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Abstract

This thesis focuses on two important issues in turbulence theory of wall-bounded

flows. One is the recent debate on the form of the mean velocity profile (is it a

log-law or a power-law with very weak power exponent?) and on its scalings with

Reynolds number. In particular, this study relates the mean flow profile of the

turbulent channel flow with the underlying topological structure of the fluctuating

velocity field through the concept of critical points, a dynamical systems concept that

is a natural way to quantify the multiscale structure of turbulence. This connection

gives a new phenomenological picture of wall-bounded turbulence in terms of the

topology of the flow. This theory validated against existing data, indicates that

the issue on the form of the mean velocity profile at the asymptotic limit of infinite

Reynolds number could be resolved by understanding the scaling of turbulent kinetic

energy with Reynolds number.

The other major issue addressed here is on the fundamental mechanism(s) of

viscoelastic turbulence that lead to the polymer-induced turbulent drag reduction

phenomenon and its dynamical aspects. A great challenge in this problem is the com-

putation of viscoelastic turbulent flows, since the understanding of polymer physics is

restricted to mechanical models. An effective numerical method to solve the govern-

ing equation for polymers modelled as nonlinear springs, without using any artificial

assumptions as usual, was implemented here for the first time on a three-dimensional

channel flow geometry. The superiority of this algorithm is depicted on the results,

which are much closer to experimental observations. This allowed a more detailed

study of the polymer-turbulence dynamical interactions, which yields a clearer pic-

ture on a mechanism that is governed by the polymer-turbulence energy transfers.
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ITHAKA

As you set out for Ithaka
wish your trip is long,

full of adventure, full of discovery.
The Laestrygonas and the Cyclopas,

the wrathful Poseidona - don’t let them scare you:
you’ll never find such things on your way,

as long as you keep your thoughts raised high,
as long as rare excitement stirs your spirit and your body.

The Laestrygonas and the Cyclopas,
the wrathful Poseidona - you won’t face them
unless you bring them along inside your soul,

unless your soul raises them before you.

Wish your trip is long.
Many the summer mornings when,

with what pleasure, what joy,
you enter harbours you’re seeing for the first time;

may you stop at Phoenicians seaports
and get the finest wares,

mother of pearl and coral, amber and ebony
and sensual scents of every kind,

as many sensual perfumes as you can;
and may you visit many Egyptian cities,

to learn and keep on learning from their scholars.

Keep Ithaka always on your mind.
Arriving there is what you’re destined for.

But don’t hurry the journey at all.
Better if it lasts for years,

so that you’re old when you cast your anchor in the island,
wealthy with all you’ve gained on the way,

not expecting any wealth from Ithaka.

Ithaka gave you the fine journey.
Without her you wouldn’t have set out.

But she has nothing left to give you now.
And if you find her poor, Ithaka did not deceive you.

Wise as you now are, with such experience,
you have already understood what Ithakas mean.

Constantinos. P. Kavafis (1911)



Chapter 1

Introduction

1.1 Overview

Leonardo da Vinci was the first to recognise two states of fluid motion and made use

of the term la turbolenza (Frisch, 1995; Tsinober, 2002). His half a millennium old

drawings (see Fig. 1.1) illustrate what we call today turbulence. After the pioneering

works of Leonard Euler, Claude-Louis Navier, George G. Stokes on the governing

equations of fluid motion and that of Osborne Reynolds on the concept of critical

Reynolds number, the dimensionless number which expresses the balance between the

nonlinear and dissipative properties of the flow and denotes the onset of turbulence, a

large quest begun for a theory of turbulence with the involvement of great physicists

and mathematicians like Heisenberg, Kolmogorov, Onsager, Richardson and many

more. However, despite much effort the problem is far from solved.

Turbulence is one of the most difficult, open problems in classical physics and

is also related to one of the hardest open problems in mathematics, the millennium

problem of Navier-Stokes equations, which are the equations that govern the viscous

fluid motion. A proof on the uniqueness of solutions of the three dimensional Navier-

Stokes equations or equivalently the proof of regularity of the solutions is still lacking

(Doering and Gibbon, 1995). In other words, there is no proof that given a smooth

initial velocity field, the Navier-Stokes equations can keep smooth solutions for time

t → ∞ and this does not stop the creation of finite time singularities, meaning

breakdown of the Navier-Stokes equations as governing equation for a continuum

field as the velocity field. A regularity proof is also important for the numerical

13



1.1 Overview 14

Figure 1.1: Studies of turbulence in water by Leonardo da Vinci. Courtesy Kemp
(2004).

computations, since regularity is connected with the necessary resolution to capture

the precise turbulence dynamics. The only theory that exists is Kolmogorov’s for

homogeneous, isotropic turbulence, which is phenomenological and is based on scaling

and similarity arguments (Frisch, 1995). Therefore, rigour is far from achieved in

turbulence theory.

Since Reynolds’ work, the turbulent boundary layer has been a paradigm in

the field of turbulence. Prandtl was the first to give a systematic account of the

turbulent boundary layer (Oertel, 2004), followed by Schlichting (Schlichting and

Gersten, 2000). Von Kármán obtained a logarithmic expression for the mean velocity

profile, in an intermediate sublayer between the wall and the outer part of a boundary

layer using similarity arguments (Tennekes and Lumley, 1972), which was a major

result for wall-bounded turbulence. The importance of flow structure was highlighted

by Kline et al. (1967) and Townsend (1976). Since then, the interaction between

the flow structure and scaling properties of the wall-bounded turbulence has been

the subject of major study. Over the past decade experimental measurements and

numerical computations at Reynolds numbers much higher than before have focused

on the form of the boundary-layer scaling, re-examining the basis of asymptotic

scaling relationships on a debate between logarithmic and power-law scaling of the

mean velocity profile and on whether this profile is universal for channel, pipe and

boundary layer flows (McKeon, 2007).
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Turbulent flow is not only the vibrations experienced during flight, it is the shape

of the clouds and that of smoke rising from a cigarette, the flow of water and oil

in pipes, the wake of a vehicle or a ship, the currents in rivers and oceans, the

the solar and Earth’s atmosphere, the formation of galaxies. Numerous practical

applications of turbulence arise in aeronautics, plasma physics, chemical and nuclear

engineering, cryogenic engineering, nonlinear optics, biological sciences, geophysics

and meteorology. Therefore, turbulence is central to flow technology and the need

for flow control and energy savings is vital for a vast range of applications.

In 1948, Toms (1948) was the first to realise that the addition of small amounts

of long chain polymer molecules to wall-bounded turbulent flows can reduce drag

drastically. Only, a few parts per million of polymer in solution can achieve up to

70% drag reduction. Although this phenomenon – while perhaps a possible candidate

for the title of the “most difficult open problem in classical mechanics” or in physics,

according to McComb (1992) – has been known for almost sixty years, the underlying

mechanisms, through which the introduction of polymers alter the fluid’s rheological

behaviour in such a way that modify vortex structures and lead to drag reduction,

have not yet been fully elucidated. Several conceptual models have been proposed

for the phenomenon of polymer-induced drag reduction and all have been subjected

to criticism. The two phenomenologies that are still under consideration, because

some of their concepts find support from computational and experimental results,

are the time-criterion/coil-stretch transition by Lumley (1969, 1973) and the elastic

theory of Tabor and de Gennes (1986); De Gennes (1990). Both theories, however,

are extremely conjectural and somewhat qualitative, failing to explain the dynamics

of drag reduction by polymers in wall-bounded turbulence.

A result of major significance in polymer drag reduction of wall-bounded turbu-

lent flows was obtained by Virk et al. (1967); Virk (1975). They observed that the

mean velocity profile has an universal asymptotic limit independent of the Newto-

nian solvent, the nature of the polymer additives and flow geometry (Virk, 1975; Virk

et al., 1997; Benzi et al., 2005). This asymptotic limit is called the Maximum Drag

Reduction (MDR) or Virk’s asymptote, where the flow does not relaminarise and

velocity fluctuations reach a self-sustaining state. The existence of this asymptote

indicates that drag reduction is not a purely viscous effect (De Gennes, 1990; Sreeni-

vasan and White, 2000). However, no generally accepted theory has been provided

to explain adequately the MDR law and its universality.
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This study addresses two cornerstones in turbulence theory of wall-bounded tur-

bulence. One is on the recent issues raised for the mean velocity profile (McKeon,

2007) that were mentioned above and its relation to the multiscale flow structure

of wall-bounded turbulence. The other is on the conceptual aspects of polymer-

turbulence interactions in viscoelastic turbulence and polymer-induced drag reduc-

tion (White and Mungal, 2008). The thesis is organised as follows. A brief intro-

duction on the classical theory of hydrodynamic wall-bounded turbulence is given

in chapter 2 including some of the necessary terminology and machinery that was

employed in this work. Chapter 3 focuses on the mean flow profile and its relation

to the underlying flow topology in turbulent channel flow, applying the concept of

stagnation points of the fluctuating velocity field. This approach with the aid of

Direct Numerical Simulations (DNS) led to a novel phenomenology for the scaling

of the mean velocity gradient.

The classical phenomenology of hydrodynamic turbulence is not obeyed by wall-

bounded turbulent flows with active additives, such as polymer molecules that have

a feedback on the flow field. Therefore, a background introduction on the theory

of polymeric fluids and their modelling is included in chapter 4, reviewing also the

relevant phenomenologies of drag reduction by polymers. Then, chapter 5 provides

details on the current state in DNS of viscoelastic turbulence and the present numer-

ical method to solve the governing equations for the polymer molecules, which was

applied here for the first time in a wall-bounded flow, validating it with an analytical

solution. The statistics collected by DNS of viscoelastic turbulent channel flow are

presented in chapter 6, where an enhanced conceptual mechanism is proposed for

the phenomenon of polymer-induced drag reduction and important indications are

revealed on the polymer dynamics and the conservation of turbulence at maximum

drag reduction. In the end, the most important results presented in this thesis are

outlined, emphasizing their implications and further views are suggested under which

aspects this research could be advanced (see chapter 7).



Chapter 2

Hydrodynamic wall-bounded

turbulence: a brief introduction

A brief introduction on the basic concepts and phenomenology of the classical theory

of hydrodynamic wall-bounded turbulence is given in this chapter before moving to

some further results on the mean flow of turbulent channel flow. The aim here is

to introduce, for the sake of self-consistency, some of the necessary terms and con-

cepts that will be used later in the thesis. The chapter starts with the description of

Navier-Stokes equations for an incompressible flow and the phenomenon of anoma-

lous dissipation in the asymptotic limit of vanishing viscosity, which is of fundamental

importance in turbulent flows (see section 2.1). The basic statistical decomposition

of the flow field by Reynolds, the Reynolds stress tensor and the balance between

production and dissipation rate of turbulent kinetic energy are introduced in section

2.2. Then, section 2.3 presents the theory behind turbulent channel flow and the

classical intermediate asymptotics for the mean velocity profile. This section also

includes some analogies that exist between the relevant phenomenologies of homoge-

neous and wall-bounded turbulence. Concepts on structural and topological aspects

of turbulent flows are outlined in section 2.4 with more emphasis on the critical

points in turbulent flows, which are the essential ingredients for some results in this

thesis.

17
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2.1 Conservation Laws

The fundamental equations of fluid mechanics are derived from three basic principles:

(i) mass conservation, (ii) Newton’s second law: the rate of change of momentum

of a portion of the fluid equals the forces applied to it and (iii) energy balance. In

detail, the conservation of mass per unit volume manifests itself as the continuity

equation

Dtρ+ ρ∇ · u = 0 (2.1)

and Newton’s second law of motion as Cauchy’s equation (Ottino, 1989)

Dtui =
1

ρ
∂xj

σij + fi (2.2)

where u(x, t) is the velocity vector of a fluid element located in position x at time

t in the Euclidean space R3, ρ(x, t) is the fluid density, σij(x, t) is the stress tensor

and fi embodies any external force, such as gravity, etc. The fundamental kinematic

principle is contained in the notion of the operator Dt ≡ ∂t +(u ·∇), which is called

the material or Lagrangian derivative that represents the rate of change with respect

to an observer moving with the fluid. It can be easily derived for a fluid particle

using the chain rule of differentiation. Eq. (2.2) is valid for any continuous medium

but for a Newtonian fluid, the stress tensor is assumed to be isotropic and a linear

function of the strain rate tensor Sij ≡ 1/2(∂xj
ui + ∂xi

uj), i.e. the deviation of the

fluid motion from a rigid body motion. So, it is found (Aris, 1962; Batchelor, 1967)

that

σij = −pδij + µ

[
(∂xj

ui + ∂xi
uj) −

2

3
∂kukδij

]
(2.3)

where p is the hydrodynamic pressure, µ the constant uniform dynamic viscosity of

the fluid and δij is the Kronecker delta∗. Hence, from Eq. (2.2) one can now obtain,

using expression (2.3) for the stress tensor, the general form of the Navier-Stokes

equations

Dtu = −
1

ρ
∇p+ ν

[
∆u +

1

3
∇(∇ · u)

]
+ f (2.4)

where the material parameter ν = µ/ρ is the fluid’s kinematic viscosity and ∆ ≡ ∇2

is the Laplacian operator.

∗δij is equal to 1 if i = j and 0 otherwise.
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This study considers incompressible fluids, that is, the mass density is constant

following the fluid, viz. Dtρ = 0. If the fluid is homogeneous, i.e. ρ = const

in space, it follows that the flow is incompressible if and only if ρ is constant in

time. Physically, this constraint restricts applicability to problems where velocities

much smaller than the speed of sound are considered (Doering and Gibbon, 1995).

Mathematically, the kinematic condition of incompressibility can be deduced from

continuity equation (2.1) imposing the velocity field to be solenoidal, i.e. ∇ ·u = 0.

