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Abstract

In Saffman’s work on the brownian motion of cylindrical particles in biological membranes
[7] is derived a logarithmic dependence of the diffusion coefficient on the radius of the particle.
It was shown experimentally [8] that Saffman’s solution no longer works for protein’s mobility
in liquid membranes. The experimental results suggest that the diffusion coefficient goes as
the inverse of the radius. Starting from a Stokes-Einstein like equation for the diffusion coeffi-
cient, we try to determine the characteristic length, parameter introduced heuristically on the
constant of proportionality between the diffusion coefficient and the inverse of the radius. It
requires knowing both diffusion and friction’s bilayer coefficients. We constructed and tested
an experiment to determine the friction coefficient of an amphiphilic bilayer. Although we were
able of determining the viscosity of some liquids with a good precision we couldn’t determine
the friction parameter.
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1 Introduction

Bacteria can resist to antibiotics through a process known as efflux. This process functions via
a dependent-energy mechanism (active transport) mediated by proteins which pump out the un-
wanted substances through the membrane. The required energy can be provided by transmembrane
electrochemical gradient of protons (MFS, RND, SMR families) or sodium ions (MATE family) or
by ATP hydrolysis (ABC family) [1]. The most frequently encountered pumps are of the RND-type
such as AcrB in Escherichia coli or MexB in Pseudomonas aeruginosa. We are mainly interested
in MexB pumps. This pump is constituted by three different proteins. OprM and MexB are, re-
spectively, the outer and inner membrane proteins and MexA the membrane fusion protein (Fig.1).

Because of the helical structure of these proteins, they can be treated as cylindrical objects
when studying diffusion processes. The hydrodynamic model of Saffman and Delbriick [7] for the
problem of a diffusing cylinder in a thin sheet of fluid matching its height, predicts the following
relation for the diffusion coefficient
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where p,, is the viscous coefficient of the membrane’s liquid, pu,, is the viscosity of the surrounding
liquid (typically water), h is the membrane’s thickness, R is the radius of the protein and ~ is the
Euler constant. Because there isn’t any analytical exact solution for the problem of the flow past
a cylinder, Saffman’s result constitutes a good approximation for the flow of a cylindrical object
through an amphiphilic membrane taking into account the effect of the surrounding fluid. An
experimental study of the mobility of proteins in membranes [8] showed that the dependence of
the diffusion coefficient D on the radius R is stronger than the slow logarithmic dependence. The
experimental data suggests that the coefficient D is inversely proportional to R and h. Y. Gambin
et al. [8] proposed the expression
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where the characteristic length A is introduced for dimensional reasons. They supposed that the

membrane’s viscosity was independent of A and its surface maintained flat over large distances.
The values of the characteristic length can only be roughly estimated because of the difficulty in

extracellular space

intracellular space

Figure 1: MexB RND-type pump.
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Figure 2: Representation of an amphiphilic molecule; ag: area of the head group, v: volume of the
molecule and [ is its height.[3]

determining the bilayer’s viscosity. It is supposed it can vary between 5 and 5000 A. Although it is
still too difficult to give it a meaning we think it can be related to the limits of validity of Saffman’s
hydrodynamic model. One can expect that in the limit R > A the Saffman’s-Delbriick analysis still
applies.

Our purpose is to determine the value of the characteristic length A. To achieve it, our work will
be made in two parts. The first consists in the construction of an experiment suitable to determine
the membrane’s viscosity u,, and in the second we will use photobleaching techniques, namely the
FRAPP (fluorescence recovery after photobleaching pattern), to determine the diffusion coefficient.
We emphasize the fact that the FRAPP experience is straightforward work on the contrary to the
viscosity which has never been done.

