secondAF is to get rid of the constant o
integration. The same method yields similar results forb1
andu1.

At second order ine, we obtain equations of the form

dã21
]a2

]f
5ũ2Da21ũS ]Da1

]a
a11

]Da1

]b
b1D1u1Da1

2
]a1

]ã
dã12

]a1

]b̃
db̃12

]a1

]ũ
dũ1

[ f 2~ ã,b̃,ũ,f!, ~2.26!

wherea1 , b1 , u1 , dã1 , db̃1 anddũ1 are known from the
first order solution. For the same reasons as previously
have

dã25^ f 2&,

a25AFS E AF~ f 2!~f!df D . ~2.27!
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Using this procedure systematically up to 3.5PN order,
completely determinea(ã,b̃,ũ,f), b(ã,b̃,ũ,f) and u(ã,
b̃,ũ,f), as well as (dã/df)(ã,b̃,ũ), (db̃/df)(ã,b̃,ũ) and
(dũ/df)(ã,b̃,ũ). From this and Eqs.~2.13! we can deduce
the explicit expressions forx, v, r, etc.

To 3.5PN order, the secular evolution ofũ and ẽ is gov-
erned by radiation reaction, and is given by the coup
equations~we now sete51)

dũ

df
5

8

5
hH ~817ẽ2!ũ7/22F S 2759

42
16h D2S 379

21
1

127

6
h D ẽ2

2S 1483

336
1

79

6
h D ẽ4G ũ9/2J ,

dẽ

df
52

1

15
hẽH ~3041121ẽ2!ũ5/22F S 18049

7
1636h D

2S 4346

7
1

1829

2
h D ẽ22S 2251

56
1269h D ẽ4G ũ7/2J .

~2.28!

We note that the eccentricity decreases as the o
shrinks. The periastron advance is driven by the conserva
part of the equations:

dṽ

df
53ũ2

3

4
@1014h2~1110h!ẽ2#ũ2

1H 87

2
2S 157

4
2

123

32
p2Dh23h2

2F452S 231
123

128
p2Dh1

93

2
h2G ẽ2

1
3

8
h~12225h!ẽ4J ũ3. ~2.29!

D. Energy and angular momentum in terms of new orbit
elements

We now wish to convert from the osculating orbit el
mentsũ and ẽ to our alternative quantities defined in Eq
~2.3! ~cf. Sec. II A!. Using the formula

mV[m3/2p1/2/r 25ũ3/2~11ã cosf1b̃ sinf!2, ~2.30!

we can easily show that the maxima and minima ofV occur
at f5ṽ ~pericenter! and f5ṽ1p, ~apocenter! respec-
tively. We then expressVp and Va , and thence our new
orbit elementse andz as functions ofẽ andũ. To 2PN order,
the relationships are given by
1-8



POST-NEWTONIAN DIAGNOSTIC OF . . . PHYSICAL REVIEW D 69, 104021 ~2004!
e5ẽH 11F1

2
~1324h!1~123h!ẽ2G ũ

1F1

4
~522129h!1

1

16
~1572337h1116h2!ẽ2

1
1

4
~4219h148h2!ẽ4G ũ2J , ~2.31a!
e

fo

an
i
u

10402
z5ũH 12
4

3
@~32h!1~1212h!ẽ2#ũ

1F1

9
~198139h126h2!2

1

36
~10922977h1276h2!ẽ2

1
1

9
~2227h218h2!ẽ4G ũ2J . ~2.31b!
.
t they
Notice that a circular orbit corresponds toẽ5e50.
We invert these relations and substitute the expressions forẽ(e,z) andũ(e,z) into the solution of the equations of motion

The results form/r andr 2ḟ to 3PN order are too long to be reproduced here. However, in order to give an idea of wha
look like, we quote them to 2PN order, expressed in terms of our new orbit elements.

m

r
5$11e cosf8%z1H 12

1

3
h1

7

12
~423h!e21

1

3
@~924h!1~123h!e2#e cosf82

h

4
e2cos~2f8!J z2

1H 12
65

12
h1

1

24
~3562319h148h2!e21

1

192
~2562265h1459h2!e4

1F 1

12
~962231h18h2!1

1

48
~3232351h1180h2!e21

h

12
~5112h!e4Ge cosf8

2F 1

24
~601159h216h2!1

h

48
~29227h!e2Ge2cos~2f8!2

1

16
~1119h24h2!e3cos~3f8!

2
h

64
~123h!e4cos~4f8!J z3,

r 2ḟ5
m

Az
F12H 2

3
~32h!1

2

3
~123h!e21~422h!e cosf8J z

1H 1

6
~6153h12h2!2

1

24
~281117h248h2!e21

1

6
~2217h16h2!e4

2F1

3
~6253h22h2!2

1

24
~322211h154h2!e2Ge cosf8

1
1

8
~36213h14h2!e2cos~2f8!2

h

8
~312h!e3cos~3f8!J z2G , ~2.32!
of

for
-

where f8[f2v. The leading term corresponds to th
Newtonian solution. Note thatz, e andv are now ourpost-
Newtonianorbital elements, and should not be mistaken
the Newtonian u, e andv introduced in Sec. II A.

An alternative method for integrating the post-Newtoni
equations of motion was developed by Wagoner and W
@28#. In that method, perturbations of the velocity and ang
lar momentum were defined by the equations

r 2df/dt[ux3vu[~mp!1/2~11dh!,
r

ll
-

v[~m/p!1/2@2sin~f2v!ex

1„ê1cos~f2v!…ey1dv#, ~2.33!

wherep, ê andv are constants. Taking a time derivative
both equations, substituting the 3PN equations of motion~ig-
noring radiation reaction terms!, converting to derivatives
with respect tof and integrating, one obtains expressions
the perturbedr 2df/dt andv. One then integrates the iden
1-9
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tity (d/df)r 2152(r 2df/dt)21(n•v) with respect tof,
setting the constants of integration at each PN order so
the identityd(rn)/dt5v is reproduced. In terms of the bar
orbit elementsê, û5m/p and v, the orbit equations look
different at each PN order from those derived above in te
of ẽ, ũ and ṽ. But when the solution so derived is used
identify Va andVp and thence to define new orbit elemen
from Eqs.~2.3!, the resulting orbit solution in terms of ou
new orbit elements isidentical to Eqs.~2.32!, through 3PN
order.

The equations describing the evolution with time of o
new orbit elements then become

dz

df
5

8

5
hH ~817e2!z7/22F743

42
122h2S 1186

63
2

685

6
h De2

2S 18001

1008
2

163

6
h De4Gz9/2J ,

de

df
52

1

15
heH ~3041121e2!z5/22F5505

7
1

3796

3
h

2S 12499

21
2

17741

6
h De22S 46289

168
2437h De4G z̃7/2J ,
10402
at

s

r

dv

df
53z1F1

2
~9214h!1

1

4
~19218h!e2Gz2

1H 27

2
2S 481

4
2

123

32
p2Dh17h2

1F137

4
2S 337

4
2

123

128
p2Dh1

53

2
h2Ge2

1
1

8
~2018h145h2!e4J z3. ~2.34!

Now the problem is entirely solved. Equations~2.32! pushed
to 3PN order, characterize the motion, while Eqs.~2.34! give
the pericenter advance and effect of radiation reaction on
orbital elements.

We now ignore the effects of radiation reaction, expre
all the orbital variablesr, x, v, ṙ to 3PN order in terms of our
new orbit elements and the anglef, and substitute into the
expressions~2.11! and ~2.12!. As expectedE andJ are con-
stant ~independent off) through 3PN order. DefiningẼ
5E/m and J̃5uJu/mm, with J5uJuẑ, we find for a general
eccentric orbit:
ẼHarm52
1

2
~12e2!zH 12F3

4
1

1

12
h2S 1

12
2

1

4
h De2Gz

2F27

8
2

19

8
h1

1

24
h22S 17

12
14h1

1

4
h2De21S 1

24
1

29

24
h2

1

8
h2De4Gz2

2F675

64
2S 34445

576
2

205

96
p2Dh1

155

96
h21

35

5184
h31S 7

64
2S 2369

576
1

41

96
p2Dh1

11951

864
h22

25

576
h3De2

2S 815

576
2

7619

1728
h2

1499

288
h22

25

64
h3De42S 35

5184
2

143

192
h1

57

32
h22

5

64
h3De6Gz3J , ~2.35a!