An analogous interpretation of incompressibility comes from Euler’s lemma (Aris,

1962; Chorin and Marsden, 1979)

∂tJ = (∇ · u)J ⇒ ∂t ln J = ∇ · u (2.5)

where J = dV
dVo

is essentially the Jacobian and here represents the expansion or

dilatation of a volume element. Thus, incompressibility is equivalent to J ≡ 1,

which implies ∇ · u = 0 through Eq. (2.5).

Primarily, the dynamics of the spatiotemporal velocity variations of an incom-

pressible Newtonian fluid are determined by the Navier-Stokes equations, supple-

mented by the divergence free condition

∂tu + (u · ∇)u = −
1

ρ
∇p+ ν∆u + f

∇ · u = 0

(2.6)

with the velocity vector field satisfying the periodic and/or no-slip boundary condi-

tions

u|∂Ω = 0. (2.7)

A brief description of the different terms of the equations is given below:

• (u ·∇)u is the inertial or convective term responsible for the advection of the

velocity field and the sweeping of small scales by the larger ones in turbulent

flows. Physically, this sweeping couples any given small scale of motion to all

the larger scales. Moreover, this quadratic nonlinearity accounts for the local

interscale energy transfer and the generation of small scale fluctuations from

larger ones until viscosity dominates.

• −∇p/ρ is the pressure gradient term, which is dimensionally equivalent to
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(u · ∇)u. This term is also nonlinear in the velocity with the pressure being

determined at any given point by the velocity field everywhere. Mathematically,

this effect can be seen through a Poisson equation by taking the diverge of Eq.

(2.6) and imposing the solenoidal nature of the velocity field

∆p = −ρ∇ · (u · ∇u) = −ρ∂xj
ui∂xi

uj. (2.8)

The satisfaction of the Poisson equation is a necessary and sufficient condition

for the flow to remain incompressible. The inversion of the Laplacian in Eq.

(2.8), which involves an integral operator over all space†, gives the pressure field

as a non-local functional of the instantaneous flow configuration. Theoretically,

the Navier-Stokes equations at the incompressible limit propagate information

through pressure waves that travel infinitely fast with velocity fluctuations

being instantaneously correlated over long ranges (Doering and Gibbon, 1995).

• ν∆u is the viscous diffusion term, which distinguishes incompressible Navier-

Stokes equations from incompressible Euler equations for an ideal fluid. It is

introduced by the linear coupling between stress and rate of strain. Its net

effect is to dissipate kinetic energy of the flow and convert it into heat.

The set of parameters in the Navier-Stokes equations (2.6) can be reduced by

introducing dimensionless variables. In such a case, the Reynolds number is the only

dimensionless parameter in the equations given by the expression

Re =
uℓℓ

ν
(2.9)

where uℓ and ℓ being respectively a characteristic velocity and length scale of the

flow, respectively. Re was introduced by Osborne Reynolds (1883), who showed

that transition between laminar and turbulent flow occurs when Reynolds number

reaches a critical value. The Reynolds number plays a fundamental role in turbulence

because it expresses the relative strength of inertial forces to viscous forces, i.e.

(u · ∇)u

ν∆u
∝
uℓℓ

ν
. (2.10)

†
∆

−1 ≡ ∇−2 =
∫
Ω

G(x, r)d3r, where G(x, r) is the Green’s function for the three-dimensional

Laplacian operator depending on boundary conditions imposed on domain Ω (Arfken and Weber,
2000).
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It can also be interpreted as a measure of the nonlinearity of Navier-Stokes equations

with fully developed turbulence achieved at high enough Re and the inertial term

playing a dominant role in the dynamics.

The kinetic energy per unit mass in the fluid is

E ≡

∫

Ω

1

2
|u|2d3x (2.11)

integrated over a bounded domain Ω ⊂ R3, with rigid boundary ∂Ω. Then the

evolution equation of energy can be derived by taking the time derivative of kinetic

energy and using Navier-Stokes equations, viz.

dE

dt
=

∫
u · ∂tud3x

= −

∫
u ·

[
(u · ∇)u +

1

ρ
∇p− ν∆u − f

]
d3x. (2.12)

Now treating each term separately and using the fact that ∇ · u = 0, it yields that

u · (u · ∇)u =
1

2
u · ∇|u|2 =

1

2
∇ · (u|u|2), (2.13)

1

ρ
u · ∇p =

1

ρ
∇ · (up) (2.14)

and

−νu · (∆u) = νu · ∇ × ω = ν|ω|2 − ν∇ · (u × ω) (2.15)

where ω ≡ ∇ × u is the vorticity vector. Then, gathering the above equations and

applying the divergence theorem as well as the periodic and/or no-slip boundary

conditions (Eq. (2.7)), one finds

dE

dt
=

∫
∇ ·

[
−

1

2
u|u|2 −

1

ρ
up+ ν(u × ω)

]
− ν|ω|2 + u · fd3x

=

∫ [
−

1

2
ρu|u|2 −

1

ρ
up+ ν(u × ω)

]
· nd2x− ν

∫
|ω|2d3x+

∫
u · fd3x

= −2ν̟ +

∫
u · fd3x (2.16)

where ̟ ≡
∫

1
2
|ω|2d3x is the enstrophy per unit mass.
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It is important to state here that real viscous dissipation manifests itself through

the viscous part of the stress tensor, i.e. σ
(v)
ij = 2ρνSij, essentially the strain rate and

not from enstrophy, which typically represents solid rotation of the fluid (Tennekes

and Lumley, 1972; Frisch, 1995; Tsinober, 2002). It can be shown that using the

incompressibility condition and the fact that the integral of the divergence vanishes

for periodic and/or no-slip boundaries where necessary, then

−ν

∫
u · (∆u)d3x = −

1

ρ

∫
ui∂xj

σ
(v)
ij d3x

= −
1

ρ

∫
∂xj

uiσ
(v)
ij d3x+ 2ν

∫
SijSijd

3x

= 2ν

∫
SijSijd

3x

= ν

∫
∂xj

ui∂xj
ui + ∂xj

ui∂xi
ujd

3x

= ν

∫
∂xj

ui∂xj
uid

3x+ ν

∫
∂xj

(ui∂xi
uj) − ui∂xj

∂xi
ujd

3x

= ν

∫
|∇u|2d3x (2.17)

and

ν

∫
|ω|2d3x = ν

∫
ǫijkǫilm∂xj

uk∂xl
umd3x

= ν

∫
(δjlδkm − δjmδkl)∂xj

uk∂xl
umd3x

= ν

∫
∂xj

uk∂xj
uk − ∂xj

uk∂xk
ujd

3x

= ν

∫
|∇u|2d3x (2.18)

where ǫijk is the Levi-Civita symbol‡. Ultimately, in this particular case the following

expression holds for the viscous dissipation rate per unit mass

ε̃ ≡ 2ν

∫
SijSijd

3x = ν

∫
|ω|2d3x. (2.19)

In the absence of external forcing and for ν = 0, where the incompressible Euler

‡ǫijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd permutation and 0 if
any index is repeated.
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equations are recovered, Eq. (2.16) implies that the kinetic energy is conserved.

Note though that in the limit ν → 0, the energy dissipation rate does not vanish but

reaches some finite value (Frisch, 1995),

lim
ν→0

2ν̟ = ε̃. (2.20)

This implies that as ν → 0 the enstrophy must grow as ̟ ∝ ν−1 to compensate the

decreasing viscosity. This unbounded growth of enstrophy is the physical origin of

the so called dissipation anomaly in three-dimensional turbulence. This behaviour

in the limit Re → ∞ is a consequence of the vortex stretching mechanism that

produces extreme velocity gradients (Doering and Gibbon, 1995; Frisch, 1995).

2.2 Reynolds equations

The random spatiotemporal variation of the turbulent flow field renders the statistical

approach imperative. The classical approach to turbulence theory to extract the

relevant mean physical quantities is Reynolds decomposition (Tennekes and Lumley,

1972; Pope, 2000), where the basic idea is to decompose the turbulent velocity vector

field into a mean and a fluctuating part

u = 〈u〉 + u′ (2.21)

with 〈u〉 the time averaged component of the velocity field,

〈u〉 = lim
T→∞

1

T

∫ T

0

u(x, t)dt (2.22)

and u′ the time-dependent fluctuating part with zero mean by definition, viz.

〈u′〉 ≡ 0. (2.23)

Supposing that the time averages of temporal derivatives vanish and time averages

commute with spatial derivatives, one can derive the Reynolds equations

〈u〉 · ∇ 〈u〉 = −
1

ρ
∇ 〈p〉 + ν∆ 〈u〉 − ∂xj

〈
u′iu

′
j

〉
+ f , (2.24)



2.2 Reynolds equations 24

∇ · 〈u〉 = 0. (2.25)

Note that turbulence gives rise to an additional stress driving the mean flow σ
(t)
ij ≡

−ρ
〈
u′iu

′
j

〉
, called the Reynolds stress tensor (Tennekes and Lumley, 1972; Pope,

2000) due to the nonlinearity of the inertial term, since averages of products give

〈uiuj〉 =
〈
(〈ui〉 + u′i)(〈uj〉 + u′j)

〉

= 〈ui〉 〈uj〉 +
〈
u′iu

′
j

〉
+
〈
〈ui〉u

′
j

〉
+ 〈〈uj〉u

′
i〉

= 〈ui〉 〈uj〉 +
〈
u′iu

′
j

〉
. (2.26)

The Reynolds stress is an extra unknown to the problem and a stationary equation

for the correlation
〈
u′iu

′
j

〉
may be supplied. However, this equation will involve higher

order correlations as unknowns, such as
〈
u′iu

′
ju

′
k

〉
. The problem continues as one goes

to higher order correlations and the hierarchy never closes. This is the nature of the

so called turbulence closure problem (Tennekes and Lumley, 1972; Pope, 2000).

The balance equation for the mean kinetic energy of the turbulent velocity fluc-

tuations E ≡ 1
2
〈|u′|2〉 = 1

2
〈u′iu

′
i〉 provides further insight into the dynamics of tur-

bulent motion. This equation can be obtained through the governing equation for

the Reynolds stress tensor, which can be derived from

〈
u′jN (ui) + u′iN (uj)

〉
= 0 (2.27)

and using the Reynolds decomposition, where N (ui) denotes the Navier-Stokes op-

erator, viz.

N (ui) ≡ ∂tui + uj∂xj
ui +

1

ρ
∂xi
p− ν∂xj

∂xj
ui. (2.28)

Then, setting i = j in the Reynolds stress equations, the turbulent kinetic energy

balance follows

〈uj〉 ∂xj
E = −∂xj

(
1

ρ

〈
u′jp

′〉+
1

2

〈
u′iu

′
ju

′
j

〉
− 2ν 〈u′isij〉

)
+ P − ε (2.29)

where 1
ρ
∂xj

〈
u′jp

′〉 represents the pressure gradient work, 1
2
∂xj

〈
u′iu

′
ju

′
j

〉
denotes trans-

port by turbulent velocity fluctuations, 2ν∂xj
〈u′isij〉 stands for transport by viscous
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stresses, the production rate of turbulent kinetic energy is defined by

P ≡ −
〈
u′iu

′
j

〉
∂xj

〈ui〉 (2.30)

and the viscous energy dissipation rate due to turbulent fluctuating velocity gradients

is

ε ≡ 2ν 〈sijsij〉 (2.31)

with sij ≡ 1/2(∂xj
u′i + ∂xi

u′j), the fluctuating strain rate.

In a statistically stationary and homogeneous turbulent shear flow (never ho-

mogeneous near a wall) the integrated over space Eq. (2.29), using the divergence

theorem along with periodic boundary conditions by homogeneity, reduces to

−

∫ 〈
u′iu

′
j

〉
∂xj

〈ui〉 d3x ≃

∫
2ν 〈sijsij〉 d3x (2.32)

stating that the rate of generation of turbulent energy by Reynolds stresses balances

the rate of viscous dissipation (Tennekes and Lumley, 1972; Davidson, 2004). This

is true in wall-bounded shear flows only in an intermediate region, away from the

wall and the core of the flow.

2.3 Wall-bounded turbulent channel flow

The presence of a solid boundary in turbulent shear flows imposes the obvious con-

straint that the viscosity enforces the velocity of the fluid to be zero at a stationary

solid surface (no-slip condition, see Eq. (2.7)), even when ν → 0 (Tennekes and Lum-

ley, 1972). This viscous constraint gives rise to viscous characteristic scales that will

be defined later in this section. The geometry of turbulent flows in channels and pipes

with parallel walls prohibits the continuing growth of the boundary layer thickness,

eventually becoming statistically independent of the downstream direction x. This is

a major difference with external wall-bounded flows, i.e. boundary-layer flows, that

avoids extra complications to the problem. This study focuses on turbulent flows in

channels, so the theoretical analysis here is simplified.

Consider a turbulent flow of an incompressible fluid between two smooth parallel

plates separated by a distance 2δ. The plates are long enough Lx/δ ≫ 1 and have a

large aspect ratio Lz/δ ≫ 1 so that the flow is statistically independent of the x and z
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directions (see Fig. 2.1), with periodic boundary conditions applied for u ≡ (u, v, w)

in these directions assuming flow homogeneity. No-slip boundary conditions are

applied to the bottom and top walls, respectively, i.e.

u|y=0 = u|y=2δ = 0. (2.33)

x

c

Lz

Lx

|u = 0y=0

2δ|u y= = 0

y
z

2δ−d<p>/dx
U

Figure 2.1: Channel flow geometry.

The mean flow is in the x direction, with the mean velocity varying in the wall-

normal direction, y and it is also assumed that the flow is statistically stationary. In

this case the mean continuity equation (2.25) deduces to d
dy

〈v〉 = 0, which implies

〈v〉 = 0 applying the no-slip condition at both walls. Thus, taking into account that

the mean velocity field is 〈u〉 = (〈u(y)〉 , 0, 0), the mean momentum equation (2.24),

ignoring any external forces, yields

0 = −
1

ρ

∂ 〈p〉

∂x
−

d

dy
〈uv〉 + ν

d2 〈u〉

dy2
(2.34)

and

0 = −
1

ρ

∂ 〈p〉

∂y
−

d

dy

〈
v2
〉

(2.35)

where the Reynolds shear stress is essentially denoted as 〈uv〉 from here onwards,

avoiding for convenience the primes that indicate fluctuating quantities.