1.1 Amphiphilic structures

Surfactants are substances that can lower the surface tension of a liquid. They are usually organic
compounds made of amphiphilic molecules. These molecules are composed of a hydrophobic group
(tail) and a hydrophylic group (head) as shown in Fig.2. Their heads have affinity with water in
contrast to the tails. The surfactants can be classified according to the polarity of the heads. They
can be ionic or non-ionic if they are, respectively, charged or neutral, zwitterionic if they have
the ability of acquiring charge or carrying electric dipoles or even amphoteric, i.e., they can be
either ionic or non-ionic. Moreover, the molecule can acquire different shapes as a result of different
factors like pH, temperature, concentration, composition, etc. As a result different packings can
occur, from which different collective structures can be formed (Fig.3). They can be characterized
by the parameter v/lag, with v the volume of the molecule, [ is its height and ag is the area of the
head group. For conic structures or low v/lag spherical micelles (Fig.3a) are more probable to occur
while for v/lag ~ 1 the lamellar ones are favored (Fig.3b). The transformation of one structure
to another depends on different variables like temperature, the concentration of the species, the
solvent, etc. More generally, it is achieved by an additive called co-surfactant. In other words, it
means that if we fix the water and surfactant concentrations and add continuously co-surfactant
we will see appearing sequentially those structures (Fig.4) .

The structure that interest us most is the lamellar one. In fact, as we will see, the viscosity’s
experiment is based on the flow of a lamellar phase liquid. As we see in Fig.3b they are com-
posed of fine, alternating layers of amphiphilic molecules with a periodicity d. They are commonly
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Figure 3: Different amphiphilic structures. a) spherical micelles (conic shape); b) lamellar phase or
L, (cilindrical shape); c) sponge phase or Ls.

Cosurfactant

H>,O Surfactant

Figure 4: General phase diagram for an amphiphilic solution with water as solvent. Each vertex cor-
responds to 100% in volume. Typically these systems show the sequence: Lj(micelles)—L, (vesicular
phase)—L, (lamellar phase)—Ls, when we add consecutively co-surfactant.[5]

characterized by the fraction
0

¢ - da
which corresponds to the volume fraction of the bilayer as we can easily verify. A commonly used
system is composed of HoO\ C12E5 \ CgEq!. Here CgEo, or hexanol, is the co-surfactant and C12E5
is a non-ionic surfactant composed of a six carbons long tail and a PEG head. They can form
stable phases for a wide range of concentrations, which makes possible the study of different spaced
structures (Fig.5).

IThe C132E5 has the chemical formula: H-(OCH,H2);OCH2(CH2),,CHs
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Figure 5: Phase diagram of the system H30\ C12E5 \ CEg. The quantity p is the quotient between
the mass of CgEg and C12E5 for a temperature of 22°C. They are represented five different phases:
lamellar phase (L, ); sponge phase (Ls); lamellar phase with diphasic micelles (L,1); isotropic phase

(I).(see [6])-

1.2 Couette flow due to gravity

Figure 6: Shear cell with transversely oriented bilayers. a: lamelle of glass; b: amphiphilic bilayer;
c: water layer;

To determine the membrane’s shear viscosity we propose the idealized shear cell shown in Fig.6.
The flow is due to the action of the gravity. In addition to the inertial movement of the fluid, there
is also a stress f on the top of the flow due to the lamelle’s weight. We consider NV bilayers and

N — 1 water layers each of thickness d,, = % We define Au,, as the difference of velocity



between the two n!* amphiphilic layers and Awv, as the difference of velocity between the faces of
the n'" water layer (we count from the bottom). If we admit no slip boundary conditions we get

N N-1
Uy = Z Au,, + Z Avy, (1)
n=1 n=1

where Uj is the velocity of the lamelle. Using the Navier-Stokes equations we determine the water
flow pattern for the n'" layer

o(y) =~ gy? sin(0) + any + v(0)
Nw
where p,, is the water density, 71, is the water viscosity (8,90 x 10~ %Pa.s at 22°C), g is the gravity’s
acceleration (9,8 m/s?) and y is the transversal coordinate which goes from 0 to d,,. This way v(0)
is the velocity on the bottom of the water layer. To determine the constant a,, we use the relation

ov
T = nwa_ya

where 7 is the applied shear stress on the top of the water layer. As we can see from Fig.7 7 will be
given by the stress f, due to the lamelle, plus the stress induced by the weight of N —n — 1 water
layers and N — n bilayers which stand above,

Tn = [+ (N = n)(pwdw + pmh)gsin(0) — pydy,gsin(6),
where p,, is the membrane’s density. Consequently we find

ap = M(pwdw + pmh)gsin(f) + i

w Thw

Besides, we also know that Au, = %, where p is the two dimensional reduction of the viscosity

coefficient pi,,,, i.e, p = &=, and ¢, is the stress applied on the bilayer (Fig.7) which is equal to
Tn — Psin(f) = 7, — pmhgsin(f). This way we get

(N—-n-1)

Au, = (pwdw + pmh)gsin(0) + %

0

Figure 7: Representation of the forces that act on the layers. Here, R stands for the force induced
by the layers above on the n + 1** bilayer; P is the weight of a bilayer and 7 is the longitudinal
component of the stress vector on the n** water layer.