J̃Harm5
1

Az
H 11F3

2
1

1

6
h2S 1

6
2

1

2
h D e2Gz

1F27

8
2

19

8
h1

1

24
h21S 23

12
2

31

6
h2

1

4
h2D e21S 1

24
2

35

24
h2

1

8
h2D e4Gz2

1F135

16
2S 6889

144
2

41

24
p2Dh1

31

24
h21

7

1296
h31S 299

16
2S 10003

144
2

41

24
p2Dh1

3013

216
h22

5

144
h3D e2

1S 77

144
2

6497

432
h1

853

72
h21

5

16
h3D e42S 7

1296
1

1

16
h1

1

8
h22

1

16
h3D e6Gz3J . ~2.35b!
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Notice thatEHarm is proportional to (12e2) through 3PN
order, indicating thatEHarm50 for the limiting unbound orbit
e51; this is another appropriate feature of our ‘‘covarian
eccentricity. The energy and angular momentum are w
defined, physically observable quantities, so one can alte
tively express our orbit elementsz and e as functions ofẼ
and J̃. Here we give the results to 1PN order, but the cal
lation can be done to 3PN order:

z5
1

J̃2 F11
2

3J̃2
„412h2~123h!ẼJ̃2

…G ,

e5A112ẼJ̃2F12
1

2

Ẽ

112ẼJ̃2
„412h2~123h!Ẽz˜˜
’
ll-
a-

-
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J̃ADM5
1

Az
H 11F3

2
1

1

6
h2S 1

6
2

1

2
h D e2Gz

1F27

8
2

19

8
h1

1

24
h21S 23

12
2

35

12
h2

1

4
h2D e21S 1

24
2

17

24
h2

1

8
h2D e4Gz2

1F135

16
2S 6889

144
2

41

24
p2Dh1

31

24
h21

7

1296
h31S 299

16
2S 1025

16
2

41

24
p2Dh1

2077

216
h22

5

144
h3D e2

1S 77

144
2

1337

432
h1

271

72
h21

5

16
h3D e42S 7

1296
2

7

48
h1

3

8
h22

1

16
h3D e6Gz3J . ~2.40b!
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We observe two features of the harmonic and the AD
versions of these expressions:~i! the ‘‘circular’’ parts (e
50) of the formulas coincide. In that case the angular
locity V5Va5Vp is the same as that observed from infin
for both harmonic and ADM coordinates;~ii ! the expressions
also coincide forh→0, i.e. in the test-mass limit. As men
tioned before, the differences between the formulas only
cur at 2PN and 3PN orders. It is actually possible to rel
the coordinate positions and velocities in the two gauges

particular, the relation betweenḟADM andḟHarm, r Harm, etc.
allows us to find a relation between (eADM ,zADM) and
(eHarm,zHarm), and thus account for the differences in t
coefficients ofE andJ. We found that a transformation of th
type

ḟADM5ḟH 11h
m

r F9

4 S v22
m

r D2S 16

3
1

h

2 D S m

r D 2

1S 17

8

2
21

4
h D v41S 239

24
1

7

2
h D m

r
v21 ṙ 2f S ṙ 2,

m

r
,v2D G J ,

~2.41!

where we have dropped the subscript ‘‘Harm’’ in the righ
hand side of Eq.~2.41!, and wheref is a function, was com-
patible with the differences observed in the expressions
both the energy and the angular momentum. Sinceṙ 50 at
the apastron and periastron,f does not need to be determine
explicitly for our purposes. In the circular orbit limit, where
from Eq. ~2.7!, v25m/r @(12(32h)m/r # to PN order, it is
easy to see thatḟADM5ḟHarm. Equation~2.41! demonstrates
that our definitions ofe and z are not truly covariant. Nev-
ertheless, the coordinate transformations that connect di
ent formulations of the post-Newtonian equations of mot
cause changes beginning only at 2PN order. This is refle
in Eq. ~2.41! where the difference between the two angu
velocities is of 2PN order. Furthermore, for the small ecc
tricity orbits that we wish to consider, the corrections a
proportional toe, and are thus further suppressed. Thus
argue that our definitions ofe andz are ‘‘almost’’ covariant.
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III. EFFECTS OF FINITE SIZE

A. Estimates for compact binaries

In reality, the bodies in our binary system cannot
treated as purely point masses. They may be rotating,
thus subject to a number of effects, including rotational
netic energy, rotational flattening, and spin-orbit and sp
spin interactions. Furthermore, there will be tidal deform
tions. These effects will not only make direct contributions
the energy and angular momentum of the system, they m
also modify the equations of motion, and thereby modify t
expressions for our alternative eccentricity and semilatus
tum. However because they depend on the size of the bo
which, for neutron stars and black holes, are of orderm, we
expect these effects to be ‘‘effectively’’ of high PN orde
even if they are Newtonian in origin, such as tidal effects.
see this, we estimate each finite-size effect in turn and c
pare it with the Newtonian orbital energyEN;m2/r . We
assume that the rotational angular velocityv of each body
ranges from zero to the orbital angular velocity, given
V;(m/r 3)1/2, and we let the radius of each body be of t
form Ra;qma , whereq;1 for black holes~in harmonic
coordinates!, andq;5 for neutron stars.

Rotational kinetic energy:ERot;Iv2/2<mR2(m/r 3)
;ENq2(m/r )2. This is effectively 2PN order. There wil
be PN corrections to the kinetic energy, given byERot-PN
;ERot(Rv)2;mR4v4;ENq4(m/r )5. These are effec-
tively 5PN order, but, because of theq4 dependence,
could be important for neutron stars.

Rotational flattening:EFlat;dIv2/2, whered is a mea-
sure of the deformation of the body, given by the ratio
rotational to gravitational energy,d;(Iv2)/(m2/R), so
that EFlat;v4R5<ENq5(m/r )5. There is an equivalen
contribution of rotational flattening to the gravitational in
ternal energy. These are effectively 5PN order, but
cause of theq5 dependence, could be important for ne
tron stars.

Tidal deformations:ETidal;(d8m)2/R, whered8 is the
ratio of gravitational energy due to the tidal force of th
companion to the internal gravitational energy of t
body, d8;(mR2/r 3)/(m/R);(R/r )3. Thus ETidal
1-12
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;m2(R/r )6/R;ENq5(m/r )5. There is also a contribution
from the rotational kinetic energy of the tidal bulge, give
by EKE-bulge;d8Iv2;mR5v2/r 3<ENq5(m/r )5. These
are effectively 5PN order, but could be significant for ne
tron stars.

Spin-orbit coupling:ES.O.;LS/r 3;(mr2V)(mR2v)/
r 3<ENq2(m/r )3. This is effectively 3PN order@34#, and
generally must be included.

Spin-spin coupling: ES.S.;S1S2 /r 3;(mR2v)2/r 3

<ENq4(m/r )5. This is effectively 5PN order, but coul
be significant for neutron stars@34#.

A parallel heirarchy of finite-size effects applies to t
total angular momentum of the system.

The largest effect in principle is that due to the rotation
kinetic energy of the bodies and thus requires some care.
black holes, we can apply the general formulas for mass
angular momentum of isolated Kerr black holes, in terms
the irreducible mass and angular velocity. For neutron st
no such general formula exists, so it may be necessary to
upon numerical results for energy and angular momentum
isolated rotating neutron star models in order to take accu
account of this effect. On the other hand, it does not dire
affect the equations of motion.