Integration of Eq. (2.35) gives pw = 〈p〉 + ρ 〈v2〉, where pw ≡ 〈p(x, 0, 0)〉 and

∂ 〈p〉

∂x
=

dpw
dx

(2.36)

because 〈v2〉 is independent of x, stating that the mean axial pressure gradient is
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constant across the flow. Then, the axial mean-momentum equation becomes

dσ12

dy
=

dpw
dx

= −
σw
δ

(2.37)

where the total shear stress is

σ12(y) = ρν
d 〈u〉

dy
− ρ 〈uv〉 . (2.38)

The balance of forces (2.37) is constant because σ12 is a function of y only and

pw, a function of x only, where −σw/δ is a positive constant that characterises the

magnitude of the drop in pressure between the entrance and the exit of the channel

that drives the mean flow. Moreover, integrating Eq. (2.37) with respect to y, it can

be deduced that the total shear stress varies linearly with the distance from the wall

σ12(y) = σw

(
1 −

y

δ

)
(2.39)

with a fixed constant of integration, since the flow is symmetric about the y = δ

plane. In this case, the wall shear stress is defined as the total shear stress at the

wall

σw ≡ σ12(0) = ρν
d 〈u〉

dy
(2.40)

where the Reynolds stress is zero satisfying the no-slip boundary condition. Note

that the above analysis reveals that a flow in a channel or pipe can be defined by ρ,

ν, δ and dpw/dx with the mean flow as unknown or imposing a 〈u〉 with the pressure

gradient as unknown.

The important parameters in the near-wall region are the viscosity ν and the

wall shear stress σw, which promote viscous characteristic scales such as the skin

friction velocity uτ ≡
√
σw/ρ and the viscous length scale or wall unit δν ≡ ν/uτ .

The Reynolds number that characterises the flow and is based on the viscous scales

is called the friction Reynolds number and is defined by

Reτ ≡
uτδ

ν
=

δ

δν
. (2.41)
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Now Eq. (2.39) can be rewritten as

ν
d 〈u〉

dy
− 〈uv〉 = u2

τ

(
1 −

y

δ

)
(2.42)

where u2
τ = − δ

ρ
dpw

dx
and in terms of the viscous scales it becomes

d

dy+

U+ −
〈uv〉

u2
τ

= 1 −
y+

Reτ
(2.43)

where U+ ≡ 〈u〉 /uτ and y+ ≡ y/δν , which is similar to a local Reynolds number

and in principle its magnitude determines the relative importance of viscous and

turbulent processes.

2.3.1 The mean velocity profile

The determination of the mean velocity profile proceeds with d 〈u〉 /dy rather than

just with 〈u〉 since limiting similarity laws need to be constructed for the different

regions in the flow, as will be shown. The mean velocity at any distance from the

wall depends on the situation in the immediate vicinity of the wall, as opposed to

the mean velocity gradient, prohibiting the limit of y/δν → ∞ (Barenblatt, 1996).

This statement will become clearer as the analysis is pursued.

The mean velocity gradient can depend on uτ , y and two similarity parameters

in the following way
d 〈u〉

dy
=
uτ
y

Φ

(
y

δν
,
y

δ

)
(2.44)

where Φ is a universal non-dimensional function, assuming complete similarity (Baren-

blatt, 1996), with δν and δ the important length scales in the immediate vicinity of

the wall and the channel centreline, respectively. The viscous scales dominate as the

wall is approached (inner layer), so the asymptotic limit y/δ → 0 is true, whereas

close to the centreline of the channel (outer layer) Φ becomes independent of ν and

then y/δν → ∞ is valid. Therefore,

Φ

(
y

δν
,
y

δ

)
=

{
ΦI

(
y
δν

)
, for y/δ → 0

ΦO

(
y
δ

)
, for y/δν → ∞.

(2.45)



2.3 Wall-bounded turbulent channel flow 29

When Reτ ≫ 1 but y/δν ∼ O(1), Eq. (2.44) can be written for the inner layer

as d
dy+

U+ = 1
y+

ΦI(y+) and its integral leads to

U+ = fw(y+) (2.46)

where fw(y+) =
∫ y+
0

1
r
ΦI(r)dr. This is the law of the wall, which states that U+

depends exclusively on y+ for y/δ → 0, according to Prandtl’s hypothesis (Prandtl,

1925). Under the above conditions the integral of Eq. (2.43) reduces to an exact

relation by neglecting the Reynolds shear stress near the wall,

U+ = y+. (2.47)

This region at the vicinity of the wall where the velocity profile is linear is called the

viscous sublayer.

At high enough Reτ it should be possible to find an intermediate region δν ≪

y ≪ δ between the inner and outer layer, if y/δν ∝ Reγτ and then y/δ ∝ Reγ−1
τ

such that limits y/δν → ∞ and y/δ → 0 are satisfied simultaneously for 0 < γ < 1

(Tennekes and Lumley, 1972). If this region exists, δν is presumably too small to

control the dynamics of the flow and δ is too large to be effective, so that the distance

y is the only relevant length. In this case,

y

uτ

d 〈u〉

dy
= ΦI

(
y

δν

)
= ΦO

(y
δ

)
=

1

κ
(2.48)

where κ is the so called von Kármán§ constant, usually taking the value κ ≃ 0.41

(Pope, 2000). Integration of Eq. (2.48) normalised with viscous scales gives the

logarithmic or von Kármán law in the region δν ≪ y ≪ δ

U+ =
1

κ
ln y+ +B (2.49)

where B ≃ 5.2 is the intercept constant. Moreover, in this intermediate region,

§von Kármán (1930) was the first to derive the logarithmic velocity profile using similarity
arguments.
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combining Eqs. (2.48) and (2.42) yields

1

κy+

−
〈uv〉

u2
τ

= 1 −
y

δ
(2.50)

which implies

−〈uv〉 /u2
τ → 1 (2.51)

as y/δ → 0 and y/δν → ∞. Consequently, the Reynolds stress is approximately

constant in the region δν ≪ y ≪ δ, which is called either the log-law region or

inertial sublayer because of the absence of local viscous effects, as it is clear from

Eq. (2.50) for y+ ≫ 1. Deviations from Eq. (2.49) are small even close to the

centreline of the channel. However, the above arguments leading to the log-law are

not applicable in this so called core region. The law for the core region, called the

velocity-defect law (Pope, 2000), can be derived by taking the limit y/δν → ∞ in Eq.

(2.44) and integrating between y and δ.

An alternative argument for the mean velocity profile in the intermediate region

δν ≪ y ≪ δ at high enough Reynolds numbers has also been proposed (Barenblatt,

1996). Assuming incomplete similarity with respect to y/δν , Eq. (2.44) reduces to

d 〈u〉

dy
=
uτ
y

(
y

δν

)α
Φ
(y
δ

)
(2.52)

where Φ is non-universal and α is also assumed to depend on y/δ. Then, integration

of Eq. (2.52) normalised with viscous scales gives the power law in the region δν ≪

y ≪ δ

U+ = Φ (Reτ ) y
α(Reτ )
+ (2.53)

assuming, in agreement with experiments, that the constant of integration is zero

(Barenblatt, 1996).

Note that the mean flow profile of turbulent boundary layers is very widely taken

to incorporate the extensive log-law region Eq. (2.49) for a very broad range of

turbulent wall-bounded flows. However, renewed interest and new measurements

over the past ten to fifteen years have led to debates (i) on the form of the mean

velocity profile, i.e. log-law or power-law with very weak power exponent, (ii) on

its scalings with Reynolds number and (iii) on its dependence or independence on

overall flow geometry (McKeon, 2007). Fittings of new mean flow data with a log-law
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lead to a variety of values for the von Kármán constant κ. The classically accepted

κ ≃ 0.41 value (Pope, 2000) has been replaced with as low as 1/e ¶ for channel flows

(Zanoun et al., 2003), as high as 0.43 for pipe flows (Zagarola and Smits, 1998),

which was corrected afterwards to 0.42 (McKeon et al., 2004) and κ ≃ 0.38 for zero-

pressure-gradient boundary layer flows (Nagib and Chauhan, 2008). In view of this

non-universality, the von Kármán constant is renamed the von Kármán coefficient

(Nagib and Chauhan, 2008). These issues are discussed in detail in chapter 3.

2.3.2 Analogies between homogeneous and wall-bounded tur-

bulence

The spectral structure of homogeneous turbulence is in close analogy to the spatial

structure of wall-bounded shear flows. The phenomenology of Richardson’s turbulent

cascade for homogeneous, isotropic turbulence (HIT) in view of Kolmogorov’s 1941

theory (Frisch, 1995), based on scaling and similarity arguments, indicates three

different range of scales for Re≫ 1. These are:

• the energy containing range where the forcing injects energy to the large scales

and the spectral dynamics are independent of viscosity, just like the dynamics

in the core region of a turbulent channel flow.

• The inertial range where the time scale required for the energy transfer from

an eddy of size ℓ is much shorter than the time to dissipate energy contained

in the same eddy due to viscous diffusion, basically τℓ ≪ τ diffℓ . Therefore,

the energy is transferred to smaller scales in this range. The similarity hy-

pothesis governing the link between large and small scale description leads to

the closely related concepts of inertial range in homogeneous turbulence and

inertial sublayer of wall-bounded shear flows. The logarithmic velocity profile

in the inertial sublayer is one of the major landmarks in wall-bounded tur-

bulence theory, as the 2/3 law of Kolmogorov (Kolmogorov, 1941; Batchelor,

1982; Frisch, 1995) in the inertial range of HIT.

• The dissipation range where viscous effects dominate and energy dissipation

overcomes the transfer stopping the cascade of the turbulent spectrum, much

¶e denotes here the irrational number 2.71828, which is defined as e = limn→∞

(
1 + 1

n

)n
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like viscosity prevails the viscous sublayer of wall-bounded turbulence inducing

a drain for momentum.

In the inertial range of a statistically steady state homogeneous turbulent flow

as Re → ∞, the energy flux Π(ℓ) is constant and is roughly equal to the energy

dissipation rate ε, viz.

ε ≃ Π(ℓ) ∝
E(ℓ)

τℓ
∝
u3
ℓ

ℓ
(2.54)

where the eddy turnover time based on dimensional analysis is τℓ ∝ ℓ/uℓ, which is the

time required to transfer energy from an eddy of size ℓ and rms velocity fluctuation

uℓ to smaller eddies. So now, the Kolmogorov scaling in the inertial range can be

determined for the characteristic velocity and time scale

uℓ ∝ ε1/3ℓ1/3 (2.55)

τℓ ∝ ε−1/3ℓ2/3. (2.56)

The inertial range extends down to scales comparable to the Taylor scale (Taylor,

1935; Batchelor, 1982)

λ2 ≡
1
3
〈|u|2〉

〈|ω|2〉
=
ν

3

2E

ε
∝ ℓ2Re−1 (2.57)

where u and ω are rms fluctuating quantities. At the bottom of the inertial range

viscosity becomes relevant and the typical viscous diffusion time scale τ diffℓ ∝ ℓ2/ν

is comparable to the eddy turnover time (2.56), so τ diffℓ ∝ τℓ implies

η ∝

(
ν3

ε

)1/4

∝ ℓRe−3/4 (2.58)

where η is the Kolmogorov dissipation length scale. According to Frisch (1995), the

range of scales comparable to or less than η is called the dissipation range. Here

comes the shortcoming of phenomenology that does not predict numerical constants

and also the fact that rigour in turbulence theory is far from achieved (Doering and

Gibbon, 1995).

Similarly, in the inertial range of a turbulent channel flow for Reτ → ∞, the

production of turbulent kinetic energy is mainly balanced by the rate of viscous
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dissipation locally (Townsend, 1961), so Eq. (2.32) becomes

ε ≃ P = −〈uv〉
d 〈u〉

dy
∝
u3
τ

y
(2.59)

since −〈uv〉 ≃ u2
τ and d

dy
〈u〉 ∝ uτ/y. Thus, in this context, the Kolmogorov mi-

croscale will be a function of the distance y from the wall according to

η(y) ∝

(
ν3

ε

)1/4

∝ δ3/4
ν y1/4 (2.60)

using Eq. (2.59) and the fact that δν = ν/uτ . Therefore, η(y) ≥ δν , in fact Pope

(2000) finds that η(0) ≃ 1.5δν based on DNS computations.

2.4 Structure and topology of fluid flow

Even though turbulence consists of a multitude of eddies of many different sizes,

there have been works since early 1960s showing that the transport properties of

most turbulent shear flows are dominated by mainly large scale organised vortex

motions with varying shape and strength depending on flow geometry and history.

Such organised vortex motions are called coherent structures. Their notion was

first articulated by Liepmann (1952). Since then, several studies (Cantwell, 1981;

Robinson, 1991) carried out trying to identify the structure of turbulence with the aim

of explaining important physical mechanisms and relate it with statistical quantities

and their scaling properties.

Townsend (1976) studied thoroughly the structure of turbulent shear flows through

statistical methods. He proposed an attached eddy hypothesis for boundary layer co-

herent motions, which is a conceptual model of a double-cone roller eddy that gave

fairly accurate reproduction of two-point correlation functions and turbulence inten-

sity profiles. In particular, he considered velocity fluctuations, originating from the

remote, core eddies, which make little contribution to the Reynolds stresses but the

slow sweeping of these so called inactive motions emerges as a random modulation

of the mean flow (Townsend, 1961; Bradshaw, 1967). This have interesting conse-

quences, such as casting doubt over the assumed universality of the von Kármán’s

constant but also that E ≡ 1
2
〈|u′|2〉 does not scale with u2

τ in the limit of Reτ → ∞.
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A reason is that velocity fluctuations from inactive motions will influence turbulent

kinetic energy, which will then depend on the channel half-width δ (Davidson, 2004).