Inserting the last results into equation (1) we get

N
N-n-1
Uy = Z {u(pwdw + pmh)gsin(0) + i} +
ot K K
N-1 2
w N — dw
+ 30 |t gsinGs) + S+ pid 2
el Nw Nw Nw
N2 (1 dy . 1 dy
~ <— + —> (pwdw + pmh)gsin(f) + N (— + —) f
2 \p w B Nw

1 d L 1 d L?
= ([=+—= + =+ =) (pwdw + pmh) =————gsin(h).
(:U 77w> h+dwf (N nw)(p P )2(h+dw)2g ©)
In the last calculation we kept only the terms with higher order in N using the fact that N > 1

2. Moreover, if f is given by M4gsin(#), where M4 is the lamelle’s mass per unit area, we finally
obtain the expression

Up ( 1 n 1 ) (deA + (pude + prh) Ld, ) 1
- = - JE— (0.8 .
Lg sin(f)) ,Ltdw Nw h+ dw Puwtw prm 2(h + dw)2 Tleffective

If we take the limits 4 — oo and h — 0, we find

1 Lp,, .
Up=— (MA + L) Lgsin(0),
" 2
as we should get for a liquid without amphphilic bilayers.
The last expression can give us an idea of how the fluidity (
inter-distance.

1
Neffective

) behaves with the membrane’s
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Figure 8: Fluidity (W) versus d,.

21n fact if we use a distance L of the order 100um and bilayers with h, d of the order 10nm we find that N is of
the order 1 x 104 which ensures that assumption.



We observe two cases: if “h > 1 the effective viscosity decreases as d,, increases, but if uh
it increases until it reaches a max1mum at d, = d;, and then increases monotonlcally For the first
case we can estimate Lg+n(9)(dw = 0) which corresponds to the maximum effective viscosity we

can measure. We take p,, ~ 10%kg/m?, L ~ 1 x 10~*m, ph ~ 10~%kg/ms and M4 ~ 10~ 'kg/m?,
from which we get Min(LgSUiig(e)) ~ 100s,/m.
1.3 Determination of the diffusion coefficient

The FRAPP technique, or fluorescence recovery after photobleaching in pattern, is a conventional
method to study transport phenomena in biological membranes. It consists in photobleaching the
transporters, fluorescent molecules, this means make them to lose fluorescence ability, and then
following the recovery of fluorescence. As we will see, this recovery is related to the diffusion
coefficient by means of an exponential decay which depends on the pattern fringe used.

We assume that the transporters have a brownian motion, this is

0

atc( t) = DV2CO(7, ), (2)

where C(7,t) is the transporter distribution and D is the diffusion coefficient. After photobleaching
the fluorescence intensity is done by

Flt>0) = / CF DIt > 0)d5F, (3)

where I(7,t > 0) is the light’s intensity which is much smaller than the photobleaching one. We
assume an incident wave with intensity

I(7,t > 0) = Iy (1 + cos(qp.T)) - (4)
Passing to Fourier space we have
F(t>0)= /quC( t)I(=q,t>0), (5)
assuming at this point two dimensional diffusion. Solving equation (2) in Fourier space we find
C(d,t) = C(.0) exp(—Dq?t).

The Fourier transform of I(7,¢ > 0) is

H(=q.t>0)= I, (6(@7 L 0@ @) +0(d+ @’o)) |

Introducing these last results into expression (5) we get

Ft>0)=1I <C’(0, 0) + Cla. 0) +20( %,0) Xp(—Dq%t)) .