Because the remaining effects are effectively of 3PN
der and higher, our strategy will be to evaluate them anal
cally to the lowest nontrivial order. For tidal and rotation
flattening terms, this will mean using Newtonian theory. F
spin-orbit and spin-spin terms, we will use the well-know
1PN formulas. We will ignore any coupling among the
effects, or between these effects and the point-mass PN
fects described in the previous section. Accordingly, we w
calculate the separate contribution of each effect to the
ergy and angular momentum and simply add them all up

B. Newtonian tidal and rotational effects

In Appendix A we derived the general form of the equ
tions of motion and the conserved energy and angular
mentum for a binary system of tidally and rotationally d
formed bodies, and in Appendix B we specialized to line
perturbations and multipole indicesl 52 andl 53. We now
specialize further to systems more relevant to the initial c
figurations in numerical relativity which we wish to stud
namely binary systems in which the spin axes of both s
are perpendicular to the orbital plane. The equation of m
tion ~B9d! then takes the simplified form

a52
m

r 2
nF11AS m

r
D 2

1BS m

r
D 5

1CS m

r
D 7G , ~3.1!

where the three perturbing terms correspond respectivel
the effects of rotational distortions, quadrupole tidal dist
tions (l 52) and octupole tidal distortions (l 53), with the
coefficients given by

A5m22~R1
5k2

(1)ṽ1
2/m11R2

5k2
(2)ṽ2

2/m2!,
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B56m25~R1
5k2

(1)m2 /m11R2
5k2

(2)m1 /m2!,

C58m27~R1
7k3

(1)m2 /m11R2
7k3

(2)m1 /m2!. ~3.2!

For each body,Ra denotes its radius,k2
(a) andk3

(a) denote the
‘‘apsidal constants’’ for angular harmonicsl 52 and l 53,
respectively, andṽa denotes the body’s angular velocity at
chosen point in the orbit~see Appendix B for details!.
Apsidal constants are dimensionless coefficients that dep
on the degree of central condensation of the star, and
determine the size of distortion of a given angular degrel
produced by a given external perturbation. Note thatA
,R5/m2r 3;q5(m/r )3, so that, despite appearances, th
term, like the purely tidal term fromB, is effectively 5PN
order. The energy and angular momentum that are conse
by virtue of the full fluid equations of motion are given by

E5ESelf1EDistort1ETR,Orbit

5F1

2
I 1ṽ1

22W11~1
2!G
1F1

3
R1

5k2
(1)ṽ1

2S ṽ1
212

m2

r̃ 3 D 1~1
2!G1
1

2
mv2

2
mm

r
F11

1

3
AS m

r
D 2

1
1

6
BS m

r
D 5

1
1

8
CS m

r
D 7G ,

J5S1JDistort1JTR,Orbit

5@ I 1ṽ11I 2ṽ2#1F2

3
R1

5k2
(1)ṽ1S 2

3
ṽ1

21
m2

r̃ 3 D 1~1
2!G
1mux3vu, ~3.3!

where, for each body,I a denotes the moment of inertia,Wa
denotes the self-gravitational energy of the undistorted c
figuration, andr̃ denotes the orbital separation at the point
which the star’s angular velocity isṽ. The chosen point in
our case will be the pericenter or apocenter. In Eq.~3.3!, the
split among the intrinsic energy and spins of the bodiesESelf
and S, the constant distortion termsEDistort and JDistort, and
the orbital terms is clear. The angular momentum com
nents are all referred to the axis perpendicular to the orb
plane.

We now repeat the method of Secs. II C and II D to obta
the general solution to the equations of motion to first or
in the tidal and rotational perturbations. We then obtain o
new orbit elementse andz in terms of the bare elementsẽ
and ũ; for example,e is given by

e5ẽH 12
1

2 F11
2

3
ẽ2GAũ21

1

4 F12
85

12
ẽ22

85

24
ẽ4GBũ5

1
1

4 F32
49

8
ẽ22

147

8
ẽ42

931

256
ẽ6GCũ7J . ~3.4!
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Since we are assuming that these effects areeffectivelyof
5PN order, we can simply add the correction terms in
~3.4! to those in Eq.~2.31a!. Tidal and rotational interaction
are conservative~as long as we ignore dissipative process
such as viscosity!, and therefore do not cause secular evo
tion of ẽ or ũ; however they do produce a pericenter a
vance, given in terms of our new orbit elements by

dv

df
5Az21

5

2 F11
3

2
e21

1

8
e4GBz5

1
7

2 F11
15

4
e21

15

8
e41

5

64
e6GCz7. ~3.5!

Substituting the solutions for the motion into the orbi
parts of Eqs.~3.3!, and converting to our new elements, w
obtain for the tidal-rotational~TR! contributions to the or-
bital parts ofE andJ,

ETR,Orbit5m~12e2!F1

9
~32e2!Az31

1

18
~9110e223e4!

3Bz61
1

24
~13149e217e425e6!Cz8G , ~3.6a!

JTR,Orbit5mmF2

9
~31e2!Az3/21

2

9
~3110e213e4!Bz9/2

1
2

3
~117e217e41e6!Cz13/2G , ~3.6b!

where we have dropped the Newtonian orbital part, beca
it is already included in the 3PN point-mass expressions
Eqs.~2.35! or ~2.40!. The form of the self-terms depends o
where in the orbit we evaluate the stars’ angular velocit
for pericenter or apocenter, we can use the Newtonian r
tion thatm/ r̃ 5z(16e), respectively, to write

ESelf5
1

2
I 1ṽ1

22W11~1
2!, ~3.7a!

S5I 1ṽ11I 2ṽ2 , ~3.7b!

EDistort5
1

3
m22R1

5k2
(1)ṽ1

2F ~mṽ1!212
m2

m
z3~16e!3G

1~1
2!, ~3.7c!

JDistort5
2

9
m22R1

5k2
(1)ṽ1F2~mṽ1!213

m2

m
z3~16e!3G

1~1
2!. ~3.7d!

C. Spin-orbit and spin-spin effects

Spin-orbit and spin-spin interactions produce correctio
in the equations of motion that are formally of 1PN ord
For systems with the spins perpendicular to the orbital pl
they are given by
10402
.
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f
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a52
m

r 2
n1

1

r 3 H 6n~n3v!•S 2S1
dm

m
DD

2v3S 7S13
dm

m
DD 13ṙn3S 3S1

dm

m
DD J

2
3

mr 4
nS1•S2 , ~3.8!

where S5S11S2 and D5m(S2 /m22S1 /m1). The indi-
vidual spins are constants of the motion when they are b
aligned perpendicular to the orbital plane. The conserved
ergy and total angular momentum are given by

E5
1

2
mv22

mm

r
1

1

r 3
LN•S S1

dm

m
DD 2

1

r 3
S1•S2 ,

~3.9a!

J5LN1S2hFm

r S 3S1
dm

m
D D2

1

2
v2S S1

dm

m
D D G ,

~3.9b!

where LN5mx3v, and Eq.~3.9b! denotes the componen
perpendicular to the orbital plane~for the complete equation
of motion, see, for example@35,36#!. We define the dimen-
sionless quantities

D[h
S

LN

, F[h
dm

m

D

LN

, G[h
S1S2

~LN!2
, ~3.10!

where D;F;(R/r )2;q2(m/r )2, and G;(R/r )4

;q4(m/r )4, making the spin-orbit and spin-spin terms effe
tively 3PN and 5PN order respectively@34#. With these defi-
nitions, the equation of motion takes the form of Eq.~2.7!,
with

A5~5D13F23G!v223~D1F2G! ṙ 2, ~3.11!

B522Dṙ . ~3.12!

Again we solve the equations of motion using the method
Secs. II C and II D and define our new orbit elements. In t
case, for example, the eccentricity is given by

e5ẽH 11
1

2
@~114ẽ2!D1~312ẽ2!~F2G!#ũJ .

~3.13!

In terms of our new elements, the pericenter advance is g
by

dv

df
52~7D13F23G!z, ~3.14!
1-14
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while e andz undergo no secular changes. When expres
in terms of our new orbit elements, the spin-orbit and sp
spin contributions to the total energy and angular momen
have the form

ESpin52
1

3
m~12e2!@~722e2!D1~32e2!~F2G!#z2,

~3.15a!

JSpin52
1

6
mm@5~71e2!D1~151e2!F24~31e2!G#Az.

~3.15b!

Inserting the Newtonian expression forLN , we have that

D5~S/m2!Az, F5~dm/m!~D/m2!Az,

G5~S1 /m1!~S2 /m2!m22z. ~3.16!