Moreover, Perry and Chong (1982); Perry et al. (1986) inspired by Townsend’s

attached eddy hypothesis and the flow visualisations of Head and Bandyopadhyay

(1981), they represented a turbulent boundary layer by a geometrical hierarchy of

Λ-shaped vortices. Using the Biot-Savart law (Saffman, 1995) in conjunction with

this hierarchy of such vortices, they were able to faithfully reproduce the mean ve-

locity profile, Reynolds shear stress, velocity fluctuations and spectra, supporting

the idea of hairpin vortices as the dynamically dominant boundary layer structure.

A refinement to their model for better quantitative agreement with the Reynolds

stresses included two basic types of eddy structure geometries interpreted as ‘wall’

and ‘wake structures’ (Perry and Marusic, 1995).

One of the major problems in turbulence research is unambiguously defining the

multiscale structure of the flow. Flow visualisations by Kline et al. (1967) remain

the primary motivation for much of the work on structure of wall-bounded tur-

bulence being carried on today. Coherent structures have been mainly identified

through visualisations of turbulent flows. Such an approach is subjective, inevitably

leading to controversy over the nature and significance of the structures (Tsinober,

2002). Several alternative eduction techniques have been proposed over the years,

like the Karhunen-Loéve decomposition (Holmes et al., 1998) and many more vor-

tex identification criteria (Chakraborty et al., 2005; Pope, 2000). Even with the

aid of sophisticated statistical techniques it is difficult of making sense of structures

in three-dimensional stochastic fields. An approach, however, that provides a well-

defined and unambiguous language to describe eddying motions and flow patterns is

the framework of critical point concepts from bifurcation theory (Glendinning, 1994;

Ottino, 1989), which was studied extensively by Perry and Chong (1987) and it is

briefly outlined in the next section.

2.4.1 Critical point concepts

The analysis of the topology of a flow serves to provide an understanding of the

critical points, which are the salient features of a flow pattern. Critical or stagnation
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points are defined as points where the streamline slope is indeterminate and

u(x, t) ≡ 0 (2.61)

relative to a frame of reference. Quite often the qualitative features of the flow can

be almost completely described once the critical points of the flow field have been

identified and classified. The velocity field can be expanded in a Taylor series about

the critical point and the result can be used to gain valuable information about the

local flow geometry (Perry and Chong, 1987; Oertel, 2004). Asymptotically exact

solutions of the Navier-Stokes and continuity equations can be derived close to the

critical points and these give a number of standard flow patterns presented in the

figures below for two and three dimensional flows.

(a) Real and complex eigenval-
ues of ∇u

(b) 2D flows - eigenvectors of
the critical points for R = 0

(c) 3D incompressible flows
- eigenvectors of the critical
points for P = 0

Figure 2.2: PQR classification of critical points. Courtesy Oertel (2004).

The classification of critical points for a given flow field can be obtained by

calculating the eigenvalues λi of the velocity gradient tensor, i.e.

det[∇u − λiI] = 0 ⇒ λ3
i + Pλ2

i +Qλi +R = 0 (2.62)
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where the invariants of ∇u are

P = −tr(∇u) = −(λ1 + λ2 + λ3)

Q =
1

2
[P 2 − tr((∇u)2)] = λ1λ2 + λ2λ3 + λ3λ1 (2.63)

R = − det(∇u) = −λ1λ2λ3.

The value of the discriminant

∆ = 27R2 + (4P 2 − 18Q)PR + (4Q− P 2)Q2 (2.64)

provides a general classification initially for the solutions of the cubic equation (2.62)

(see Fig. 2.2). For two-dimensional flows there are only two invariants of the velocity

gradient tensor, so R = 0 from definition and if the velocity vector field is solenoidal

then P = 0 for either dimension. The flow patterns consist of nodes, saddles, foci

and combinations thereof depending on the eigenvalues of ∇u with some degenerate

special cases, such as vortices, sources and sinks.

Dávila and Vassilicos (2003) take the critical point concepts further by introduc-

ing statistics of stagnation points. They noted that each component of the velocity

vector field u(x, t) has an instantaneous zero-crossing surface in d-dimensions. The

intersections of these zero-crossing surfaces are of course the points where u(x, t) = 0.

However, the streamlines and stagnation points are frame dependent. It is crucial

to identify the appropriate frame where stagnation points and their statistics are

Galilean invariant so that they can be related to statistical observables of a turbu-

lent flow. This frame of reference is 〈u〉 = 0. Therefore, stagnation points can be

defined in the right frame in the following statistical sense

u′(x, t) ≡ u(x, t) − 〈u〉 = 0 (2.65)

where the fluctuating velocity field preserves its Galilean invariance unlike in the

above definition Eq. (2.61). Moreover, these d number of surfaces may have a fractal

dimension (Dávila and Vassilicos, 2003; Ruelle, 1992), which can be estimated, based

on the rule of thumb of fractal geometry that the co-dimension of intersections of

surfaces is the sum of the co-dimensions of the intersecting surfaces (Falconer, 1990),
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viz.

d−Ds = d(d−D) ⇒ Ds ≡ d[D − (d− 1)] (2.66)

where Ds is the fractal dimension of the set of stagnation points and D is the fractal

dimension of each zero-crossing surface of the individual component of the fluctuating

velocity vector field, viz. u′(x, t) = v′(x, t) = w′(x, t) = 0, which can be the same

for each surface only under the assumption of isotropy. Then, one can determine the

u′(x, t) = 0 points in an instantaneous turbulent velocity field and further obtain

their multiscale spatial distribution (Dávila and Vassilicos, 2003).

This framework of multiscale flow topology using stagnation points has been ap-

plied in HIT indicating that it is possible to find relations between bulk flow statistics

and the underlying topology of the fluctuating velocity field. In particular, Goto and

Vassilicos (2009) related the dissipation constant Cε = εℓ/u3
ℓ to the number density

of stagnation points and were able to take into account the non-universality of Cε by

their formula. Stagnation points have also proved useful for understanding particle

pair diffusion in two-dimensional turbulence (Goto and Vassilicos, 2004; Salazar and

Collins, 2009). In the next chapter, this framework is developed for wall-bounded

turbulence that advances a new picture by relating key statistical quantities, such

as the mean flow profile, to the structure of stagnation points in turbulent channel

flow.



Chapter 3

Stagnation point structure and

mean flow profile of turbulent

channel flow

This chapter presents a phenomenology based on the underlying topology of the

fluctuating velocity field that relates the mean flow profile and the dissipation rate

of kinetic energy to the multiscale structure of stagnation points of the velocity

fluctuations in flavour of section 2.4. This novel approach is validated with the

aid of DNS of various fully developed incompressible turbulent channel flows and

proposes a resulting new starting point for a new intermediate asymptotic analysis

of the mean flow profile of turbulent channel/pipe flows. The chapter is organised

as follows. Section 3.1 describes the DNS of turbulent channel flows performed

for this study and section 3.2 presents some of the conventional statistics which

are obtained from these computations. Section 3.3 introduces the stagnation point

approach and its application to turbulent channel flows. Sections 3.4 and 3.5 expound

the phenomenology and the mean flow properties implied by the results, which were

obtained from the application of this approach to DNS considered in this study.

Finally, some analysis of the highest Reynolds number DNS channel flow data (Hoyas

and Jiménez, 2006) currently available is presented in section 3.6 before summarising

in section 3.7.

38
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3.1 DNS of turbulent channel flow

Consider the following dimensionless variables, which are based on the channel half-

width δ, the fluid density ρ and the centreline velocity of a fully developed laminar

Poiseuille flow Uc ≡
3
2
Ub, where Ub ≡

1
δ

∫ δ
0
〈u〉 dy is the bulk velocity of the flow

x

δ
→ x,

tUc
δ

→ t,
u

Uc
→ u,

p

ρU2
c

→ p. (3.1)

Then the non-dimensional incompressible Navier-Stokes equations in Cartesian co-

ordinates are given by

∇ · u = 0

∂tu +
1

2
[∇(u ⊗ u) + (u · ∇)u] = −∇p+

1

Rec
∆u

(3.2)

where ⊗ is the tensor or Kronecker product and Rec ≡ Ucδ/ν is the Reynolds number

based on the centreline velocity and the channel’s half-width.

In this study, the code of Laizet and Lamballais (2009) is employed where Eq.

(3.2) are numerically integrated with a fractional step method using a three-stage

third-order Runge-Kutta scheme and spatial derivatives are estimated using sixth-

order compact finite-difference schemes. The fractional step method projects the

velocity vector field to a solenoidal velocity field solving the Poisson pressure equation

in Fourier space with a staggered grid for the pressure field (Laizet and Lamballais,

2009; Wilhelmson and Ericksen, 1977). The staggered grid for the pressure was used

for numerical stability purposes and the skew-symmetric form of the nonlinear term

in the Navier-Stokes equations (3.2) was implemented to allow reduction of aliasing

errors while remaining energy conserving for the particular spatial discretisation

(Kravchenko and Moin, 1997). A grid stretching technique maps an equally spaced

co-ordinate in the computational space to a non-equally spaced co-ordinate in the

physical space, in order to be able to use Fourier transforms in the inhomogeneous

wall-normal direction (Cain et al., 1984; Avital et al., 2000). Further details on the

numerical aspects of the code are provided in appendix A.

Incompressible channel flow turbulence was simulated in a rectangular box (see

Fig. 2.1) with periodic boundary conditions for u ≡ (u, v, w) in the x and z homoge-

neous directions, and either no-slip boundary conditions at the walls Eq. (2.33)
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or borrowed from studies of flow control schemes aimed at drag reduction (Xu

et al., 2007; Min et al., 2006) (see below). The mean flow is in the x direction,

i.e. 〈u〉 = (〈u(y)〉 , 0, 0), where in this study the angle brackets denote averages in

time and space (x and z directions)

〈 〉 ≡ lim
T→∞

lim
Lx→∞

lim
Lz→∞

1

TLxLz

∫ T

0

∫ Lx

0

∫ Lz

0

dzdxdt (3.3)

except when, in section 3.3 stagnation points of u′ = u−〈u〉 = 0 are sought, in which

case the average 〈u〉 is only over space. The bulk velocity Ub in the x direction was

kept at the same constant value at all times by adjusting the mean pressure gradient

−d 〈p〉 /dx at each time step. The choice of Ub is made in accordance with Dean’s

formula Reτ ≃ 0.119Re7/8c (Dean, 1978; Lesieur, 1997) for a given choice of Reτ .

Different near-wall forcings and boundary conditions were applied at the walls

so as to demonstrate how the stagnation point approach accounts for the way that

different wall actuations modify the mean flow profile. Specifically, the following

three control schemes were considered:

(i) u = 0 at the walls with forcing f(y) = (−A sin(2πy/Λ)H(Λ−y), 0, 0) near the

y = 0 wall and similar forcing near the y = 2δ wall (Xu et al., 2007) where H is the

Heaviside function, A = 0.16U2
c /δ ≃ u2

τ/δν and Λ = 11δν (case A1 in Table 3.1). The

forcings are applied to the Navier-Stokes momentum equations (3.2). This scheme

corresponds to a steady wall-parallel forcing localised within eleven wall units from

the walls and uniform in the direction parallel to them. This force field averages to

zero if integrated across the channel; it decelerates the flow closest to the wall but

accelerates it in the immediately adjacent thin region.

(ii) u = (0, a cos(α(x − ct)), 0) at the wall (Min et al., 2006) with a/Uc = 0.05,

α/δ = 0.5 and c = −2Uc (case A2 in Table 3.1). This boundary condition corresponds

to a blowing-suction travelling wave on the wall.

(iii) u = 0 at the walls and v(x, yd, z, t) replaced by −v(x, yd, z, t) at all (x, z)

points (Choi et al., 1994) on the planes yd = 10δν and yd = 2δ − 10δν (case A3 in

Table 3.1). This corresponds to a computational control scheme whereby the normal

velocity at a distance yd from the walls is made to change sign at every time step.

Table 3.1 provides the numerical parameters of the various cases performed, such

as the number of grid points Nx × Ny × Nz and the domain size Lx × Ly × Lz,

where subscripts here denote the three Cartesian co-ordinates (see Fig. 2.1). With
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the exception of the highest Reynolds number DNS channel flow data (Hoyas and

Jiménez, 2006) which is analysed towards the end of this chapter, the Reynolds

numbers considered here range between low to moderate, though, of course, always

large enough for the flow to be turbulent. The highest Reynolds number DNS data

(Hoyas and Jiménez, 2006) in terms of Reτ correspond to Reτ ≃ 950 and 2000. The

Reynolds numbers of the DNS data created for this study range between Reτ ≃ 110

and 400 (see Table 3.1). This is too low for a direct assessment of the log-law but

appears to be sufficient for the new approach to turbulent mean flow profiles which

is proposed here based on stagnation points of the fluctuating velocity field.

Case Forcing Rec Reτ Lx × Ly × Lz Nx × Ny × Nz

A No 4250 179 4πδ × 2δ × 4πδ/3 200 × 129 × 200
A1 Yes 4250 114.4 4πδ × 2δ × 4πδ/3 200 × 129 × 200
A2 Yes 4250 222.3 4πδ × 2δ × 4πδ/3 200 × 129 × 200
A3 Yes 4250 141.6 4πδ × 2δ × 4πδ/3 200 × 129 × 200
B No 2400 109.5 4πδ × 2δ × 2πδ 100 × 65 × 100
C No 10400 392.6 2πδ × 2δ × πδ 256 × 257 × 256

Table 3.1: Parameters for the DNS of turbulent channel flow. The term “Forcing”
refers to wall or near-wall actuations.

