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Interactions between transmembrane proteins embedded
in a lamellar phase, stabilized by steric interactions
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PACS. 87.15.Kg – Molecular interactions; membrane-protein interactions.

PACS. 87.16.Dg – Membranes, bilayers, and vesicles.

Abstract. – We have investigated the distribution of the transmembrane myelin proteolipid
protein when inserted into an oil-swollen lamellar phase, stabilized by steric interactions. When
the hydrophobic membrane thickness, D, is larger than the hydrophobic length of the protein,
dπ, only repulsive interactions are found between proteins. The repulsive forces are of electro-
static nature, arising from charges carried by the protein. The interaction potential between
proteins, deduced from digitized freeze-fracture micrographs, is well fitted when the classical
screened electrostatic model is used. When D is smaller than dπ, an attractive force is observed
in addition to the repulsive electrostatic interactions. The attractive force originates from the
membranes fluctuations. The model of membrane-mediated interactions due to the membrane
thermal undulations permits us to describe our results when used in combination with the
electrostatic potential.

Introduction. – Artificial inclusion assemblies within surfactant bilayers have potential
applications in chemical and pharmaceutical industry [1, 2]. The correct design of such as-
semblies requires the understanding of the mechanism by which inclusions modify membrane
properties and how a membrane contributes to the interactions between inclusions. The forces
existing between them can be divided into two types: the direct and indirect interactions. The
first include the short-range hydration and structural forces, van der Waals forces, and also
Coulombic interactions. The second class includes long-range interactions mediated by the
membranes, which are responsible for the inhomogeneous lateral distribution of proteins. Re-
cently, it has been suggested that these significant long-range interactions are induced by two
main mechanisms. In the first mechanism, the mismatch between the membrane hydropho-
bic thickness and the hydrophobic length of the protein leads to a membrane deformation,
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Fig. 1 – a) Schematic cartoons of the system; b) the top figure is for D < dπ, the bottom figure is for
D > dπ. In the former case, the two monolayers of the membrane fluctuate cooperatively, whereas in
the latter case we expect the two monolayers to fluctuate independently.

in the vicinity of the inclusion. The deformation originates from a perturbation of the con-
stituting surfactant molecules around the inclusion, which tends to match its hydrophobic
length (stretching or shortening, tilting or change in the molecular area). The membrane
deformation induces lateral interactions between the inclusions, which have been theoretically
described [3,4] and experimentally observed [5,6]. A second mechanism, which neglects the mi-
croscopic properties of the membrane, was first modeled by Goulian et al. [7] for a single mem-
brane, and extended by Netz and Pincus [8] for a lamellar phase composed of a stack of mem-
branes. According to these authors, thermal undulations of the membrane give rise to an inter-
action between the proteins, whose potential falls off as r−4 for a single membrane [7], whereas
for a lamellar phase [8], the interaction potential exhibits Kelvin functions behavior [9], related
to the rigidity and curvature coupling between the proteins. The first coupling always gives an
attractive interaction, while the second one yields an undulating potential, repulsive at short
scales. At longer distances, this interaction is larger than electrostatic and van der Waals inter-
actions. In the present work, we report an experimental investigation about the interactions
between transmembrane proteins embedded in highly fluctuating membranes, and we give
evidence of the presence of attractive interactions due to the membrane thermal fluctuations.

We used a lamellar phase, composed of a stack of membranes, separated by water. Each
membrane is formed by two monolayers of the nonionic surfactant C12E4 (tetraethylene glycol
dodecyl ether) surrounding a layer of dodecane. Oil-swollen membranes have been used in
order to avoid interactions due to the membrane-protein mismatch. Indeed, in such a case,
the surfactant molecules avoid changes in conformation, since the oil fills out the gap between
the two monolayers, adapting the thickness of the membrane to the inclusion length (fig. 1).
The oil-swollen bilayer has also the advantage to yield a weak membrane rigidity (of the order
of 2 kBT [10]), ideal for the aim of this study. The lamellar phase used here (0.42 < φs < 0.49,
0.18 < φw < 0.20, and φd = 1 − φs − φw, where φs, φw, and φd are the volume fractions
of surfactant, water, and dodecane, respectively) was far enough from the border of any
phase transition in the phase diagram [11]. Moreover, we have checked that no macroscopic
transition occurs, and all small-angle X-ray scattering (SAXS) experiments performed on each
sample exhibited the well-characteristic peak of a lamellar phase, without additional peaks
from another phase. This fact was again confirmed by freeze-fracture electron microscopy.
The different dimensions of the lamellar phase were determined by SAXS. The interlamellar
distance, dB, was determined from the position of the maximum of the first Bragg singularity.
The membrane thickness, δ, was calculated from the classical dilution law δ = φsdB. The
thickness of the water layer, δw, was then δw = d − δ. Finally, the hydrophobic membrane
thickness was D = δ − 2 × Lh, where Lh is the length of the polar head (≈ 8 Å for C12E4).
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Fig. 2 – Two pictures extracted from the same micrograph for ρtheo = 0.5 × 10−3 nm2 and D < dπ.
The scale bar represents 34 nm and the little dots are proteins. a) In this picture, the membrane is
characterized by a lack of flatness and ρexp � ρtheo; b) the picture exhibits a flatness membrane with
ρexp � ρtheo.