D. Other finite-size corrections

In deriving the ‘‘point-mass’’ equations of motion, the un
derlying assumption was that the masses that enter the e
tions are the total mass of each body, comprised of baryo
mass, gravitational binding energy and rotational kinetic
ergy, if any. Thus, eachma should be writtenma5ma

B2Wa

1Ea
Rot. In many numerical approaches, sequences of mo

are constructed in which the total~or ADM! mass of each
corresponding nonrotating star is held fixed along the
quence. Thus, for making comparisons with such sequen
we should replace eachma in Eqs.~2.35! or ~2.40! with ma

0

1I ava
2/2 ~or, in the case of black holes, with a suitable fo

mula in terms of the irreducible mass andva). But because
I ava

2;q2(m/r )3, the main contribution, at effectively 3PN
order, comes from making this replacement in the Newton
expressions. ExpressingEN and JN in terms of V as EN
52 1

2 hm(12e2)(mVa)2/3/(12e)4/3, and JN5hm2(1
2e)2/3/(mVa)1/3, and making the above replacement, w
find the corrections to the Newtonian energy and angu
momentum

EN,Corr52
1

4
m~12e2!zF I 1

m1
v1

2S 12
m1

3mD1~1
2!G ,
~3.17a!

JN,Corr5
mm

2Az
F I 1

m1

v1
2S 12

m1

3m
D 1~1
2!G , ~3.17b!

where all masses now are those of the equivalent nonrota
body. For neutron stars, this would be that of the same b
onic mass; for black holes, it would be that of the sa
irreducible mass.

IV. A POST-NEWTONIAN DIAGNOSTIC FOR
QUASIEQUILIBRIUM CONFIGURATIONS

A. Estimates of effects

We now have all the ingredients to formulate a po
Newtonian diagnostic for quasi-equilibrium configurations
compact bodies. The ingredients are the various contr
10402
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tions to the total energy and angular momentum of the s
tem in terms of the ‘‘covariant’’ orbit elementse andz, to-
gether with the relationships connecting the value ofz with
the orbital angular velocity at a turning point of the orb
namely z5(mVp)2/3/(11e)4/3 or z5(mVa)2/3/(12e)4/3,
corresponding to pericenter and apocenter, respectively.
ingredients are:

Point-mass orbital contributions through 3PN orde.
Equations~2.35! or ~2.40!. It is straightforward to show
that, because the harmonic and ADM versions differ
2PN terms proportional tohe2 and higher, the difference
between the two versions are negligible for all cases
interest. Henceforth we will adopt the harmonic versi
of Eqs.~2.35!.

Self terms. Equations~3.7a! and ~3.7b!. We add a suit-
ably defined total ‘‘rest’’ mass for the bodies to the de
nition of ESelf. Because the rotational kinetic energy a
the spin angular momentum are effectively of 2PN ord
they will have to be treated with some care.

Constant distortion terms. Equations~3.7c! and ~3.7d!.
Tidal-rotational orbit terms. Equations~3.6!.
Spin-orbit and spin-spin terms. Equations~3.15!.
Newtonian correction terms. Equations~3.17!.

In order to assess the applicability of this diagnostic,
first study the sizes of various effects for systems of inter
In general we will consider systems of solar-mass scale n
tron stars or black holes, in circular or small-eccentric
orbits, in the vicinity of the onset of an unstable plunge a
merger. This corresponds toz;m/r ,1/5 for black holes, or
to z,m/(2R);1/q for neutron stars. Forq between 4 and 6,
the two ranges are comparable. Both correspond tomV
,0.1. We will generally choose a range 0.01,mV,0.1.

First we look at the relative contributions of point-ma
PN corrections. Figure 1 shows the contribution, relative
the Newtonian orbital energy, of the 1PN, 2PN and 3P
terms in the energy, forh50 andh51/4, as a function of
mV. Results for the angular momentum are similar. Wh

FIG. 1. Contributions of 1PN, 2PN and 3PN terms to the ener
expressed as a fraction of the Newtonian energy, vsmV. Circular
orbits are assumed. Shown are the equal mass case (h51/4) and
the point-mass limit (h50).
1-15
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the 1PN terms are essentially insensitive toh, and the 2PN
terms are only 15% smaller for equal masses than for
test-mass limit, the 3PN terms are suppressed for e
masses by more than a factor of 10 compared to the
mass limit. As Blanchet@16,17# has argued, this suggests th
the 3PN approximation may be quite accurate
comparable-mass systems, without the need for sophistic
resummation techniques. At the largest angular velocity c
sidered, 3PN terms contribute less than one per cent of
total binding energy and angular momentum of the orbit.

Next we consider the effects of tidal and rotational dist
tions. We consider systems of identical bodies (m15m2)
which are corotating (ṽ15ṽ25V). For neutron stars, we
adopt the maximum values of the apsidal constantsk2
53/4 andk353/8, see Appendix B 3!, and choose two rep
resentative values ofq5Ra /ma for neutron star models with
reasonable equations of state, namelyq54 andq56. The
results, plotted as a fraction of the Newtonian orbital term
are shown in Figs. 2 and 3, along with the PN contributio
for comparison. As expected, tidal effects are very sensi
to the stellar radii. Forq54, the l 52 tidal terms become

FIG. 2. Contributions of tidal and spin terms to the energy
corotating neutron star binaries, expressed as a fraction of the N
tonian energy, vsmV, for q5Ra /ma54. Circular orbits are as-
sumed. Shown are the PN contributions for comparison.

FIG. 3. Same as Fig. 2, withq56.
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comparable to the 2PN and 1PN terms only aroundmV
;0.09, while the l 53 terms are an order of magnitud
smaller. Forq56, thel 52 tidal terms exceed the 1PN term
already bymV;0.05, while thel 53 terms are small, ap
proaching the 2PN terms only at the largest allowedmV
;0.07, corresponding to the point at which these larger s
are touching. For irrotational stars (ṽ15ṽ250), the tidal
effects are very similar.

These curves illustrate that tidal effects need to be ta
into account carefully in an accurate diagnostic for neut
star binaries, but are not so large that they invalidate
approximation scheme. Their modest size also supports
use of Newtonian theory to calculate them. They only b
come problematical for the largest neutron stars near the
endpoint of their inspiral. It should also be pointed out th
in making these estimates, we have adopted the largest
ues of the apsidal constants, corresponding to unifo
density stars. While neutron stars are not as centrally c
densed as, say, nondegenerate stars, they are also not un
density, so thekl may well be smaller than their maximum
values. For example, for a Newtonian polytrope,p5krG,
with G52, k250.26, so theq56 tidal terms in Fig. 3 are
reduced by a factor of three, bringing them to a level at
below the 1PN terms over the whole range ofmV. On the
other hand, very little, if anything, is known about the valu
of kl for general relativisticneutron stars over a range o
equations of state. This is a subject that we are curre
investigating.

Figure 4 shows the effects of tides for corotating blac
hole binaries. There we chooseq51 (R5m in harmonic
coordinates!, k253/4 andk353/8 ~for slowly rotating black
holes,k2 from rotational distortions happens to be precise
3/4; see, e.g.@37#!. We see, not surprisingly, that tidal effec
are utterly negligible over the entire range ofmV.

Finally, we examine spin effects. Again we consider ide
tical, corotating bodies. For neutron stars, we assume
Sa5I aV, with the moment of inertia given by that for
uniform density body,I a5(2/5)maRa

25(2/5)q2ma
3 . The re-

sults are shown also in Figs. 2 and 3. Forq54, spin-orbit
effects are small but significant, just below the 2PN term

r
w-

FIG. 4. Same as Fig. 2 but for corotating black-hole binari
with q51.
1-16
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while spin-spin effects are negligible. Forq56, spin-orbit
terms exceed 2PN terms bymV;0.04 and become compa
rable to the 1PN terms by the maximum angular veloc
while spin-spin terms barely exceed the 3PN effects.

For black holes, we use the fact thatSa54ma
3V. Figure 4

shows that the spin-orbit terms lie between the 2PN and 3
contributions and thus must be included, while spin-s
terms are negligible~though larger than the tidal terms!.

B. Corotating, identical black holes

For black hole binaries, we ignore tidal and spin-spin
fects. We setm15m2 , h51/4, andṽ15ṽ25V. We exploit
the fact that there exist exact formulas for the energy
spin of isolated Kerr black holes in terms of the irreducib
en

a
ra

o
in

10402
,

N
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d

mass, M5M irr /@124(M irrv)2#1/2, S54M irr
3 v/@1

24(M irrv)2#1/2. The total energy and angular momentum
the system are then given by

ETot5ESelf1EHarm1EN,Corr1ESpin,

JTot5S1JHarm1JN,Corr1JSpin, ~4.1!

where

ESelf5mirrF11
1

2
~mirrV!21

3

8
~mirrV!41•••G , ~4.2a!