The following procedure was applied for the DNS of the various turbulent chan-

nel flows of Table 3.1. The initialisation for some of the computations consisted of a

laminar Poiseuille velocity profile with white noise (Papoulis, 1991; Press et al., 1996)

added to all the velocity components. For others, an interpolated turbulent field was

used as initial condition for faster convergence to the fully developed state, when a

turbulent flow field was available. In all cases, the computations were marched suffi-

ciently far in time, while their statistics were monitored for successive time intervals

until the flow became fully developed. After reaching a statistically steady state,

statistics were collected for several decades of through-flow time scales Lx/Ub. All

the non-forced computations were validated against previously published databases

for the corresponding Reτ cases (Moser et al., 1999; Iwamoto et al., 2002; Hu et al.,

2006). Moreover, a validation for turbulent channel flow of the particular code com-

pared with spectral and second-order finite-difference schemes can be found in Laizet

and Lamballais (2009). Note that the total shear stress balance Eq. (2.42) holds for

all y in all cases except for the forced case A1 where it holds for Λ < y < 2δ − Λ.
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3.2 Conventional DNS results

When Reτ ≫ 1 one might expect an intermediate region δν ≪ y ≪ δ where produc-

tion balances dissipation locally (Townsend, 1961), i.e. −〈uv〉 d
dy

〈u〉 ≃ ε. The idea

of such an intermediate region is supported by the DNS results (see Fig. 3.1) which

suggest that

B2 ≡ P/ε = −〈uv〉 d
dy

〈u〉 /ε (3.4)

tends to 1 as Reτ → ∞ in this intermediate region. The recent paper by Brouwers

(2007) proves this asymptotic result by assuming, however, that the mean flow has a

logarithmic shape in the intermediate region and using similarity theory. In partic-

ular, Brouwers’ analytic result includes some relative error terms in the production

and the dissipation of turbulent kinetic energy of O(y/δ), which vanish as Reτ → ∞

(Brouwers, 2007). Moreover, this region where this approximate balance holds in-

creases as Reτ increases. The slight discrepancy away from B2 ≃ 1 at these moderate

Reynolds numbers is well known and agrees with other previously published DNS

results (Pope, 2000).
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Figure 3.1: Profile of the production to dissipation ratio. Note the existence of an
approximate equilibrium layer which grows with Reτ and where production approx-
imately balances dissipation.

In this intermediate region, Eq. (2.42) implies −〈uv〉 ≃ u2
τ as y/δ → 0 and

y/δν → ∞, assuming that d
d ln y+

U+ does not increase faster than yα+ with α ≥ 1 in
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this limit. It then follows that in this intermediate equilibrium region,

ε ≃
u3
τ

κy
implies

d 〈u〉

dy
≃
uτ
κy

(3.5)

as Reτ ≫ 1, where κ is the von Kármán coefficient (see also section 2.3). At finite

Reynolds numbers the expression for the mean shear in Eq. (3.5) should be replaced

by d〈u〉
dy

≃ B2

B3

uτ

κy
where

B3 ≡
−〈uv〉

u2
τ

. (3.6)

Note that even though B2 and B3 may tend to 1 as Reτ ≫ 1, they are definitely

different from 1 and even functions of y+ and y/δ at finite values of Reτ .

The mean flow profiles show clear impacts of the control schemes on the mean flow

(see Fig. 3.2). For the various control schemes considered at the same Rec = 4250,

the skin friction decreases as a result of both case A1 and A3 but increases when the

control scheme A2 is applied (see Table 3.1). This observation agrees with Fig. 3.2

where mean flow values for cases A1 and A3 are higher than for case A (no control

scheme), and mean flow values are lower for case A2 than for case A.
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Figure 3.2: Mean velocity profiles. For comparison best log-law fits are also plotted.
◦: U+ = y+, · · ·: U+ = 1

0.33
log y+ + 14.2, – · – : U+ = 1

0.34
log y+ + 0.0, - - -:

U+ = 1
0.39

log y+ + 11.2, —–: U+ = 1
0.41

log y+ + 5.2.

With reference to the log-law scaling Eq. (2.49), which results from integration

of Eq. (2.48) if 1/κ is independent of y, the coefficient y d
dy
U+ and B ≡ U+ −
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(
y d

dy
U+

)
log y+ are plotted with respect to y+ in Figs. 3.3 and 3.4, respectively, for

all the six different DNS cases of Table 3.1. Note that y d
dy
U+ is usually referred

to as 1/κ but is in fact B2/(B3κ) in the present context where κ is defined by the

dissipation expression in Eq. (3.5). It is only if B2 and B3 both equal 1 in the

equilibrium layer, as may be the case when Reτ ≫ 1, that d
dy

〈u〉 ≃ B2

B3

uτ

κy
yields

d
dy

〈u〉 ≃ uτ

κy
and that y d

dy
U+ becomes 1/κ in the equilibrium layer.

The values of B are affected by the various control schemes (see Fig. 3.4) in a

way consistent with the observations made two paragraphs earlier (higher values of

B for cases A1 and A3 than for A and lower for case A2). However, it is hard to

conclude on the validity of the log-law from these results and in particular from the

plot in Fig. 3.3 which clearly shows a significant dependence on near-wall conditions,

Reτ and y+. It may be that the log-law is not valid at all or it may be that the

log-law is not valid unless the Reynolds number is sufficiently high, definitely higher

than the Reynolds numbers of the simulations considered in this study.
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Figure 3.3: The inverse von Kármán coefficient ≡ y d
dy
U+ versus y+. Taking the

definition of κ to be given by the left-hand expression in Eq. (3.5) it is really
B2/(B3κ) which is plotted against y+. The effects of the various near-wall actuations
are significant.
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Figure 3.4: B ≡ U+ −
(
y d

dy
U+

)
log y+ as function of y+ for the six different DNS

cases in Table 3.1.

3.3 The stagnation point approach

As this DNS study of the mean flow expression in Eq. (3.5) does not yield clear re-

sults, it is chosen instead to investigate the validity of the dissipation expression in Eq.

(3.5). For this the stagnation point approach is employed (see section 2.4.1) which

has shown recently how the number density of stagnation points in high Reynolds

number homogeneous, isotropic turbulence (HIT) determines salient properties of

turbulent pair diffusion (Goto and Vassilicos, 2004; Salazar and Collins, 2009) and

kinetic energy dissipation rate per unit mass (Mazellier and Vassilicos, 2008; Goto

and Vassilicos, 2009). In particular, a generalised Rice theorem was recently proved

(Goto and Vassilicos, 2009) for high Reynolds number HIT which states that the

Taylor microscale is proportional to the average distance between neighboring stag-

nation points. This average distance is defined as the −1/d power of the number

density of stagnation points which are points in the d-dimensional space of the flow

where the turbulent fluctuating velocity is zero.

The generalised Rice theorem (Goto and Vassilicos, 2009) for high Reynolds num-

ber HIT holds under two main assumptions: (i) statistical independence between

large and small scales and (ii) absence of small-scale intermittency Reynolds num-

ber effects. Note that there is no assumption of Gaussianity in the latter assumption.

Instead it is assumed that the probability density functions (pdf ) of the velocity com-
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ponents and the velocity derivatives are independent of Reynolds number and can

be scaled with u′ and 〈(∂xu
′)2〉

1/2
, respectively. The pdf of velocity derivatives is

also required to decay fast enough at infinity. Now, the question which arises in the

context of the present work is whether this theorem also holds in some region of

turbulent channel flows.

To obtain some insight into this question by DNS, stagnation points of the tur-

bulent fluctuation velocity field are considered u′ ≡ u − 〈u〉 = 0, i.e. points where

all components of the velocity fluctuations around the local mean flow are zero. A

three-dimensional plot of these points for an instant in time in the DNS channel

is presented in Fig. 3.5 just for 0 ≤ y+ ≤ Reτ due to symmetry of the flow. A

fourth-order Lagrangian interpolation and the Newton-Raphson method is used to

locate these points. Details on how to find these points are provided in appendix B.

0
2

4
6

8

0
1

2
3

4
0

100

200

300

400

 x z

 y
+

Figure 3.5: Points where u′ ≡ u − 〈u〉 = 0 for case C at a given instant in time.

Ns(y+) is defined as the total number of these stagnation points in a thin slab

parallel to and at a distance y from the channel’s wall. The dimensions of this slab

are Lx×δy×Lz with slab thickness δy ∝ δν . The average distance between stagnation

points at a height y from the wall is

ℓs ≡
√

LxLz

Ns
(3.7)
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and a Taylor microscale λ(y) can be defined as (see also section 2.3.2)

λ(y)2 ≡
ν

3

2E(y)

ε(y)
(3.8)

where E(y) = 1
2
〈|u′|2〉 and ε(y) = 2ν 〈sijsij〉 with sij the fluctuating velocity’s strain

rate tensor. The question raised is whether a region of turbulent channel flow exists

for Reτ ≫ 1 where

λ(y) = B1ℓs(y) (3.9)

with B1 independent of y and Reynolds number. The answer provided by DNS is

that B1 is indeed approximately constant over an intermediate range δν ≪ y . δ,

but not perfectly so, as the plots in Fig. 3.6 attest to. It is worth noting that this

constancy of B1 appears to be better defined for cases A, B and C where there is no

wall or near-wall actuation (see Fig. 3.6b). Hence, a small discrepancy away from

B1 = Const may be achieved as a result of those different wall-forcings (see Fig.

3.6c). However, part of the even smaller discrepancy in cases A, B and C might be

accountable to neglected small-scale intermittency effects (Kolmogorov, 1962) which,

in the case of high Reynolds number HIT, are known to manifest themselves as a weak

Reynolds number dependence on B1 (Mazellier and Vassilicos, 2008). In the case of

wall-bounded turbulence, small-scale intermittency effects could therefore manifest

themselves as a weak dependence of B1 on local Reynolds number y+. However, this

refinement is not considered in this study.

Combining Eqs. (3.7)-(3.9), one can write

ε =
ν

3

2E

λ2
=
ν

3

2E

B2
1ℓ

2
s

=
ν

3

2E

B2
1LxLz

Ns =
ν

3

2E

B2
1

δνns (3.10)

where the number density of stagnation points ns ≡ Ns/(LxLzδν) was introduced.

Combining this last equation with Eq. (3.4) and using d
dy

〈u〉 = uτ

κy
as well as C ≡

− 2E
3〈uv〉 , then

ns =
Cs
δ3
ν

y−1
+ (3.11)

where Cs is given by

Cs =
B2

1

κB2C
. (3.12)
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Figure 3.6: Support for the generalised Rice theorem as a meaningful approxima-
tion in turbulent channel flows with various Reynolds numbers and different wall
actuations (see Table 3.1).

The classical claims (Pope, 2000) are that the empirical constants κ ≃ 0.4, C ≃ 2

and B2 ≃ 1 in the intermediate range 1 ≪ y+ ≪ Reτ at high enough Reτ . These

claims therefore imply that Cs should also be a constant in that same range and limit

provided B1 is. Whilst, as it was shown, B1 is not too far from being constant in the

range δν ≪ y . δ, κ and C are significantly far from constant in this range for the

Reynolds numbers under consideration (see Fig. 3.3 and Fig. 3.7). Even so, the DNS

evidence (see Fig. 3.8) suggests that Cs tends to a constant within δν ≪ y . δ as

Reτ increases. Remarkably, this condition on Reτ for the constancies of Cs and B1
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Figure 3.7: C with respect to y+ for various Reynolds numbers and different wall-
actuations (see Table 3.1).

seems to require as little as Reτ exceeding a few hundred. It is equally remarkable

that the calculation of Ns, which underpins B1 and Cs, has involved an average over

a number of time-samples that is two orders of magnitude smaller than for the time

average required to statistically converge 〈u〉, 〈uv〉, E and ε.

The constancy of Cs in the range δν ≪ y . δ implies that the number density

of stagnation points decreases with distance from the wall obeying the power-law

ns ∝ y−1
+ in that range. This is in qualitative agreement with Fig. 3.5 which shows

the stagnation points to be increasingly dense as the wall is approached. It should

be noted that this power-law appears to be better defined for cases A, B and C

where there is no wall or near-wall actuation (see Fig. 3.8b). On the other hand,

the different wall-forcings modify the stagnation point structure of the flow and this

is manifested as a discrepancy away from Cs = Const (see Fig. 3.8c).

The constant Cs can be interpreted as representing the number of turbulent

velocity stagnation points within a cube of side-length equal to a few multiples of δν

(see Eq. (3.11)) placed where y equals a few multiples of 10δν as seen in Fig. (3.8a).

This is the lower end of the range where the −1 power-law is valid, i.e. ns ∝ y−1
+ ,

and seems to be where the upper edge of the buffer layer is usually claimed to lie

(Pope, 2000).

Equation (3.11) and consequently Eq. (3.12) have been derived by assuming well-

defined constant values of κ, B2, C and B1. However, the DNS results show that, at
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Figure 3.8: Normalised number of turbulent velocity stagnation points for various
Reynolds numbers and different wall-actuations (see Table 3.1).

the Reynolds numbers considered, B1 and Cs are indeed constant but κ, B2 and C

are clearly not. Equations (3.9) and (3.11) with constant dimensionless values of B1

and Cs seem to be more broadly valid than the assumptions under which Eq. (3.11)

has been derived. Therefore, in the next section the phenomenology behind the new

Eqs. (3.9) and (3.11) and the constant values of B1 and Cs is explored in the range

δν ≪ y . δ. Moreover, section 3.5 goes one step further where the consequences of

the constancies of B1 and Cs on the mean flow profile are derived without assuming

well-defined constant values of κ, B2 and C.
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3.4 Phenomenology

One interpretation of the constancy of B1 can be obtained by considering the eddy

turnover time τ which is defined by τ ≡ E/ε (see also section 2.3.2). Combined with

Eq. (3.8), one obtains τ = 3λ2/2ν. Using Eq. (3.9), B1 = Const is then equivalent

to

τ ∝
ℓ2s
ν

(3.13)

which indicates that in the equilibrium layer, the time it takes for viscous diffusion

to spread over neighbouring stagnation points is the same proportion of the eddy

turnover time at all locations and all Reynolds numbers. In high Reynolds number

turbulence, the turnover time is also the time it takes for the energy to cascade to

the smallest scales.