We see that independently of the initial distribution we will get an exponential decay which is
simply related to the pattern fringe (Fig.9). However, the initial distribution will have an important
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Figure 9: FRAPP recovery curve.

influence when trying to measure the exponential decay. To simplify the problem, we suppose that
the bleaching pulse is composed of planar waves normal to the z axis. The light intensity is given
by

I(’F) =1, (1 + COS(Q_’Q.F)) .

Although it is difficult to predict the initial concentration profile, we can admit, if the bleaching
time At is much shorter than the characteristic diffusion time, that the initial distribution is given
by
C(r,0) = Cyexp(—al(F)At)
= Coexp[—K (1 + cos(qp.7))],

with K = —al,At. We make a Fourier expansion

=0 Z An(K) exp(indo.7).

The coefficients A,, are given by
An(K) = (—1)" L (K) exp(~ K),
where I, (K) is a modified Bessel function. If we put these results into the expression (5) we find
F(t > 0)~ Ag(K) + A1 (K) exp(—Dgat) + ... + A, (K) exp(—Dn?¢3t) + . ..

The most important terms are given by Ag(K) and A; (K). If we do a plot of the functions Io(K)
and I (K) we realize that for small K, that is, for weak bleaching efficiency, the amplitude A; can
be much smaller than Ay, which difficults the measuring. We can solve this problem introducing a
modulated phase with a frequency which is recovered after amplification. In this case we have

I(7,t > 0) = Iy (1 + cos(go.7 + B(1)))

with ¢(t) = usin(wt). The expression for the fluorescence F'(t > 0) is periodic which allows us to

take its Fourier transform
n=—oo

F(t>0) Z fan(t) cos(2nwt),



where the coefficients fa,,(t) are given by

folt) = I (€(0,0)+ Jo()C(d, 0) exp(—Dait)
fon(t) = 2IoJon(w)C(d,0) exp(—Da5t),

where Jj, is a Bessel function of order k. We choose u for which J3(u) is a maximum. The fact
that we can only find frequencies multiples of 2w, constitutes, in practice, a good way to control
the quality of the measurements. The last results can be found in [4] and [2].

2 Experimental procedures

As we said earlier, our experience is divided in two parts. In the first we construct an experiment
to measure the membrane’s viscosity. If we have success we determine the diffusion coefficient using
the FRAPP technique.

2.1 Determination of the membrane’s viscosity

There are two important things we have to assure during the experience. First, the model we have
assumed (Fig.6) requires that the amphiphilic membranes be parallel to the lamelle. Because this
system is birefringent, if we use polarized light to illuminate it, we know that it will be well oriented
if there won'’t be any light after it passes a transverse analyzer. The other resides on the fact that
the solution contains hexanol which evaporates easily. Therefore we need to put the solution in a
hermetically closed box.

In Fig.10 is shown the experimental apparatus. After recording the lamelle’s movement with a
webcam we have used a program called Tracker® to analyze the video and determine the velocity
Up.

Using the microscope’s micrometer we can measure the thickness L by focusing on different
plans. We used two methods (Fig.11). The first method presents less error sources. Contrary to
the second, we don’t need to know the refractive index of the solution, value we assumed to be
approximately the water’s index. Unfortunately it has disadvantages too. Because the solution has
hexanol we can’t use glue to fix the hole. Hence we used the method a) for the silicone, while for
the amphiphilic solution we employed the second. For the first method the height L is given by

L=H-h
as can be easily seen in Fig.11a). For the second we used geometric optics to find

Nsolut
L = ngotue H — 2 h,
Nglass

where ngoryt 1S the refractive index of the solution. We experimented the two methods in the same
liquid and the results matched quite well.

3 Tracker is a video analysis package built on the Open Source Physics Java Framework. We can download it at
http://www.cabrillo.edu/~dbrown/tracker/

10



o IM: microscope

e l: circular lamelle

o L: rectangular lamelle

e c: PDMS
e s: solution 012E5 \ CGE() \ H20

e h: circular open hole

(b)

Figure 10: Experimental apparatus used for measuring the membrane’s viscosity. a) detailed char-
acterization of the liquid’s box; b) general apparatus, c: laptop, w: webcam;

11
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Figure 11: Methods used to determine the height L.