S5mirr
3 VF11

1

2
~mirrV!21

3

8
~mirrV!41•••G , ~4.2b!
EHarm52
1

8
mirr~12e2!zF12

1

48
~372e2!z2

1

384
~10692934e21129e4!z2

1S 1

331776
~1427365118249e226225e4223005e6!2

41p2

384
~52e2! D z3G , ~4.2c!

JHarm52
1

4
mirr

2
1

Az
F11

1

24
~372e2!z1

1

384
~10691234e22127e4!z2

2S 1

82944
~2854732181851e21205683e412311e6!2

41p2

96
~11e2!D z3G , ~4.2d!
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EN,Corr52
5

48
mirr~12e2!~mirrV!2z, ~4.2e!

JN,Corr5
5

24
mirr

2 ~mirrV!2/Az, ~4.2f!

ESpin5
1

12
mirr~12e2!~722e2!~mirrV!z5/2, ~4.2g!

JSpin52
5

24
mirr

2 ~51e2!~mirrV!z, ~4.2h!

wheremirr is the total irreducible mass of the system, giv
by (mirr)11(mirr)2. In Eqs. ~4.2a! and ~4.2b!, we have ex-
panded the Kerr formulas forM and S in powers ofmirrV,
assumed to be small compared to unity, keeping as m
higher-order terms as needed to reach a precision compa
to our 3PN formulas. To obtainETot and JTot at a turning
point as functions ofV, we substitutez5(mirrVa)2/3/(1
2e)4/3 or z5(mirrVp)2/3/(11e)4/3 for apocenter or peri-
center, respectively~in calculatingEN,Corr and JN,Corr, we
have already changed the dependence inz from the total
mass of the rotating bodies to the total irreducible mass
the nonrotating counterparts!. These are the formulas used
ny
ble

f

@24# to compare with the numerical HKV quasiequilibrium
solutions of Grandcle´mentet al. @18#. WhenETot andJTot are
scaled bymirr and mirr

2 respectively, there remains only on
free parameter, the eccentricity of the orbit, and we fou
@24# that a substantially better fit to the numerical data w
obtained for nonzero values ofe, of the order of 0.03, with
the system at apocenter, than fore50. We suggested tha
such apparent eccentricity could be a result of the inevita
approximations~such as the conformally flat approximation!
and numerical errors in such initial-data models, but, in
absence of detailed estimates of the sizes of those erro
was difficult to draw firm conclusions. On the other han
those engaged in numerical models of black hole bina
could use our diagnostic as a guide to know when, sa
suitable circular orbit has been achieved, or whether furt
numerical experiments with different grid sizes or larg
computational domains are necessary to reach the de
physically meaningful state.

C. Corotating, identical neutron stars

For neutron stars, we must include tidal effects. We
m15m2 , h51/4, andṽ15ṽ25V; we let the apsidal con-
stants and radius factors be common for both stars, given
k2 , k3, and q, respectively, and express all quantities
1-17
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terms of the total massm05(m0)11(m0)2 of two nonrotat-
ing stars with the same equation of state. We also define
each star the coefficientaa5I a /maRa

2 , and also assume it to
be common for both stars. The result is

ETot5ESelf1EHarm1EN,Corr1ESpin1ETR,Orbit1EDistort,

JTot5S1JHarm1JN,Corr1JSpin1JTR,Orbit1JDistort,
~4.3!

where the 3PN point-mass expressionsEHarm and JHarm are
given in Eqs.~4.2c! and ~4.2d!, and where

ESelf5m01
1

8
aq2m0~m0V!2, ~4.4a!

S5
1

4
aq2m0

2~m0V!, ~4.4b!

EN,Corr52
5

192
m0~12e2!aq2~m0V!2z, ~4.4c!

JN,Corr5
5

96
m0

2aq2~m0V!2/Az, ~4.4d!

ESpin5
1

48
m0~12e2!~722e2!aq2~m0V!z5/2, ~4.4e!

JSpin52
5

96
m0

2~51e2!aq2~m0V!z, ~4.4f!

ETR,Orbit5
1

32
m0~12e2!F1

9
~32e2!q5k2~m0V!2z3

1
1

6
~9110e223e4!q5k2z6

1
1

24
~13149e217e425e6!q7k3z8G , ~4.4g!

JTR,Orbit5
1

32
m0

2F2

9
~31e2!q5k2~m0V!2z3/21

2

3
~3110e2

13e4!q5k2z9/21
2

3
~117e217e41e6!q7k3z13/2G ,

~4.4h!

EDistort5
1

48
m0q5k2~m0V!2@~m0V!21~12ee!3z3#, ~4.4i!

JDistort5
1

144
m0

2q5k2~m0V!@4~m0V!213~12ee!3z3#.

~4.4j!

We illustrate the use of this diagnostic by comparing w
numerical data recently reported by Milleret al. @25#. They
constructed a sequence of general relativistic, quasiequ
rium configurations of corotating neutron stars, in the co
10402
or

b-
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formally flat approximation. They used a polytropic equati
of state withG52. Among other quantities, they report a
‘‘effective’’ binding energy, given by Eb5@MADM
22MNS(V)#/M0, as a function ofM0V, whereMADM is
the total ADM mass of the configuration, andMNS(V) is the
ADM mass of a uniformly rotating isolated neutron star
the same baryonic massM0, as each star in the binary con
figuration, but rotating with angular velocityV. Since the
rotational kinetic energy of the stars is already removed,
can compare the numerical results with the PN diagno
EDiag5@ETot2ESelf#/m0. Since ourm0 is twice the ADM
mass of a nonrotating neutron star, we must scaleEb by
M0/2MADM-NS , whereMADM-NS is the ADM mass of an iso-
lated, nonrotating neutron star. In the models of Milleret al.,
MADM-NS5M0/1.067. We also need to fix the coefficientsq
and a. From data provided by Miller,1 the radius of each
isolated nonrotating star in isotropic coordinates is given
RI56.77MADM , while the baryonic moment of inertia, ca
culated using isotropic coordinates, is given byI 0

59.412M0
3. We work in harmonic coordinates, but sinc

RH5RI(11MADM
2 /4RI

2), the difference between the two co
ordinates is only of order 1/2%, so we read offq56.77. The
ADM moment of inertia can be identified asI ADM

5(MADM /M0)I 0 5 9.412MADMM0
2 5 9.412(1.067)2MADM

3 .
Thus we can read offaq259.412(1.067)2 and hencea
50.234, or around half of the uniform-density value of 2/
~Miller also calculates the same quantities in terms of c
cumferential, or Schwarzschild radius; after transforming
harmonic coordinates, the results forq anda are consistent
with these to within a few percent.!

Inserting these values ofq anda into our diagnostic, we
compare various PN configurations with those reported
Miller et al., as shown in Fig. 5. The numerical results a
shown as ‘‘1 ’’ with error bars, estimated by Milleret al.
from the results of a range of convergence tests. Four cu
show the energy for circular orbits, for various values of t
apsidal constants. Neither the uniform-density valuesk2
53/4, k353/8), nor the point mass values (k250,k350)

1Private communication.

FIG. 5. Comparison of PN diagnostic with numerical initial-da
models of@25#.
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gives a good fit at all, except at low angular velocities~large
separations! where tidal effects are smaller, and all circula
orbit curves converge toward the numerical result. Mod
with half the uniform-density values fork2 andk3 give mar-
ginal fits. However, a very good fit is achieved with valu
k250.260 andk350.106; these are precisely the values
Newtonian G52 polytropes ~Appendix B!, which is the
equation of state used in the Milleret al. numerical models.
Also shown is a model with the sameG52 apsidal con-
stants, but with a nonzero eccentricitye50.02 and with the
system at apocenter. This marginally fits the numerical d
within the error bars, but consistently gives lower~more
negative! energies.

We conclude that these quasiequilibrium neutron-star c
figurations are fit to better than one percent by our PN di
nostic with a circular orbit, and with physically reasonab
tidal terms.