For an interpretation of the constancy of Cs note first that Eq. (3.11) and ℓs =√
LxLz

Ns
= (nsδν)

−1/2 imply ℓ2s = C−1
s δνy. From Eqs. (3.8) and (3.9) it then follows

that

ε =
2

3

Euτ
κsy

(3.14)

with

κs ≡
B2

1

Cs
. (3.15)

The meaning of Cs and B1 constant is therefore, using Eq. (3.14), that the eddy

turnover time τ = E/ε is proportional to y/uτ throughout the range where they are

constant. The constant of proportionality is 3κs/2 where κs is determined by the

stagnation point coefficients B1 and Cs and is constant if they are constant. κs is

referred to as the stagnation point von Kármán coefficient.

Note that, in the present context, Eq. (3.14) replaces the usual ε = u3
τ/κy (Pope,

2000), and that these two equations reduce to the same one only if and where E ∝ u2
τ

independently of y+ and Reτ .

3.5 The mean flow profile in the equilibrium layer

In this section the consequences of the constancies of B1 and Cs on the mean flow

profile are spelt out. In the equilibrium layer the expectation is that B2 → 1 in

the limit Reτ → ∞. This means that −〈uv〉 d
dy

〈u〉 = B2ε may be replaced by
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−〈uv〉 d
dy

〈u〉 ≃ ε in the equilibrium layer. The constancy of B1 and Cs in this same

limit implies a constant κs = B2
1/Cs in ε = 2

3
E+

u3
τ

κsy
where E+ ≡ E/u2

τ . It then

follows that −〈uv〉 d
dy

〈u〉 ≃ ε = 2
3
E+

u3
τ

κsy
. In turbulent channel/pipe flows where

one can have some mathematical confidence that, as Reτ → ∞, −〈uv〉 → u2
τ in an

intermediate layer δν ≪ y ≪ δ, it yields

d 〈u〉

dy
≃

2

3
E+

uτ
κsy

(3.16)

in that same layer and limit. At finite Reynolds numbers this new equation (3.16)

should be replaced by d
dy

〈u〉 ≃ 2
3
B2

B3
E+

uτ

κsy
and account should be taken of the fact

that B2, B3 and κs all have their own, potentially different, rates of convergence

towards their high Reynolds number asymptotic constant values.

An important step taken in deriving both Eqs. (3.5) and (3.16) has been the

high Reynolds number local energy balance P ≃ ε in the equilibrium layer. In terms

of the classical assumption ε ≃ u3
τ/κy, Eq. (3.4) implies that Py/u3

τ ≃ B2/κ which

should be constant in the equilibrium layer as a result of this local energy balance

between production and dissipation of turbulent kinetic energy. On the other hand,

the new Eq. (3.14) along with Eq. (3.4) gives 3
2
Py/(E+u

3
τ ) ≃ B2/κs which implies

that B2/κs should be constant in the equilibrium layer rather than B2/κ due to

the balance between P and ε. Notice that the main difference here is the presence

of E in Eq. (3.14). DNS results for Py/u3
τ and 3

2
Py/(E+u

3
τ ) are plotted against

y+ in Figs. 3.9a and 3.9b, respectively. It is clear that the collapse between the

different Reynolds number and wall-actuation data is far worse and the y-dependence

in the equilibrium layer far stronger for B2/κ than for B2/κs. These DNS results

are for Reynolds numbers which are not very large; yet the high-Reynolds number

constancy of B2/κs in the equilibrium layer seems already not exceedingly far from

being reached (see Fig. 3.9b) whereas no such indication is shown in the plot of B2/κ

(see Fig. 3.9a).

From Eq. (3.16), a direct plot of 3
2

y
E+uτ

d
dy

〈u〉 should give 1/κs in the equilibrium

layer when Reτ → ∞ and B2/(B3κs) in that layer at finite Reynolds numbers. Fig.

3.10 presents this plot for each of the cases in Table 3.1. Notice that B2/(B3κs) does

not compare favourably with the plots of y
uτ

d
dy

〈u〉, effectively plots of B2/(B3κ), in

Fig. 3.3. However, this does not mean that in the limit Reτ → ∞, Eq. (3.5) is better

than Eq. (3.16) in the equilibrium layer. The facts that Cs and B1 are approximately
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versus y+ because of Eq. (3.5) and P = B2ε.

10
0

10
1

10
2

0

1

2

3

4

5

6

7

8

 y+

 3
P

y 
/ 2

E
u

τ

 

 

Case A
Case A1
Case A2
Case A3
Case B
Case C

(b) 3

2
Py/(E+u3

τ ) versus y+. This is the same
as B2/κs versus y+ because of Eq. (3.14) and
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Figure 3.9: Linear-log plots of (a) B2/κ and (b) B2/κs as functions of y+ for various
Reynolds numbers and different wall-actuations (see Table 3.1).
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Figure 3.10: Plot 3
2

y
E+uτ

d
dy

〈u〉 with respect to y+ for various Reynolds numbers and

different wall actuations (see Table 3.1). This is effectively plot of B2/(B3κs) to be
compared with the similarly plotted B2/(B3κ) in Fig. 3.3.

constant in the range δν ≪ y . δ and that B2/κ is much less collapsed and less

constant along y than B2/κs at Reynolds numbers of Table 3.1 (compare either Fig.

3.9a with Fig. 3.9b or Fig. 3.11a with Fig. 3.11b. Fig. 3.11 are just linear-linear

replots of Fig. 3.9 for easier comparison with Fig. 3.3.) suggest that the strong y and

Reτ dependencies of B3 partly cancel those of B2/κ at those Reynolds numbers. As
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the Reynolds number is increased to the point where B3 reaches its asymptotic value

1 then this cancellation will either disappear if B2/κ does not tend to a constant

or will remain if it does. In the specific context of the present stagnation point

approach, the choice between these two scenarios will depend on the high-Reynolds

number scalings of the kinetic energy E.
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Figure 3.11: Linear-linear plots of compensated (a) B2/κ and (b) B2/κs as functions
of y+ for various Reynolds numbers and different wall-actuations (see Table 3.1).

According to classical similarity scalings, as Reτ → ∞, E ∝ u2
τ independently of

y, δ and ν in the equilibrium range δν ≪ y ≪ δ. If this is true, then Eq. (3.5) and

the log-law are recovered from Eqs. (3.14) and (3.16) with a von Kármán coefficient

κ ∝ κs. This discussion naturally leads to the non-universality of measured von

Kármán coefficients (Nagib and Chauhan, 2008), which is now commented on before

moving to the analysis of some of the highest Reynolds number DNS data currently

available. So, if E ∝ u2
τ at high Reynolds numbers and the log-law holds as a

consequence of Eq. (3.16), then, because of Eq. (3.15), the von Kármán coefficient

will have to be proportional to B2
1 and inversely proportional to Cs, the number of

stagnation points within a volume δ3
ν at the upper edge of the buffer layer. There is

no a priori reason to expect B1 and Cs to be the same in turbulent channel and pipe

flows, for example. Hence, there is no a priori reason for the von Kármán coefficient

to be the same in different such flows either.

On the other hand, Townsend’s idea of inactive motions (see section 2.4 and

Bradshaw (1967)) would suggest that E does not scale as u2
τ in the equilibrium layer
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when Reτ → ∞. Then, Eq. (3.16) does not yield Eq. (3.5) and B2/(B3κ) does not

tend to a constant in the high Reynolds number limit. Therefore, in the case where

the log-law does not hold because of the effect that inactive motions have on E+ in

Eq. (3.16), data fitted by a log-law may yield different von Kármán coefficients both

as a result of κs = B2
1/Cs but also as a result of fitting mismatches.

In conclusion, whatever the scalings of E+, one can expect measured values of

the von Kármán coefficient to be non-universal as has indeed been recently reported

by Nagib and Chauhan (2008).

3.6 High Reynolds number DNS data

Some of the above results and conclusions are now tested on a set of data which

includes the highest Reynolds number channel flow computations currently available

(Hoyas and Jiménez, 2006), i.e. Reτ = 2000. This set also includes data for Reτ =

950 (Hoyas and Jiménez, 2006) and case C, the highest Reynolds number DNS of

Table 3.1, i.e. Reτ = 395. Plots of 3
2

y
E+uτ

d
dy

〈u〉 = B2/(B3κs) (see Fig. 3.12) and
y
uτ

d
dy

〈u〉 = B2/(B3κ) (see Fig. 3.13) as well as 3
2
B3

y
E+uτ

d
dy

〈u〉 = B2/κs (see Fig.

3.14) and B3
y
uτ

d
dy

〈u〉 = B2/κ (see Fig. 3.15) are presented below.
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Figure 3.12: Plots of 3
2

y
E+uτ

d
dy

〈u〉 as function of (a) y+ and (b) y/δ. DNS of turbulent
channel flows without wall actuations. The Reτ = 950 and 2000 data are from Hoyas
and Jiménez (2006).
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Figure 3.13: Plots of y
uτ

d
dy

〈u〉 as function of (a) y+ and (b) y/δ. DNS of turbulent
channel flows without wall actuations. The Reτ = 950 and 2000 data are from Hoyas
and Jiménez (2006).
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Figure 3.14: Plots of 3
2
B3

y
E+uτ

d
dy

〈u〉 as function of (a) y+ and (b) y/δ. DNS of
turbulent channel flows without wall actuations. The Reτ = 950 and 2000 data are
from Hoyas and Jiménez (2006).

These high Reynolds number results support and extend the claims made in

the previous section, i.e. B2/κs appears to have the least departures from con-

stancy in the intermediate range, better than B2/(B3κ) which is however better

than B2/(B3κs). The variations of B2/κ are offset by those of B3 (see also Fig.

3.16) which explains why B2/(B3κ) looks better than B2/(B3κs). The situation re-
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〈u〉 as function of (a) y+ and (b) y/δ. DNS of turbulent
channel flows without wall actuations. The Reτ = 950 and 2000 data are from Hoyas
and Jiménez (2006).

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

 y+

 B
3 ≡

 −
<u

v>
/u

τ2

 

 

Case C
DNS Data, Reτ=950

DNS Data, Reτ=2000

(a)

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

 y/δ

(b)

Figure 3.16: Plots of B3 ≡ −〈uv〉 /u2
τ as function of (a) y+ and (b) y/δ. DNS of

turbulent channel flows without wall actuations. The Reτ = 950 and 2000 data are
from Hoyas and Jiménez (2006).

mains therefore identical to the one that was encountered with the lower Reynolds

number simulations in the previous section. It is necessary that Reτ ≫ 2000 to

come close to the asymptotic value B3 → 1 in an intermediate layer (see Fig. 3.16),

as already shown by experimental measurements spanning an ever wider Reynolds

number range in Nagib and Chauhan (2008).
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The classical similarity scaling E ∝ u2
τ for Reτ ≫ 1 is not obvious even at

this high Reynolds numbers data of very laborious DNS (see Fig. 3.18a). Thus,

Eq. (3.16) suggests that power-laws cannot be ruled out. Alternative forms for

the mean flow profile at high Reynolds numbers have also been proposed in the

literature (see section 2.3.1 and Barenblatt (1996); George (2007)) and in Fig. 3.17

the suggestion of a power-law form is assessed. The high Reynolds number data

used here appears to give significant support to such a power-law form with power

exponent n ≡ y
U+

d
dy
U+ ≃ 2/15, i.e. d

dy+
U+ ∝ y

−(1+2/15)
+ in the intermediate layer. On
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Figure 3.17: Power law mean velocity profile: n = y
U+

d
dy
U+ plotted against y+. DNS

of turbulent channel flows without wall actuations. The Reτ = 950 and 2000 data
are from Hoyas and Jiménez (2006).

the basis of Eq. (3.16), this result suggests that E+ has a power-law dependence on y+

in that same layer. Indeed, combining Eq. (3.16) in its finite Reynolds number form,

i.e. d
dy

〈u〉 ≃ 2
3
B2

B3
E+

uτ

κsy
, with d

dy+
U+ ≃ B4

κs
y
−(1+2/15)
+ yields E+y

2/15
+

B2

B3
≃ 3

2
B4, i.e. a

constant value of E+y
2/15
+ B2/B3 in the equilibrium layer if B4 is constant in that layer.

Figure 3.18b supports this conclusion though with a constant value of E+y
2/15
+ B2/B3

which appears to increase slowly with Reynolds number. This Reynolds number

dependence may be intrinsic to E+ resulting, perhaps, from Townsend’s attached

eddy hypothesis.
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Figure 3.18: Plots of (a) E+ and (b) E+y
n
+
B2

B3
with n = 2

15
as functions of y+ for DNS

of turbulent channel flows without wall actuations. The Reτ = 950 and 2000 are
from Hoyas and Jiménez (2006).

3.7 Summary

On the basis of various DNS of turbulent channel flows and the framework of mul-

tiscale flow topology, using stagnation points, the following picture is proposed.

(i) At a height y from either wall, the Taylor microscale λ is proportional to the

average distance ℓs between stagnation points of the fluctuating velocity field, i.e.