The transmembrane protein is the myelin proteolipid, extracted from bovine brain as
described by Nicot et al. [12]. The proteolipid is a major transmembrane basic protein of
myelin, involved in demyelinating diseases [13]. It consists of four hydrophobic α-helices,
connected by charged hydrophilic peptide segments. We have previously reported [14] that
the protein is not denatured upon insertion into the nonionic lamellar phase: the helices are
located inside the swollen hydrophobic part of the membrane, while the hydrophilic segments
are solvated in water. Under the above experimental conditions, about 10 charged lipid
molecules remain tightly bound to one protein [15].

The interaction potential between transmembrane proteins can be extracted from the dis-
tribution of proteins within the membrane [6,16]. To this end, we have digitized freeze-fracture
electron microscopy micrographs of the membrane (fig. 2). Freeze-fracture experiments were
performed as described previously [12]. We have investigated the distribution of the protein at
two different membrane dimensions (D/dπ > 1 or D/dπ < 1), and at several protein densities
(table I). At least four scanned images have been treated for each sample. Between 600 and
1500 proteins were found per image, depending on its size and its magnification.

From NS , the number of proteins on the membrane surface, S, determined from micro-
graphs, we calculate the experimental overall surface density of proteins: ρexp = NS/S. NS

Table I – Theoretical and experimental protein surface densities accompanied by the values of the
hydrophobic membrane thickness, D, and the thickness of the polar layer, Dpolar = dB−D. The error
on densities is about 10%. The hydrophobic length of the protein, dπ, equals 42 Å [17]. The last row
is when water has been replaced by a brine solution of 20 mM NaCl.

D Dpolar ρexp ρtheo ρexp/ρtheo

(Å) (Å) (10−3 nm−2) (10−3 nm−2)

49 (> dπ) 34 3.2 4 0.8
46 (> dπ) 31 1.5 1 1.5
38 (< dπ) 28 2.8 0.9 3.1
38 (< dπ) 28 1.6 0.5 3.2
38 (< dπ) 28 (20 mM NaCl) 2.1 0.5 4.2
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can be compared to the “theoretical” density, obtained from the relationship: ρtheo = NV

V/dB
,

where NV is the number of proteins inserted in the lamellar phase. V is the volume and dB

is the Bragg distance of the lamellar phase (fig. 1). This “theoretical” density represents
the case of a homogeneous distribution of proteins on the overall membrane surface. Inspec-
tion of the ratio ρexp/ρtheo listed in table I shows that ρexp ≈ ρtheo when D > dπ, whereas
ρexp � ρtheo when D < dπ. Specifically, for a similar “theoretical” density, ∼ 10−3 nm−2, an
experimental density of the same order is found (1.5 × 10−3 nm−2) when D > dπ, whereas
an experimental density three times larger (2.8 × 10−3 nm−2) is found when D < dπ. Con-
versely, an experimental density of ∼ 1.5 × 10−3 nm−2 is achieved with twice less proteins
(ρtheo = 0.5 × 10−3 nm−2) when D < dπ than for D > dπ (ρtheo = 10−3 nm−2).

From these observations, we conclude that only repulsive interactions take place between
proteins when D > dπ. Indeed, repulsive interactions homogeneously spread the proteins on
the membrane. Conversely, we conclude that a sum of attractive and repulsive interactions
takes place when D < dπ, leading to a phase transition. Indeed, the attractive interaction
gathers the proteins in high-density regions (ρexp � ρtheo), and leaves others regions with a
low density of proteins, ρexp � ρtheo. Additionally, no aggregation is observed in the high-
density regions because of the presence of repulsive interactions. Figure 2 shows such regions
of low and high densities obtained from freeze-fracture micrographs when D < dπ. However,
to achieve our treatment, we have selected only flat parts of the micrographs, which correspond
to the highest protein density regions.