In future work we plan to compare this diagnostic wi
results of other numerical models of quasiequilibrium bla
hole and neutron star binaries. Our 3PN equations of mot
together with tidal and spin terms, augmented by radiat
reaction terms, can also be used to develop a ‘‘dynamic
diagnostic, to compare with numerical simulations of evo
tions from the quasiequilibrium initial data@25,38#.
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APPENDIX A: NEWTONIAN TIDAL AND ROTATIONAL
EFFECTS

1. Distorted equilibrium configurations

To derive the effects of tidal and rotational flattening, w
will adopt standard methods from Newtonian theory for
nary systems, such as those detailed by Kopal@26,27#. We
assume that the time scale for changes in perturbing qu
ties ~such as the external tidal potential, seen either from
global inertial frame, or from the rotating frame of a give
body! is sufficiently long that each body can be assumed
be in hydrostatic equilibrium. In other words, we will igno
dynamicaltides@39#. This is a reasonable assumption as lo
as we are focusing on quasiequilibrium initial data. Consi
one of the bodies in the binary system. From the equatio
hydrostatic equilibrium,¹p5r¹C, wherep, r and C are
the pressure, density and total gravitational potential, res
tively, we conclude that¹r3¹C50, and thus that surface
of constantr andC coincide. We label surfaces of consta
r by the radial parametera, and let the equation of thos
surfaces have the form

r ~a,u,f!5aF11(
l ,m

f lm~a!Ylm~V̂ !G , ~A1!
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whereYlm(V̂) are spherical harmonics corresponding to t
direction V̂, and where the dimensionless distortion fun
tions f lm have the propertyf lm* 5(21)mf l ,2m .

On general grounds we expectf lm;(R/r ) l 11

;ql 11(m/r ) l 11 for tidal effects, and, forl 52, f 2m;v2/r
;(R/r )3;q3(m/r )3 from rotational effects. The effect o
these distortions on the external potential of a body is
order f lm(R/r ) l;q2l 11(m/r )2l 11. For l 52, this means ef-
fectively 5PN order;l 53 effects would be effectively 7PN
order, and so on. However, for neutron stars, withq;4 and
m/r;0.1, an l 52 distortion effect becomes numerical
comparable to a 2PN term, whilel 53 is comparable to a
3PN term. For black holes, withq,1, the effects are much
smaller. Thus, in the end, we will keep onlyl 52 and l 53
distortion terms. Also, non linear corrections tof lm would be
of order (R/r ) l 11;ql 11(m/r ) l 11 smaller than the dominan
linear effects, and thus, effectively of 8PN order forl 52 ~for
neutron stars, these nonlinear corrections would be num
cally smaller than 3PN!. The exception to this is in the inter
nal gravitational energy of each body, where a quadratic c
tribution yields (m2/R) f lm

2 ;(m2/r )(R/r )2l 11, which is
comparable to the other effectively 5PN contributions fol
52.

We begin, however, with a general analysis, keepinglm
arbitrary, and working to second order in the small quantit
f lm . Later ~Appendix B! we will specialize tol 52 and l
53 linear perturbations. To second order, it is straightf
ward to show that, for anyn,

r n5anH 11n(
l ,m

@ f lm~a!1~n21!Xlm#Ylm~V̂ !J ,

~A2!

where

Xlm[
1

2 (
ab;gd

Cab;gd
lm f ab f gd , ~A3!

and Cab;gd
lm is defined in terms of Clebsch-Gordan coef

cients,

Cab;gd
lm 5A~2a11!~2g11!

4p~2l 11!
S a g l

0 0 0D S a g l

b d mD .

~A4!

Note that the various angular momentum quantum numb
are connected by the constraintsl 5a1g,a1g22, . . . ,ua
2gu, and m5b1d; the Cab;gd

lm are symmetric under
(ab)
(gd). Also note thatX005(16p)21/2(ab f ab f ab* .

We expand the gravitational potentialU of the body and
the disturbing potentialV in the form

U5(
lm

4p

2l 11
E r~x8!

r ,
l

r .
l 11

Ylm* ~V̂,!Ylm~V̂.!d3x8,

V5d̃r 21(
lm

4p

2l 11
dlmr lYlm~V̂ !, ~A5!
1-19
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where the subscript. (,) corresponds to the large
~smaller! of r and r 8. The disturbing potential consists of
part, with disturbing coefficientsdlm , that corresponds to a
potential with ¹2V50, such as the gravitational potenti
from another body, or the Laplacian-free part of a centrifu
potential, plus the spherical part of a centrifugal potent
with coefficient d̃. We now substitute Eqs.~A1! and ~A2!
into ~A5!, convert all expressions fromr to a, and demand
that, forl 50, the external gravitational potential of our bod
have the formU5m/r ~i.e. the perturbation does not chan
the mass of the body!, and that, forlÞ0, the total potential
U1V be constant at a givena. The first can be satisfied i
f 0012X0050, while the second holds if, forlÞ0,

a2 l 21Flm~a!1alElm~a!2
2l 11

4p

m~a!

a
f lm~a!1aldlm

5 (
ab;gd

8
2l 11

2a11
Cab;gd

lm f gd@~a11!a2a21Fab~a!

2aaa
„Eab~a!1dab…#2

2l 11

2p

m~a!

a
Xlm~a!

22~2l 11!d̃a2f lm , ~A6!

where

m~a!5E
0

a

4pr~a!a2da,

Flm~a!5E
0

a

r~a!da
d

da
@al 13

„f lm1~ l 12!Xlm…#,

Elm~a!5E
a

A

r~a!da
d

da
@a22 l

„f lm1~12 l !Xlm…#,

~A7!

andA denotes the surface of the body. The left-hand side
Eq. ~A6! is first order in f lm , while the right-hand side is
second order. Dividing the first-order terms byal , differen-
tiating with respect toa and multiplying bya2l 12, we obtain
the first-order result

Flm~a!5
m~a!al

4p
@~ l 11! f lm2a flm8 #, ~A8!

where prime denotes differentiation with respect toa. Sub-
stituting this and the first-order solution of Eq.~A6! back
into the right-hand side of Eq.~A6!, it is straightforward to
show that the term involving(ab;gd8 reduces tom(a)(2Xlm

2aXlm8 )/4pa, to second order. The basic equation for t
distortion functionsf lm can then be written in the form of a
integral equation
10402
l
l,

f

2l 11

4p
m~a! f lm~a!2a2 lE

0

a

r~al 13f lm!8da

2al 11E
a

A

r~a22 l f lm!8da5al 11dlm1Rlm~a!,

~A9!

where Rlm contains all contributions quadratic in sma
quantities:

Rlm~a!5
2l 11

4p
am~a!Xlm8 12~2l 11!d̃a2f lm

1~ l 12!a2 lE
0

a

r~al 13Xlm!8da

2~ l 21!al 11E
a

A

r~a22 lXlm!8da. ~A10!

Combining Eq.~A9! with various derivatives of it, one
obtains the following useful equations, evaluated at the s
facea5A of the star:

~ l 11! f lm~A!2A flm8 ~A!1Plm

5
4p

m
A2 lE

0

A

r@al 13
„f lm1~ l 12!Xlm…#8da, ~A11a!

l f lm~A!1A flm8 ~A!2Qlm5
4p

m
Al 11dlm , ~A11b!

wherem5*0
A4pra2da, and

Plm5A2Xlm9 ~A!2 lAXlm8 ~A!

1
8p

m
d̃A2@A flm8 ~A!2~ l 21! f lm~A!#,

Qlm5A2Xlm9 ~A!1~ l 11!AXlm8 ~A!]

1
8p

m
d̃A2@A flm8 ~A!1~ l 12! f lm~A!#. ~A12!

Another combination of first and second derivatives
Eq. ~A9! yields a second-order differential equation forf lm ,
sometimes called Clairaut’s equation:

a2f lm9 1
8pra3

m~a!
~a flm8 1 f lm!2 l ~ l 11! f lm

5
4p

m~a!
@a2R lm9 2 l ~ l 11!Rlm#. ~A13!