2.2 Preparation of the amphiphilic solution

We prepared solutions with different periods d, ranging from 40 to 200. Here is the formulae used
to prepare the solutions,

Vi,o = (1— ¢)100

¢
\% , = 100
C12E5 1+ py
Voge, = pvVesses,
where py is given by %’me. The value for p,, was chosen to be 0,29 because it gives us a wide
60

range of different distances d,,, as we see in Fig.5, and it was well studied in other works.

(%) 10 15 19 30 50

d(A) 200 133 100 60 40
C12E5(%Vol) 7,5 11,2 142 224 373
CeEo(%Vol) 2,5 38 48 76 127

H,O(%Vol) 90 8 81 70 50

Table 1: Prepared amphiphilic solutions.

2.3 Determination of the diffusion coefficient

In this experiment we use the same solutions we use to mesure the viscosity. In addition we put
some fluorescent substances, known as markers, that will play the role of the MexB pump proteins.
Using the FRAPP technique we can determine their diffusion coefficient.

In the Fig.12 is represented a schematic representation of the FRAPP experiment setup. The
photobleaching period is characterized by a short intense incident light which is not modulated.
After this period, the modulation unit is turned on and the intensity of the laser light is drastically
reduced. This modulation, based on the action of a piezoelectric, induces an oscillating phase with
frequency w on the pattern fringe. The sample’s fluorescence is then amplified by a photomultiplier
and the second harmonic with frequency 2w is then recovered by the lock-in amplifier.

12
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Figure 12: Schematical representation of the FRAPP setup. PM stands for photomultiplier.

3 Results

3.1 Viscosity

To have an idea of how accurate could be our measures, we did some tests using silicon oil. We
tried three silicones of viscosities 100, 500 and 1000 cP (1 centipoise (cP)=10"3Pa.s).
Using the Navier-Stokes equations we find

1 L
Up = Lo(Ma + ) sin(6),

where p is the silicone’s mass density and M4 is the lamelle’s mass per unit area. Next we present
the behavior of @ = ﬁ as function of sin(#) for the different oils.
2

The slope of the linear fit gives us 1. This way we can determine the viscosity.
We begin with the silicone with higher viscosity, 1000 cP. The data is presented, first, in Tab.2
and then as a graph with the correspondent linear fit in Fig.13.

13



sin(f); Asin(0)(%)=0,1 Q(m.skg ') AQ(%)

0,0056 0,0038 22
0,0111 0,0095 12
0,0167 0,0132 17
0,0222 0,0216 1
0,0278 0,0238 14
0,0334 0,0332 5
0,0445 0,0367 19

Table 2: Silicone 1000 cP; M4 = 0,37 + 5%kg/m?; p = 0,82 + 1%kg/m3

ml + m2 * MO

Value Error

ml | -0,0003224( 0,0018075

m2 0,8931 0,072859

Chisq| 2,8648e-5 MA

0,04 R 0,98375 A

o
0,035
o
0,03
0,025
Q(m.skg™t) /6
o
0,02
0,015
o
0,01 ¥
0,005
o

0

0,005 0,01 0,015 0,02 0,025 003 0,035 004 0,045

sin(0)

Figure 13: Silicone 1000 cP; Behaviour of @ as function of sin(9).

For this silicone we found a value of 1120 + 8% cP for the viscosity which agrees very well with
the expected value of 1000 cP. Moreover the fit passes very close to the origin as we expected
theoretically.

The results concerning the silicone with expected viscosity of 500 cP are presented in Tab.3 and
they are further plotted in Fig.14.

14



sin(f); Asin(0)(%)=0,1 Q(m.s.kg™ ') AQ(%)
0,0167 0,0286 17
0,0345 0,0546 21
0,0500 0,004 8
0,0655 0,1057 25
0,0831 0,1412 17

Table 3: Silicone 500 cP; M4 = 0,37 & 5%kg/m?; p = 0,82 + 1%kg/m?

ml + m2 * MO
Value Error
ml 0,0005231 | 0,0069651
mz2 1,6873 0,12648
Chisq 0,00012888 MA
0,18 R 0,00168 NA
0,14 o]
012
-1 8]
Q(m.s.kg™) 01
0,08
0,08
(o)
0,04
0,02
0,01 o002 003 004 005 006 0,07 008 0,09
sin(0)

Figure 14: Silicone 500 cP. Behaviour of @) as function of sin(9).