The interaction potential, u(r), between proteins was derived from the radial correlation
function g(r)(1), which measures the probability of finding a second protein at a distance
r from a given one. The method consists in solving the system composed of the Ornstein-
Zernike [18] equation g(r) − 1 = c(r) + ρexp

∫
c(r′)[g(r − r′) − 1]dr′, and the Percus-Yevick

equation [19] c(r) = g(r)(1−e
u(r)
kBT ). Note that we have got the same results as presented here-

after when the hypernetted chain equation [20] is used instead of the Percus-Yevick equation.
The numerical solutions were obtained using the algorithm of Lado [20].

Figures 3a) and b) show two distribution functions, g(r), and two interaction potentials,
u(r), respectively, for both cases D > dπ and D < dπ when the same concentration of proteins
is used (i.e. for the same theoretical density ρ ≈ 10−3 nm−2).

Recall that for D > dπ we have concluded that only repulsive interactions occur between
the proteins from the fact that ρexp ≈ ρtheo. Since charges are carried by the myelin prote-
olipid, a protein-lipid complex, we expect screened repulsive electrostatic interactions between
them. To confirm the presence of repulsive electrostatic interactions, we have replaced water
by brine in one sample where both attractive and repulsive interactions are present (for D < dπ

and ρexp = 0.5 × 10−4). When 20 mM NaCl was added to water of the lamellar phase, an
increase of the surface density of proteins, ρexp, was observed (from 1.6 to 2.1 × 10−3 nm−2,
see table I). For a higher salt concentration (> 100 mM), myelin proteolipid precipitation
was observed, indicating that attractive interactions have superseded electrostatic repulsive
forces, leading to aggregates. Therefore, the experimental potential u(r) should contain the
electrostatic potential eψ(r), the solution of the Poisson-Boltzmann (PB) equation. In the
Debye-Hückel (DH) approximation, |eψ| ≤ kBT , the PB equation is simply ∆ψ = λ−2

D ψ,
where λD represents the Debye length [21]. Although the DH approximation is not strictly
valid for small values of r, when the experimental interaction potential becomes of the order
of a few kBT , it can provide nevertheless a good approximation. Moreover, the solution eψ(r)

(1)Experimentally g(r) cannot be measured exactly, but the function g(r, r + δr) which is the ratio of the
surface density of proteins located on an annulus Sann(r, r + δr) between r and r + δr, to the overall mean
density particle, ρexp can.
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Fig. 3 – a) Distribution functions g(r) for D > dπ (thin line) and for D < dπ (thick line). b) Interaction
potentials u(r) for D > dπ (•) and for D < dπ (◦). The thin line is the best fit using the electrostatic
potential eψ while the thick line is the best fit using the potential (eψ + umf) (see text). All curves
are derived from the same concentration of proteins (i.e. ρtheo ≈ 10−3 nm−2), but for D > dπ,
ρexp ≈ ρtheo, whereas for D < dπ, ρexp ≈ 3 × ρtheo.

depends on the dimensionality. For a two-dimensional system (when the water layer thickness
is zero in our case) it has been shown that ψ(r) decays algebraically [22]. Since an exponential
decay ψ(r) is experimentally observed for the purely repulsive case, i.e. D > dπ, this is a proof
that a two-dimensional model is not appropriate to describe our system. Our system must
rather be considered as a confined three-dimensional system. Consequently, we have used the

classical three-dimensional solution to fit our data: ψ(r) = ψ0
e

2rp
r e

− (r−2rp)
λD , where rp is the

radius of the protein. We used rp, ψ0, and λD as free parameters in our fits. For D > dπ, the
electrostatic solution perfectly fits the experimental interaction potential (fig. 3a)).