For a given density distributionr(a), this equation can be
solved, subject to the boundary conditions thatf lm be regular
at a50, and that, at the surface,f lm satisfy Eq.~A11b!.
1-20
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2. Energy and angular momentum of the system

Given a solution for the distortion functionsf lm(a), we
can calculate all the quantities needed for the equation
motion and the energy and angular momentum of the or
The external potential of our body, for example, is given

U5
m

r
1(

lm

8
4p

2l 11

Ylm~V̂ !

r l 11

3E
0

A

r@al 13
„f lm1~ l 12!Xlm…#8da

5
m

r
1(

lm

8
4p

2l 11

Ylm~V̂ !

r l 11

mAl

4p
@~ l 11! f lm~A!

2A flm8 ~A!1Plm#

5
m

r
1(

lm

8
8p

2l 11

A2l 11

r l 11
klmdlmYlm~V̂ !, ~A14!

where(8 denotes summation forlÞ0, and where we define
the ‘‘apsidal constant’’klm by

klm[
1

2

~ l 11! f lm~A!2A flm8 ~A!1Plm

l f lm~A!1A flm8 ~A!2Qlm

. ~A15!

The total gravitational energy of the system is given by

W52
1

2E E r~x!r~x8!

ux2x8u
d3xd3x85W111W121~1
2!.

~A16!

The self-energyW11 of body 1 can be written

W1152(
lm

4p

2l 11E0

R

rr 12 ldrdVYlm~V̂ !

3E
0

r

r8r 8 l 12dr8dV8Ylm* ~V̂8!. ~A17!

Substituting Eqs.~A1! and~A2! we find no contribution lin-
ear in f lm . To second order, we obtain

W1152E
0

Am~a!

a
dm~a!

1(
lm

8
1

2l 11E0

A

r~a!m~a!ada@a2u f lm8 u212a flm* f lm8

1~ l 21 l 21!u f lmu2#. ~A18!

Since the second term is already second order, we can
grate by parts and use the first-order versions of Eqs.~A11!
and ~A13! to obtain the alternative form
10402
of
it.

te-

W1152W1(
lm

8
4p

2l 11
A2l 11udlmu2klm , ~A19!

where we define the self-gravitational binding energyW of
the undistorted configuration by

W5E
0

Am~a!

a
dm~a!. ~A20!

In W12, we substitute the external potential of body 2 eva
ated inside body 1, to obtain

W1252
1

2
E

1
rd3xS m2

y2

1( 8
lm

8p

2l 11

A2
2l 11

y2
l 11

3dlm
(2)klm

(2)Ylm~ ŷ2!D , ~A21!

wherey25x2x2 , klm
(2) is the apsidal constant of body 2, an

dlm
(2) is the coefficient of the disturbing potential acting o

body 2. Since the interaction energy is smaller than the
energy by a factor ofR/r , we only need to keep terms linea
in the deformationsf lm or the disturbing coefficientsdlm ;
consequently we carry out a multipole expansion of 1/y2 in
the first term in Eq.~A21!, then convert fromr to a using Eq.
~A1!, but we evaluate the second term at the center of m
of body 1 and do the lowest-order spherical integral. Effe
tively, we are ignoring multipole-multipole coupling betwee
the bodies, which can be shown to lead to effects of or
(A/r )2l 11(A/r )2n11;(m/r )10, or 10PN order forl 5n52.
The result is

W1252
1

2

m1m2

r
2(

lm

4p

2l 11
~m1A2

2l 11dlm
(2)klm

(2)

1~21! lm2A1
2l 11dlm

(1)klm
(1)!

Ylm~n!

r l 11
, ~A22!

where nowr 5ux12x2u andn5(x12x2)/r . Combining Eqs.
~A19! and ~A22!, the final result is

W52W12
1

2

m1m2

r
1(

lm

4p

2l 11
A1

2l 11dlm
(1)klm

(1)

3S dlm*
(1)22~21! l

m2

r l 11
Ylm~n!D 1~1
2!, ~A23!

where, under the interchange,n→2n.
The kinetic energy of the system is given byT

5*rv2d3x. Splitting the velocity of an element of fluid into
center-of-mass, rotational, and random parts, and noting

(
m

Ylm* ~n!Ylm~n8!5
~2l 11!!!

4p l !
n^L&n8^L&5

2l 11

4p
Pl~n•n8!,

~A24!
1-21
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wheren̂^L& denotes an STF product ofl unit vectors~a capi-
talized superscript denotes a multi-index!, the product
n^L&n8^L& denotes contraction on all indices, andPl is a Leg-
endre polynomial, we may write

T5
1

2
m1v1

21TThermal
(1) 1

1

3
v1

2E
0

R1
rr 2drdV

3S 12
4p

5 (
m

Y2m~ l̂1!Y2m* ~V̂ ! D 1~1
2!, ~A25!

wherel̂15v1 /v1. Converting fromr to a using Eq.~A1!,
recalling thatf 00522X00, and noting thatv2 is already of
first order in disturbing quantities, we obtain, to second or
in small quantities,

T5
1

2
m1v1

21TThermal
(1) 1

1

2
I 1v1

2

2
8p

15
v1

2A1
5(

m
d2m

(1)k2m
(1)Y2m~ l̂1!1~1
2!,

~A26!

whereI 15(2/3)*0
A14pra4da.

The angular momentum of the system is given byJi

5e i jk*rxjvk. Using the same split of the velocities, we o
tain, to the analogous order of precision,

Ji5m1~x13v1! i1I 1v1
i 22v1

j A1
5(

m
d2m

(1)k2m
(1)Z2m

^ i j &1~1
2!,

~A27!

where we define the symmetric trace free~STF! tensor

Zlm
^L&[E Ylm~V̂ !n̂^L&d2V, ~A28!

with the following properties:

(
m

Ylm* ~ l̂ !Zlm
^L&5l̂^L&,

l̂LZlm
^L&5

4p l !

~2l 11!!!
Ylm~ l̂ !. ~A29!

3. Equations of motion

The Newtonian equations of motion for body 1 are giv
by

a1
i 5

1

m1
E

1
rd3xE

2
r8¹ i

1

ux2x8u
d3x8. ~A30!

We write x5x11 x̄ and x85x21 x̄8 and expand in a Taylo
series aboutx1 and x2. We define the STF multipole mo
mentsI a

^Q&5*ar x̄^Q&d3x with I a
05ma andI a

j 50. Finally, we
calculate the relative accelerationai5a1

i 2a2
i . After some

manipulation, we obtain the general result
10402
r

ai52
mxi

r 3
1m(

l 52

` 1

l !
S I 1

^L&

m1

1~21! l
I 2

^L&

m2
D ¹ iLS 1

r
D

1m(
l 54

`

(
p52

l 22
~21! l 2p

p! ~ l 2p!!
S I 1

^P

m1

I 2
L2P&

m2
D ¹ iLS 1

r
D ,

~A31!

where m5m11m2 and the products of the multipole mo
ment tensors are to be symmetrized on all indices and m
trace-free. For our distorted bodies, the STF multipole m
ments can be shown to be given by

I 1
^L&52A1

2l 11(
m

dlm
(1)klm

(1)Zlm
^L& . ~A32!

With the coefficients dlm;m/r l 11, we have that I ^L&

;mA2l 11/r l 11, and therefore the multipole-multipole cou
pling term in the equation of motion~A31! is of order
(m/r 2)(A/r )2q12; sinceq>4, this is 10PN and higher. As
before, we ignore multipole-multipole terms.

4. Multiple disturbance sources

We will want to consider both tidal disturbances as w
as rotation-induced disturbances. To see how this affects
general results, we note that the nonlinear corrections to
Clairaut equations never play a role to the order of accur
we require, only the linear functionsf lm , satisfying linear
differential equations, are needed in the end. Letf lm5glm
1hlm , where each disturbance function satisfies the line
ized Clairaut equations~A13!, with a boundary condition for
each determined by the linearized Eq.~A11b!. From the
structure of the formulas for the external potentialU, the
kinetic energy, the angular momentum, and the multip
moments, it is clear that the coefficientdlmklm can simply be
replaced bydlm

(g)klm
(g)1dlm

(h)klm
(h) , wheredlm

(a) is the amplitude
of the disturbing function for that disturbance, andklm

(a) is the
corresponding apsidal constant, determined from the lin
ized Eq.~A15!. However because it has a contribution qu
dratic in disturbing functions, the gravitational self-ener
W11 requires some care. Returning to the expression~A18!,
substitutingf lm5glm1hlm and carrying out the integration
by parts, using the linearized Clairaut equations satis
separately byglm andhlm , one can show that the coefficien
udlmu2klm must be replaced by the coefficientudlm

(g)u2klm
(g)

1udlm
(h)u2klm

(h)1klm
(g)dlm

(g)dlm*
(h)1klm

(h)dlm
(h)dlm*

(g) .