This time we get 593 + 7% cP for the viscosity. It is 19% far from the expected 500 cP. We also
get a value for the velocity at angle § = 0 very close to zero.
Next we present the results of the last silicone oil with 100 cP of expected viscosity.

15



sin(f); Asin(0)(%)=0,1 Q(m.skg ') AQ(%)

0,0111 0,0121 12
0,0167 0,0396 10
0,0222 0,5900 11
0,0334 0,1068 25
0,0445 0,1359 20
0,0556 0,2190 15
0,0667 0,2622 20

Table 4: Silicone 100 cP; M4 = 0,37 4 5%kg/m?; p = 0,82 + 1%kg/m?

ml + mz2 * MO

Value Erraor

ml -0,040339 | 0,0093754

m2 4,4643 0,231

0,3 Chisg 0,000659051 MA

R 0,99337 A

o
0,25
o
0,2
=il

Q(m.skg™ ") 0,15

ﬁ/ O
0,1

ol
7

0,01 0,02 0,03 0,04 0,05 0,06 0,07
sin(0)

Figure 15: Silicone 100 cP. Behaviour of @ as function of sin(#).

The fit gives us 224 + 5% cP for the viscosity. It constitutes a 55% deviation from the expected
value 100 cP.

The last results are resumed in Tab.5. They present almost the same accuracy but as long as we
mesure less viscous oils we get higher deviations. Nevertheless this range of viscosities 100— 1000 cP
is a good depart for the next experiences.

Next we present the results concerning the experiment with the amphiphilic solution. The
solutions with ¢ = 0,3/0, 5 showed a relatively high viscosity. We found that the orientation of the

16



Nexpected (CP)  Mexp. (CP) Deviation(%):M Precision error (%)

TNexpected
100 224 55 b}
500 593 19 7
1000 1120 12 8

Table 5: Experimental values for the silicone’s viscosity.

amphiphilic bilayers was more difficult for higher viscosities, which avoided their study. We also
found that the movement of the lamelle was not uniform showing a small deceleration in contrast
to the silicone case where it was uniform. As a consequence we tried to collect the movement’s data
as quick as possible.

We present in Tab.6 the experimental values of Uy as function of sin(f) for an amphiphilic
solution with ¢ = 0,19. They are further plotted with the associated linear fit (Fig.16).

$=0,19 d = 100A Limeq = 280 £ 5um
sin(6) Up=Vmed(pm/s) Error(%)
0,011 21 14
0,022 6,7 28
0,033 12,2 1]
0,045 20,9 50
0,056 35,9 8*

Table 6: Amphiphilic solution with ¢ = 0,19. The point marked with the * was not considered
because it was far from the linear fit.

17



ml + m2 * MO
Value Error
ml 5] 1,8182
m2 557,11 | 59,687
25 . _Chisg 4,4212 A -
i R| 098872 hA i
20 v SEEECEE —
L5 [ | ESE LY. TSRS R — .
Uop(pm/s) E
10 frmmmmmmm b oo Fommooo- -
5 -------- . . : --------- : -------- ]
" : : : :
0,01 0,02 0,03 0,04 0,05 0,06
sin(6)

Figure 16: Amphiphilic solution with ¢ = 0,19; Behaviour of the velocity Uy as function of sin(6).

We find an effective viscosity (Mefrec = %s;)n(m) of 1850 £ 17% cP.
In Tab.7 is presented the data for the amphiphilic solution with ¢ = 0,15. It is further plotted

with the correspondent linear fit (Fig.17).

0=0,15 d=133A Linea = 34+ 5pm
sin(f) Up=Vmed(pum/s) Error(%)
0,0111 12 8
0,0167 10,1 10
0,0222 14,2 10
0,0278 20,0 29

Table 7: Amphiphilic solution with ¢ = 0, 15.