Recall now that for D < dπ, we have previously drawn conclusions on to the presence of
attractive forces in addition to repulsive interactions from the fact that the freeze-fracture
micrographs exhibit regions wiht high and low densities of proteins. Additionally, we observe
that, for D < dπ, all interaction potentials cannot be correctly fitted by an exponential or
algebraic curve (fig. 3b)). Recall that the lamellar phase is stabilized by steric interactions [23],
meaning that the membrane fluctuations are the dominant forces. It has been demonstrated by
Goulian et al. for a single membrane and then by Netz and Pincus for a lamellar phase that
membrane fluctuations induce indirect attractive interactions between the proteins. Thus,
for D < dπ, we have fitted all our experimental potential with the sum of the electrostatic
potential, eψ, and the potential, umf , derived by Netz and Pincus. We observed that all
our interactions potentials were well fitted by (eψ + umf) when D < dπ (see fig. 3b)). The
potential, umf , depends on the perturbation in rigidity, κ0 + δκ, and curvature, c0 + δc, due
to the protein, where κ0 ≈ 2kBT is the rigidity of the membrane, and c0, the spontaneous
curvature of the membrane, which is unknown:

umf(r) = −a4δκ2kBT

2

[
1

πκ0ξ2
||
kei

(√
2(r − 2rp)

ξ||

)]2

− a4δc2

πξ2
||

kei

(√
2(r − 2rp)

ξ||

)
, (1)

where ξ|| is a correlation length as defined in ref. [8]; a2 = πr2
p is the surface area of the

protein; kei(r) is a Kelvin function [9]. Considering δκ, δc, rp, and ξ|| as free parameters, we
found approximatively that δκ ≈ 25 ± 8kBT , δc ≈ 1 ± 0.5 nm−1 and ξ|| ≈ 5 ± 2 nm, which
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Fig. 4 – The linear variation of the Debye length, λD, vs. 1/
√

Cp indicates that the ions are brought
by the proteins. � is for D > dπ; • is for D < dπ and by taking into account the membrane-mediated
interactions.

are reasonable values for the myelin proteolipid under study. Note that rp is the same value
in eψ and umf and the fits gave approximatively the value 2 × rp ≈ 4.4 ± 0.4 nm.

One also should note that the addition of attractive and repulsive interactions does not
lead to a well-defined minimum, corresponding to the mean distance between two proteins
(fig. 3b)). The experimental potential is simply altered compared to the electrostatic repulsive
potential. This observed characteristic is well predicted by the model of Netz and Pincus.
In contrast, for D > dπ, we do not observe the presence of attractive interactions. Since
membrane fluctuations are still the dominant force stabilizing the lamellar phase, we suggest
that increasing the membrane thickness of the oil-swollen bilayer decouples the fluctuation of
each monolayer of the membrane (see fig. 1b)). Since the fluctuations of the two monolayers
are no longer cooperative, the fluctuations of the membrane become weaker, leading to the
disappearance of the attractive forces, which are completely overcome by the repulsive ones.

Finally, fig. 4 displays the values of the Debye length, λD, obtained by fitting the exper-
imental potential by eψ when D > dπ and eψ + umf when D < dπ. The small values of the
Debye length are in favor of a significant number of screening ions. These values are also
smaller than the distance between two neighbor polar layers. This means that the screening
is achieved within a polar layer, and that the neighbor polar layers do not participate in the
screening. Since surfactant molecules are nonionic and the presence of ions in water is low,
we expect these ions to be brought by the protein. Indeed, we observed in fig. 4 that the
variation of λD is linear to 1/

√
Cp, where Cp is the molar volume concentration of protein in

water (with the imposed condition λD = 0 when Cp −→ ∞). The Debye length λD is also
related to ion concentration C = (α/λD)2, with α = 0.304 for a 1:1 electrolyte in water [21].
We found that the number of ions brought per protein, Q = C/Cp, is 3.

In conclusion, we have shown that repulsive electrostatic forces are always present in our
samples, and are due to charges carried by the proteins. Specifically, we have shown that the
addition of salt decreases the strength of the repulsive interactions, and in the purely repulsive
case, that the experimental potential is perfectly fitted by the classical screened electrostatic
potential. Additionally, the values found for the Debye length are consistent with that we
know of the protein. Moreover, the presence of electrostatic interactions may explain the
absence of aggregation, observed with the same proteins acting as molecular clips between
surfactant lamellae, described by Taulier et al. [10]. This is despite the prediction of existing
models [24,25], which do not take into account such interactions.

We have further shown the existence of an attractive interaction when D < dπ, from the
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presence of high and low protein surface densities from our micrographs. The fact that the
lamellar phase is stabilized by membrane fluctuations suggests to us that they are responsible
for the observed attractive interactions, as predicted by Netz and Pincus. Indeed, the potential
of Netz and Pincus combined with the electrostatic potential successfully fit our experimental
potentials.

Finally, these results could suggest that interactions, due to thermal membrane undula-
tions, also act in myelin, a biological multilayer system. We can thus expect that similar
forces are involved in the stability and the biological role of the proteolipid in central nervous
system myelin.
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