APPENDIX B: ROTATIONAL AND lÄ2,lÄ3 TIDAL
DISTORTIONS

1. Disturbing coefficients and apsidal constants

We focus on the lowest-orderl 52 and l 53 tidal terms.
The gravitational potential at a pointx8 in body 1 due to
body 2 is given by

V5m2(
lm

4p

2l 11

r 8 l

r l 11
~21! lYlm* ~n!Ylm~V̂8!, ~B1!
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where we ignore the contributions toV from the distortions
of body 2 ~ignore multipole-multipole coupling!. We thus
obtain the tidal coefficient for body 1,

dlm
T(1)5m2~21! lYlm* ~n!/r l 11, ~B2!

with the coefficient for body 2 obtained by interchang
Working to linearized order, we can factor out the azimut
m dependence by definingf lm

T 5 f l
TYlm* (n̂), then the Clairaut

equation and the outer boundary condition for body 1 ta
the form

a2f l
T91

8pra3

m~a!
~a fl

T81 f l
T!2 l ~ l 11! f l

T50, ~B3a!

A1f l
T8~A1!1 l f l

T~A1!54p~21! l
m2

m1
S A1

r D l 11

. ~B3b!

Note that the apsidal constant depends only onf l
T , and is

thus independent ofm, so

kl
T(1)5

l 112h l
T~A1!

2l 12h l
T~A1!

, ~B4!

with a corresponding expression for body 2, where

h l
T[

d~ ln f l
T!

d~ ln a!
. ~B5!

Note that the overall scale off l
T has no effect on the apsida

constant, to linear order.
For a uniformly rotating body, the disturbing potential a

point x8 is the centrifugal potential

VRot5
1

2
v2@r 822~ l̂•x8!2#

5
1

3
v2r 822

4p

15
v2r 82(

m
Y2m* ~ l̂ !Y2m~V̂8!. ~B6!

Thus we read off the rotational coefficient for body 1

d2m
R (1)52

1

3
v1

2Y2m* ~ l̂1! ~B7!

with the coefficient for body 2 obtained by interchange~the
spherical coefficientd̃ only contributes at second order
small quantities!. Similarly defining f 2m

R 5 f 2
RY2m* (l̂), we

find that f 2
R also satisfies Eq.~B3a! for l 52, but with the

boundary condition

A1f 2
R8~A1!12 f 2

R~A1!52
4p

3

v1
3A1

3

m1
. ~B8!

The rotational apsidal constant is also independent ofm, and,
since the overall scale off 2

R(A1) is irrelevant, it is equal to
the l 52 tidal apsidal constant:k2

R(1)5k2
T(1)[k2

(1) . This
equality will not hold when nonlinear corrections are i
cluded ~it will also not hold in general relativity, when
frame-dragging and other relativistic effects are included!.
10402
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2. Energy, angular momentum and equations of motion

Substituting these results ford2m
T , d3m

T , and d2m
R , into

Eqs.~A23!, ~A26!, ~A27!, ~A31!, and~A32!, and making use
of Eq. ~A24!, we obtain

W52
mm

r
1H 2W11A1

5k2
(1)F1

9
v1

42
m2

2

r 6 G
2A1

7k3
(1)

m2
2

r 8
1~1
2!J , ~B9a!

T5
1

2
mv21H TThermal

(1) 1
1

2
I 1v1

21
1

3
A1

5v1
2k2

(1)

3F2

3
v1

22
m2

r 3
@3~ l̂1•n!221#G1~1
2!J , ~B9b!

Ji5m~x3v! i1H I 1v1
i 1

2

3
A1

5k2
(1)

3F2

3
v1

2v1
i 2

m2

r 3
~3niv1•n2v1

i !G1~1
2!J , ~B9c!

ai52
mni

r 2
2H m

m1

A1
5k2

(1)F6
m2ni

r 7
1

v1
2

r 4
@ni25ni~ l̂1•n!2

12l̂1
i l̂1•n#G18

m

m1

A1
7k3

(1)
m2ni

r 9
1~1
2!J , ~B9d!

I 1
^ jk&52A1

5k2
(1)S m2

r 3
n^ jk&2

1

3
v1

2l̂1
^ jk&D , ~B9e!

I 1
^ jkl &522A1

7k3
(1)

m2

r 3
n^ jkl &. ~B9f!

It is simple to show that the equation of motion~B9d! admits
the two conserved quantities

E* 5
1

2
mv22

mm

r

2H A1
5k2

(1)Fm2
2

r 6
2

1

3

m2v1
2

r 3
@3~ l̂1•n!221#G

1A1
7k3

(1)
m2

2

r 8
1~1
2!J , ~B10a!

J* i5m~x3v! i12m2A1
5k2

(1)v1
2B1

i ~ t !1~1
2!, ~B10b!

where B1
i (t)5* t(n3l̂1) i(n•l̂1)r 23dt, where we assume

that the various quantities entering the perturbing terms (A1 ,
1-23
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k2
(1) v1

i , l̂1 etc.! are constant in time to the order considere
By comparing Eqs.~B9c! and ~B10b!, we see that the tota
constant angular momentum can be written in the form

Ji5m~x3v! i1J1
i 1J2

i 1$2m2A1
5k2

(1)v1
2B1

i ~ t !1~1
2!%,
~B11!

where J1
i and J2

i are separately constant, defined byJ1
i

5I 1v̄1
i , where the constv̄1

i is given by

v̄1
i 5v1

i 1
2

3

A1
5k2

(1)

I 1

3F2

3
v1

2v1
i 2

m2

r 3
~3niv1•n2v1

i !23m2v1
2B1

i ~ t !G .

~B12!

Notice thatB1
i (t) is orthogonal ton andl1, and vanishes if

the body’s spin axis is perpendicular to the orbital pla
Calculating the total energyE5T1W from Eqs.~B9a! and
~B9b! and converting fromv1

i to the constantv̄1
i , we obtain

the final conserved energy, including tidal and rotational c
tributions

E5
1

2
mv22

mm

r
1H 1

2
I 1v̄1

22W1

2A1
5k2

(1)F1

9
v̄1

41
m2

2

r 6
2

1

3

m2v̄1
2

r 3
@3~ l̂1•n!221#G

2A1
7k3

(1)
m2

2

r 8
1~1
2!J . ~B13!

Modulo constants, this is identical toE* , Eq. ~B10a!.

3. Clairaut’s equation and the apsidal constants

To determine the tidal and rotational distortion effects
our binary system, it is sufficient to know the disturbin
forces~leading to the coefficientsdlm) and the apsidal con
stants. To linear order, the apsidal constants can be obta
from solutions of Eq.~B3a!, along with Eq.~B4!; this applies
to both tidal and rotational perturbations. Because the s
of f l is irrelevant to the value ofkl , it is useful to recast Eq
~B3a! into a first-order differential equation forh l , some-
times called Radau’s equation

ah l816D~h l11!1h l~h l21!2 l ~ l 11!50, ~B14!

where D54pr(a)a3/3m(a)5r(a)/ r̄(a), and where we
drop the superscriptsT or R. Near the origin, whereD→1,
the regularity of f l requires thath l(a)→ l 22 as a→0.
Given a density profile for a spherically symmetric config
ration provided by a chosen equation of state, one integr
Eq. ~B14! from the center to the surface, thereby obtaini
h l(A), and thuskl .
.

.

-

ed
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-
es

Exact solutions of Radau’s equation are known for spe
cases. For a homogeneous star, withr5const,D[1, it is
easy to show thath l5 l 22, and

kl
Homogeneous5

3

4~ l 21!
. ~B15!

For a point mass, withD50 except at the origin,h l5 l
11, and hence, as expected,kl

Point50. Generally, if the den-
sity nowhere increases outwards@i.e. if r8(a)<0], then
h l(A) satisfies the inequalitiesl 22<h l(A)< l 11. For
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