λ(y) = B1ℓs(y) with B1 constant, for δν ≪ y . δ, where the wall unit δν is defined

as the ratio of kinematic viscosity ν to skin friction velocity uτ and δ is the chan-

nel’s half width. (ii) The number density ns of stagnation points varies with height

according to ns = Cs

δ3ν
y−1

+ where y+ and Cs is constant in the range δν ≪ y . δ. (iii)

In that same range, the kinetic energy dissipation rate per unit mass, ǫ = 2
3
E+

u3
τ

κsy

where κs = B2
1/Cs is the stagnation point von Kármán coefficient. (iv) In the limit

of exceedingly large Reτ , large enough for the Reynolds stress −〈uv〉 to equal u2
τ in

the range δν ≪ y ≪ δ, and assuming that production of turbulent kinetic energy

balances dissipation locally in that range and limit, the normalised mean velocity

U+ obeys d
dy
U+ ≃ 2

3
E+

κsy
in that same range. (v) It follows that the von Kármán

coefficient κ is a meaningful and well-defined coefficient and the log-law holds in tur-

bulent channel/pipe flows only if E+ is independent of y+ and Reτ in that range, in

which case κ ∝ κs. (vi) In support of d
dy
U+ ≃ 2

3
E+

κsy
, DNS data of turbulent channel
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flows which include the highest currently available values of Reτ are best fitted by

E+ ≃ 2
3
B4y

−2/15
+ and d

dy+
U+ ≃ B4

κs
y
−1−2/15
+ with B4 independent of y in δν ≪ y ≪ δ if

the significant departure from −〈uv〉 ≃ u2
τ at these Reτ values is taken into account.



Chapter 4

Viscoelastic turbulence: a brief

introduction

After giving a short introduction in classical hydrodynamic wall-bounded turbulence,

the basics of polymeric fluids and the phenomenon of polymer drag reduction are

presented in this chapter, before studying viscoelastic turbulence in a channel flow

and the dynamics of polymer-turbulence interactions. Section 4.1 consists of the pre-

liminaries on polymers and their dynamics in fluids. The derivation of the evolution

equation for the elastic dumbbell, a classic mechanical model that represents the

conformations of a polymer molecule, is described in section 4.2. This section starts

with polymer kinetic theory as the basis and draws up a governing equation for a

continuum field, leading eventually to the FENE-P model, a typical closure which

has been employed frequently in numerical simulations to reproduce turbulent drag

reduction of viscoelastic solutions. Here emphasis has given on the correct formula-

tion of the FENE-P model, since there are several false formulations in the literature

that improperly combine two different normalisations (Jin and Collins, 2007). In the

end, section 4.3 provides an overview of polymer drag reduction and some of the

most favourite candidate phenomenologies proposed during the years of research. It

is notable to mention that by the year 1995 there were about 2500 papers on the

subject (Procaccia et al., 2008). Detailed reviews on various aspects of polymer drag

reduction are provided by Lumley (1969); Virk (1975); De Gennes (1990); McComb

(1992); Gyr and Bewersdorff (1995); Sreenivasan and White (2000); Bismarck et al.

(2008); White and Mungal (2008).

61
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4.1 Polymer dynamics in fluids

A polymer molecule consists of a large number of identical units, the monomers,

which are linked by chemical bonds forming a long chain. The typical number of

monomers for PEO, i.e. Polyethylene oxide (N × [−CH2−CH2−O]), one of the most

commonly used polymers in drag reduction experiments, is N ∼ O(104 − 106). This

very large number of monomers induces many degrees of freedom but it was shown

during years of research (Doi and Edwards, 1986; Bird et al., 1987; Larson, 1988) that

the most important degree of freedom is the end-to-end distance, which corresponds

to the largest characteristic time scale of a coil. The definition of the average time

scale of a stretched coil to relax back to its equilibrium configuration, as a result of

Brownian bombardment, has been given by Zimm (1956)

τp ≃
µsR

3
G

κBT
(4.1)

where µs is the solvent viscosity, RG is the radius of gyration for a polymer at rest,

κB is the Boltzmann constant and T is the solution temperature.

A polymer in solution is in a coiled state of spherical shape in a statistical sense,

which corresponds to the average of all possible configurations. For linear flexible

polymer molecules in good solvent at equilibrium, Flory’s law (Flory, 1989) holds for

the average coil size

RG ≃ N3/5α (4.2)

where α is the monomer length, with typical values of RG ranging between 0.1−1µm.

The elongated shape of a stretched polymer in a fluid is characterised by its end-

to-end distance R ≫ RG. Even Rmax, the maximum polymer elongation, is much

smaller than Kolmogorov viscous scale η, allowing one to consider the fluctuating

velocity around a polymer in a turbulent flow, as homogeneous shear.

The relative strength between the relaxation of the polymer and stretching ex-

erted by the flow is expressed by Weissenberg number, defined as

We ≡
τp
τf

(4.3)

where τf is a characteristic flow time scale. For We≫ 1, polymers become substan-

tially elongated by the flow, as the coil relaxation is much slower than the stretching
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flow time scale. This variation in the coil shape is named coil-stretch transition. In

contrast, for We≪ 1 the polymer molecules remain passive in their coiled state.

The enormous number of degrees of freedom of each coil makes a polymer macro-

molecule an extraordinary complex system, whose dynamics depend on the confor-

mations of the polymer molecules, i.e. orientation and degree of stretching of coils.

The study of detailed motions of this complex system and their relations to the

non-equilibrium properties would be prohibitive. Only after elimination of the fast

relaxation processes of local motions in favour of stochastic noise, it is possible to

study the dynamics of longer relaxation time scales (Öttinger, 1996), such as the

end-to-end conformation, that are responsible for many physical properties of poly-

mers in fluids, such as viscoelastic turbulence and polymer drag reduction. Thus,

coarse-grained mechanical models, such as bead-rod-spring models, are very crucial

in polymer kinetic theory (Doi and Edwards, 1986; Bird et al., 1987; Öttinger, 1996).

The concentration of polymers in a turbulent flow can be assumed to be well

mixed and roughly homogeneous. So, for a consistent hydrodynamic description

of dilute polymer solutions, where interactions between different polymer molecules

are ignored, a field of polymers needs to be considered rather than individual coils.

Consequently, in this study a continuum mechanical approach is preferable under

these conditions, making mathematical and numerical treatments more tractable

than for kinetic theories. Then, the governing equations for an incompressible fluid

with polymers are given by the conservation of mass and momentum balance

∇ · u = 0

ρDtu = −∇p+ ∇ · σ
(4.4)

where σ is the total stress tensor. Here, the total stress is the sum of a Newtonian

part σ(s) due to the solvent and a non-Newtonian part σ(p) due to the long-chain

polymer molecules dissolved in the fluid according to

σ = σ(s) + σ(p) = 2βµ0s + σ(p) (4.5)

where β ≡ µs/µ0 is the ratio of the solvent viscosity µs to the total zero-shear-rate

viscosity of the solution µ0 and s is the fluctuating strain rate tensor. The polymer

stress tensor must be related to the flow field and to the polymer configuration. The
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next section provides details on the dynamics of a mechanical model, a bead-spring

model for dilute polymer solutions that captures the conformation of the end-to-end

distance relaxation process of the entire molecule relating it to the stress tensor.

4.2 Elastic dumbbell model

Consider an elastic dumbbell immersed in a Newtonian fluid, consisting of two beads

and a spring in between. The configuration of a dumbbell is represented by the

end-to-end vector Q that specifies the length and direction of the dumbbell.

1

Q

u(Q ,t)2

u(Q ,t)

Figure 4.1: The elastic dumbbell model.

Following Bird et al. (1987), it is assumed that the velocity flow field u around

the dumbbell is homogeneous, the hydrodynamic interactions, i.e. any effect of the

beads on the flow, and external forces, such as gravity and inertia of the beads, are

neglected because it can be shown that the centre of mass of a dumbbell moves with

the local flow velocity. Hence, Newton’s second law for the dumbbell takes the form

−ζ

(
dQ

dt
− (Q · ∇)u

)
+ FB + FS = 0 (4.6)

where the first term is the viscous drag force FD, resulting from the drag the solvent

exerts on the beads, the second term a random Brownian force FB, due to the impact

of solvent molecules on the beads and an elastic spring force FS, which is the result
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of the dumbbell intramolecular potential. FD is proportional to the discrepancy

between the bead velocities dQ/dt and the relative flow velocities near the beads

(Q·∇)u. The constant of proportionality for the drag force is ζ = 6πµsRG according

to Stokes’ law, considering spherical beads.

Equation (4.6) combines macroscopic forces (FD) with microscopic forces (FB)

and that is why it is of Langevin type. A Langevin equation is not solvable in the

conventional deterministic sense because of the random Brownian term. However,

one can seek the probability density function ψ(Q, t) that a dumbbell has an end-

to-end vector Q at some time t by considering an ensemble of dumbbells. Then, it

is known (Chandrasekhar, 1943) that the Brownian force is equal to

FB = −κBT
∂

∂Q
lnψ. (4.7)

Hence, the Langevin equation (4.6) can be rewritten as

dQ

dt
= (Q · ∇)u −

κBT

ζ

∂

∂Q
lnψ −

1

ζ
FS (4.8)

Now, multiplying Eq. (4.8) by ψ, differentiating with respect to Q and using the

probability balance equation in Q-space

∂tψ +
∂

∂Q
· Jp = 0 (4.9)

which can be derived in a similar manner to continuity equation (2.1) in real space

R3 (Larson, 1988), with Jp ≡
dQ

dt
ψ the probability flux vector, a diffusion or Smolu-

chowski equation can be obtained

∂tψ +
∂

∂Q
·

[
(Q · ∇)uψ −

κBT

ζ

∂ψ

∂Q
−
ψ

ζ
FS

]
= 0 (4.10)

since ψ ∂
∂Q

lnψ = ψ 1
ψ
∂ψ
∂Q

= ∂ψ
∂Q

. Eventually, a Fokker-Planck equation can be derived

for ψ

∂tψ + (Q · ∇)u ·
∂ψ

∂Q
−
κBT

ζ

∂2ψ

∂Q2
−

1

ζ

∂

∂Q
· (ψFS) = 0 (4.11)
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taking into account that

∂

∂Q
· [(Q · ∇)uψ] = ∂Qi

(Qj∂xj
ui)ψ + (Qj∂xj

ui)∂Qi
ψ

= δji∂xj
uiψ +Qj∂Qi

∂xj
uiψ + (Qj∂xj

ui)∂Qi
ψ

= (∇ · u)ψ + (Q · ∇)u ·
∂ψ

∂Q

= (Q · ∇)u ·
∂ψ

∂Q
(4.12)

A consistent hydrodynamic description in terms of the effects of the ensemble of

polymers in solution is provided by a continuum approach. The fact that the most

important degree of freedom for a single chain is the end-to-end distance makes the

derivation of a constitutive equation for the conformation tensor imperative. The

conformation tensor is the ensemble average of the dyadic product of the end-to-

end vector of the polymer chain, viz. 〈QQ〉 =
∫
R3

QQψ(Q, t)d3Q. Multiplying Eq.

(4.11) with QQ, taking the ensemble average by integrating over R3 and using the

divergence theorem and the fact that ψ → 0 at maximum |Q| (Larson, 1988) gives

∂t 〈QQ〉+ (u ·∇) 〈QQ〉 = 〈QQ〉 ·∇u + ∇u⊤ · 〈QQ〉+
2κBT

ζ
I −

2

ζ
〈QFS〉 (4.13)

Ultimately, the left hand side of the evolution equation for the conformation tensor

convects the dumbbells through the flow, the first two terms on the right hand side

describe deformation by hydrodynamic forces, the third term refers to Brownian

motion and the fourth term is the elastic retraction of the coil due to some spring

force.

4.2.1 Finite Extensible Nonlinear Elastic model

The polymer stress tensor involves contributions from the motion of the beads and

the intramolecular potential, i.e. the connecting spring in this particular case. Based

on kinetic theory arguments, the Kramers expression for the stress can be derived

(Bird et al., 1987; Öttinger, 1996), which relates the stress tensor σ(p) to the ensemble

average of the dyadic product QFS, viz.

σ(p) = −npκBTI + np 〈QFS〉 (4.14)
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where np is the number density of polymers per unit volume. The first term in

Eq. (4.14) represents isotropic equilibrium and the second the deviation from this

equilibrium because of intramolecular forces.

The spring force is a vital ingredient for the mean field representation of poly-

mer dynamics through the stress tensor. A Hookean spring force provides infinite

extensibility, whereas real polymers can get extended to their fully stretched length

at most, unless degradation takes place. Hence, this linear spring-force law is a

poor approximation for large polymer extensions. There are more realistic spring

forces instead, like Warner’s finite extensible nonlinear elastic (FENE) spring-force

law (Warner, 1972)

FS =
HQ

1 −Q2/Q2
0

(4.15)

where H is the spring constant, Q2 = trQQ is the squared actual length of the

polymer and Q2
0 ≡ bκBT/H is the maximum separation of the beads, with b, a

dimensionless length parameter describing the finite extensibility of these springs.

Values of b cannot be chosen arbitrarily. According to Öttinger (1996), the bond

angles for a chain with a pure carbon backbone are known and one can obtain the

estimate

b ≈
NC

σ2
sfN

(4.16)

where NC is the number of carbon atoms in the backbone of the polymer macro-

molecule, σsf is an empirical steric factor and b is supposed to be a large num-

ber. Note that in the limit b → ∞, the Hookean spring-force law is recovered, viz.

FS = HQ.

In this study, a modification of the FENE model is employed, called the FENE-P

model (Bird et al., 1980), which is a closure for σp in terms of 〈QQ〉 introduced

through the Peterlin (1961) linearisation and comes in Warner’s force as follows

FS =
HQ

1 − 〈Q2〉 /Q2
0

. (4.17)

Then, Kramers expression for the stress tensor Eq. (4.14) becomes

σ(p) = −npκBTI + np
〈QQ〉

1 − 〈Q2〉 /Q2
0

. (4.18)
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According to Wedgewood and Bird (1988), the parameter npκBT can be related to

the viscosity ratio β, which is inversely proportional to the polymer concentration,

through equation

µp = (1 − β)µ0 = npκBTτp
b

b+ 3
(4.19)

where µp is the intrinsic polymer viscosity and the relaxation time scale of the poly-

mer can be given in terms of the model parameters as τp ≡ ζ/2H.