18



ml + m2 * MO
Value Error
ml -5,8021 0,80319
m2 8258 39,335
Chisq| 0,47832 MA
20 R| 0,982 A /
18
16
14 L2
Uo(m/s)
12
10
8
5] /
4
0,01 0,015 0,02 0,025 0,03
sin(6)

Figure 17: Amphiphilic solution with ¢ = 0,15. Behaviour of the velocity Uy as function of sin(#).

This time we get Nefect = 134 + 25% cP.
Finally, in Tab.8 we show the results for the solution with ¢ = 0,10. In Fig.18 is represented a
plot with a linear fit.

$»=0,10 d=200A  Lpeq =52=+5um

sin(f)  Vmed(pum/s) Error(%)
0,0056 1.6 38
0,0111 15.6 11
0,0145 15,8 9
0,0167 23,8 23

Table 8: Amphiphilic solution with ¢ = 0, 10.
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ml + mz2 * MO
Value Erraor
ml -7, 7768 | 4,8061
ma 1834 | 378,86
Chisg 20,126 MA
25 R| 055588 MA
o
20
fe) o]

Uo(pm/s) 12

10

[a]

0
0,004 0008 0008 001 0012 0,014 0,016 0018

sin(6)
Figure 18: Amphiphilic solution with ¢ = 0,10. Behaviour of the velocity Uy as function of sin(#).

For this solution we obtained 7efrect = 103 + 35% cP.

The graphs show us that all the linear fits pass far from the origin although they present
good regression coefficients (R). In Tab.9 we express the behavior of the fluidity Lg+(r)1(9) and the
effective viscosity for the different solutions. From it we see that the results are less precise for
smaller viscosities in contrast to the silicone experiment where they were smaller and homogeneous.
Moreover, the values for LgsUiigl(G) are much smaller from those we expected which were of the order
100s/m. This gives us negative values for the membrane’s viscosity and the associated errors are
very small to cover positive values (Tab.10).

6 dX) F= Do (s/m) AF(%) temea(cP) An(h)

0,19 100 0,20 12 1850 17
0,15 133 2,77 19 134 25
0,10 200 3,60 30 103 35

Table 9: Fluidity versus ¢.
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6 du(A) jdu(10"Pas) _ A(uda)

0,09 100 -1,001 0,06% (1dyy )2
0,05 133 ~1,009 1,6%(judy)?
0,00 200 -1,010 3,03% (11dyy )2

Table 10: Membrane’s viscosity for different periods d.

3.2 Diffusion coefficient

Unfortunately we couldn’t determine the diffusion coefficient. The solutions on the capillaries took
too much time to get oriented. The FRAPP didn’t show any diffusion in the oriented regions. We
think that the fluorescent markers concentrated in non-oriented regions as a consequence of the
long waiting time.

4 Discussion & conclusion

The first experiences with the silicone show us that we can measure viscosities with a reasonable
accuracy. We get better results for higher viscosities, as we can easily verify in Tab.5. For example,
for the silicone 1000 cP we get a deviation of 12% which constitutes a pretty result if we get into
account the limitations of the experience. In fact, we know theoretically that for lower Reynolds
numbers the laminar flow is easily achieved, that is, the border effects are less important and the
inertial forces are negligible.

Regarding the amphiphilic solutions we find relatively different results. We see from the graphs
that the linear fits aren’t as good as the silicone ones. On the contrary to the silicone, we find that
the velocity at the origin is not zero as we would expect. Moreover, we found that the movement
of the lamelle was not uniform presenting a small deceleration. Although we couldn’t find an
explanation for the deceleration, we think that it was due to the fact that the liquid height was not
constant during the experiment. Most important is the fact that we find fluidities that are much
smaller (a factor of the order 100) than those we could expect theoretically (sec.1.2). As presented
in Tab.10 the values for p are negative and its error is to small to cover positive values. The errors
commited are too small, the order of 20%, to explain the discrepancy. Besides, the solution was
well oriented during the experience which make us believe in the model proposed above, that is, of
a periodic system of parallel amphiphilic bilayers. Probably the discrepancy is related to the fact
that the movement was not uniform.

In conclusion, we can say that this experience as it is constructed is not suitable to study the
membrane’s viscosity. Although we obtained good results in determining the silicone’s viscosity we
found for the membranes values that doesn’t match theoretically.
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