The dumbbell vector can be scaled with the equilibrium length
√
κBT/H, so that

Q̃ = Q/
√
κBT/H and the conformation tensor C = 〈Q̃Q̃〉, which is symmetric and

strictly positive definite∗. At this point, Eq. (4.18) combined with Eq. (4.19) and

using the definition of Q2
0 implies

σ(p) =
(1 − β)µ0

τp

b+ 3

b

(
C

1 − trC/b
− I

)
. (4.20)

Moreover, it is preferred to normalise such that the equilibrium condition is defined

as C̃eq = I (Jin and Collins, 2007). So, after some algebra Eq. (4.20) entails

σ(p) =
(1 − β)µ0

τ̃p

(
f(trC̃)C̃ − I

)
(4.21)

with τ̃p = b
b+3

τp, C̃ = b+3
b

C and the Peterlin function

f(trC̃) =
L2
p − 3

L2
p − trC̃

(4.22)

where L2
p = b + 3 is the length of the fully stretched polymer coil and trC̃ ≤ L2

p

preventing the dumbbell to reach each maximum extensibility, since as trC̃ → L2
p

the force required for further extension approaches infinity. Then, using Eq. (4.17)

and based on this normalisation Eq. (4.13) can be rewritten as

∂tC̃ + (u · ∇)C̃ = C̃ · ∇u + ∇u⊤ · C̃ −
1

τ̃p
(fC̃ − I). (4.23)

Essentially, this evolution equation as well as Eqs. (4.4), (4.5) and (4.21) form a

closed set of equations.

∗A symmetric matrix C is strictly positive definite if xCx⊤ > 0, ∀x 6= 0
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The elastic potential energy per unit volume Ep stored by FENE-P dumbbells

can now be specified using Eq. (4.17) as follows

Ep = np

∫
FS(Q)d3Q

= np

∫
HQ

1 − tr 〈QQ〉 /Q2
0

d3Q

= −
npHQ

2
0

2

∫
−2Q/Q2

0

1 − tr 〈QQ〉 /Q2
0

d3Q

= −
npHQ

2
0

2
ln(1 −

〈
Q2
〉
/Q0) + Ep0

=
npκBTb

2
ln(1 − trC/b)−1 + Ep0

=
(1 − β)µ0(L

2
p − 3)

2τ̃p
ln(f(trC̃)) + Ep0 (4.24)

where Ep0 is a constant reference energy at equilibrium. After that, taking the time

derivative of the elastic potential energy

∂tEp =
(1 − β)µ0

2τ̃p
(L2

p − 3)
1

f

∂f

∂C̃ii

∂C̃ii
∂t

=
(1 − β)µ0

2τ̃p
f
∂C̃ii
∂t

, (4.25)

using the trace of Eq. (4.23), viz.

∂C̃ii
∂t

= 2C̃ik∂kui −
1

τp
(f(C̃kk)C̃ii − δii) (4.26)

and similarly for the ∇Ep, one can derive the following balance equation for the

elastic potential energy of FENE-P dumbbells

∂tEp + u · ∇Ep = σ(p) · ∇u −
1

2τ̃p
f(trC̃)trσ(p) (4.27)

where Ep is produced by σ(p) · ∇u, dissipated by 1
2eτp
f(trC̃)trσ(p) and transported

by u · ∇Ep.

The FENE-P model is the most widely used coarse-grained model that has suc-

cessfully reproduced qualitatively the phenomenon of polymer drag reduction in DNS

of various turbulent flows, such as channel flows (Sureshkumar et al., 1997; Dim-

itropoulos et al., 1998; De Angelis et al., 2002; Sibilla and Baron, 2002; Dubief et al.,
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2004; Ptasinski et al., 2003; Li et al., 2006), boundary layers (Dimitropoulos et al.,

2005, 2006) and homogeneous flows (De Angelis et al., 2005; Kalelkar et al., 2005;

Perlekar et al., 2006; Vaithianathan et al., 2006). There have been several studies

(Massah et al., 1993; Van Heel et al., 1998; Ilg et al., 2002; Zhou and Akhavan, 2003;

Terrapon et al., 2004; Jin and Collins, 2007) comparing the performance of various

more detailed polymer models with FENE-P to quantify the errors associated with

its coarse-grained assumption of the polymer dynamics. Although there are cases

in which the particular model does not capture the correct detailed physics, the

overall performance, in terms of its prediction of average properties of the polymer-

turbulence interaction, is close to more advanced models and experimental results.

4.3 Polymer drag reduction phenomenologies in

turbulent flows

The phenomenon of drag, which is distinguished from viscous dissipation, should be

discussed in the context of wall-bounded turbulent flows. The existence of a wall

breaks homogeneity and together with the no-slip wall boundary condition it sets

a momentum flux from the bulk to the wall, which is responsible for the drag. As

was mentioned in section 2.3, the force necessary to drive the flow through a channel

is a negative time-averaged mean pressure gradient along the length of the channel,

−d 〈p〉 /dx. Therefore, in this context the drag reduction can be defined as

%DR ≡
−d〈p〉

dx
−
(
−d〈p〉

dx

) ∣∣
0

−d〈p〉
dx

∣∣
0

· 100 =
u2
τ − u2

τ

∣∣
0

u2
τ

∣∣
0

· 100 =

((
Reτ
Reτ0

)2

− 1

)
· 100 (4.28)

where u2
τ = − δ

ρ
d〈p〉
dx

and quantities with and without subscript 0 refer to Newto-

nian†and viscoelastic fluid flow, respectively.

The addition of minute concentrations of long chain polymer molecules to wall-

bounded turbulent flows can dramatically reduce frictional drag, as was discovered

by Toms (1948), while performing experiments on the degradation of polymers. To

rephrase this, a few parts per million by weight polymer are enough to reduce the

†Any departure from the Newtonian behaviour, i.e. σij ∝ Sij , with some constant of propor-
tionality independent of the rate of strain, should be called non-Newtonian.
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force necessary to drive the flow through a channel by a factor of up to 70%. Turbu-

lence is a multiscale phenomenon with a vast spectrum of spatial scales and there-

fore a very large number of degrees of freedom. Therefore, due to the fact that

even Rmax ≪ η, one might anticipate that the small size polymers can only af-

fect sub-Kolmogorov scale processes and that scales ℓ > η would remain unaffected.

Surprisingly, the individual dynamics of the small polymer chains are able to fun-

damentally modify the large scale structures and statistics, as observed by the drag

reduction effect.

Polymer drag reduction in wall-bounded turbulent flows induces higher mean

velocities, implying changes in the von Kármán law (see Eq. (2.49)). The systematic

experimental work by Warholic et al. (1999) classified flows at low drag reduction

(LDR) and high drag reduction (HDR) regimes, based on the statistical trends of the

turbulent velocity field. In particular, when |%DR| . 40 (LDR), the mean velocity

profile crosses over to a log-law with a higher value of the intercept constant B (see

Eq. (2.49)), i.e. larger mean velocity, parallel to the von Kármán law (see Fig. 4.2),

though for 40 < |%DR| . 60 (HDR), the slope of the log-region increases until it

reaches the empirical maximum drag reduction (MDR) asymptotic limit. This mean

velocity profile at MDR was discovered experimentally in pipe flow by Virk et al.

(1967); Virk (1975) and it is called the MDR or Virk’s asymptote. This asymptote

has also been confirmed experimentally in channel flow by Warholic et al. (1999).

Virk et al. (1967); Virk (1975) observed that the mean velocity profile is bounded

between von Kármán’s logarithmic law and this universal asymptotic state, which is

independent of the Newtonian solvent, the characteristics of the polymer additives

and the flow geometry, given by the empirical relation

U+ =
1

κv

log y+ +Bv (4.29)

where κ−1
v ≃ 11.7 and Bv ≃ −17. On the other hand, the position of the cross-overs

in the LDR and HDR regimes are not universal, because they depend on the polymer

characteristics and the flow geometry.

Moreover, the rms streamwise velocity fluctuations u′ show an increase at the peak

at LDR, but a decrease at HDR, along with a continuous shift of this peak away from

the wall throughout the drag reduction regimes. This shift represents the thickening

of the elastic layer, which lies between the viscous and the logarithmic layer. The
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Figure 4.2: Mean velocity profiles at different drag reduction regimes.

wall-normal v′ and spanwise w′ velocity fluctuations decrease monotonically as well as

the Reynolds shear stress 〈uv〉, and their peak shifts away from the wall, throughout

the drag reduction regimes, with the polymer shear stress playing an increasingly

important role in sustaining turbulence (White and Mungal, 2008). Warholic et al.

(1999) report that turbulence is sustained entirely by the polymer stresses in the

HDR and MDR regimes because of the complete attenuation of the Reynolds shear

stress that they observe. This is controversial, as other studies (Ptasinski et al., 2003;

Min et al., 2003a; Dubief et al., 2004) have observed that Reynolds stress remains

finite even though it is strongly diminished at the HDR and MDR regime, which

supports the idea that polymer stresses play a more significant role in the near-wall

dynamics of the flow than the Reynolds shear stress.

The polymer drag reduction phenomenon has been known for almost sixty years

and has attracted attention both from the fundamental and applied perspective,

however, a theory for the action of the polymers and its effect on turbulent struc-

tures is still elusive (White and Mungal, 2008). A theory of polymer drag reduction

should provide an explanation of the drag reduction onset, as well as the MDR

law and its universality, which plays a significant fundamental role in understand-

ing the phenomenon. Several theoretical concepts have been proposed but all have

been subjected to criticism. The proposed theories mainly fall into two categories,

that of viscous (Lumley, 1969; Procaccia et al., 2008) and that of elastic effects

(Tabor and de Gennes, 1986; Joseph, 1990; Sreenivasan and White, 2000). The prin-
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cipal phenomenology based on viscous explanation can be attributed to the time-

criterion/coil-stretch transition by Lumley (1969, 1973), which basically claims that

drag reduction occurs due to randomly coiled polymers that are fully stretched pri-

marily in regions of high fluctuating strain rates, like the buffer layer, and therefore

strongly enhance the elongational (intrinsic‡) viscosity. However, observations of

drag reduction from polymer injection at the centre of a pipe, where wall effects

are not important (McComb and Rabie, 1979; Bewersdorff, 1982, 1984), prompted

Tabor and de Gennes (1986); De Gennes (1990) to develop the elastic theory, a ‘cas-

cade theory’ for three-dimensional turbulence without any wall effect, where polymer

effects at small scales are described by elasticity and not by viscosity.

Both phenomenologies are conjectural and somewhat qualitative, failing to faith-

fully reveal the whole picture, with none of them providing a satisfactory explanation

for the MDR law. Only recently, Procaccia et al. (2008) presented a phenomenolog-

ical theory based on Lumley’s arguments and by making ad hoc assumptions were

able to derive the mean velocity profile of Virk’s asymptote through closure. The

above mentioned phenomenologies appear to have merit due to the fact that some

of their concepts find support by numerical and experimental studies. Thus, the

subsequent sections analyse their theoretical arguments in further detail.

4.3.1 Time-criterion/Coil-stretch transition

Lumley argued in favour of polymer time scales and their interaction with turbulent

fluctuations, in contrast to polymer length scales, based on experimental observations

and he proposed the following time-criterion (Lumley, 1969, 1973). Drag reduction

due to the onset of remarkable viscoelastic effects occurs in a dilute solution of

flexible polymers when the relaxation time of a polymer coil τp exceeds a certain

hydrodynamic time scale τf . In other words, the Weissenberg number has to be

greater than one, viz.

We ≡
τp
τf
> 1. (4.30)

Whenever, this condition is satisfied the polymer molecules undergo abrupt com-

plete stretching because of local strain rates (coil-stretch transition) (Lumley, 1969,

1973). This was suggested by Lumley based on the approximation that says; if the

‡Intrinsic viscosity is a measure of a solute’s contribution to the viscosity of a solution.
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mean square strain rate 〈S2〉, weighted by the Lagrangian integral time scale TL of

the strain rate representing a measure for the persistence of these regions, exceeds a

critical value related to the inverse of polymer relaxation time, then the mean square

molecular radius 〈R2〉 grows exponentially,

〈
R2
〉
∝ exp

(
(2
〈
S2
〉
TL −

1

τp
)t

)
. (4.31)

Of course, this growth will be gradual as the individual molecule will contract and

expand as it moves through low and high strain regions in the flow, respectively, but

the expansion will eventually dominate according to Lumley (1973).

Lumley’s picture for drag reduction is depicted in Fig. 4.3 below, with the dis-

tribution of wave number k as a function of the distance from the wall y. In a

Newtonian turbulent channel flow, kmin is determined by the flow geometry and

kmax by the Kolmogorov viscous limit§. Therefore, the eddies exist in the wave num-

ber range δ−1 ≤ k < η−1, where δ is the channel half-height and η is the Kolmogorov

viscous scale. However, according to Eq. (2.60), kmax = δ
−3/4
ν y−1/4 based on Kol-

mogorov scaling. The geometric and Kolmogorov limits meet at about the edge of

the viscous sublayer. In this way, Lumley (1969, 1973) assumed the viscous sublayer

as passive, keeping the viscosity at its Newtonian value. He further conjectured that

polymers increase the effective viscosity νeff in turbulent regions, as they go through

coil-stretch transition implying a new viscous cut-off in the spectrum, parallel to the

Kolmogorov limit k′max ∝ y−1/4 (see bold-dashed line in Fig. 4.3), which depends

on polymer concentration c. Thus, the net result is a thickening of the buffer layer,

because of the reduced Reynolds stress that delays the curvature of the mean velocity

profile, which is proportional to c and %DR (Lumley, 1973).

As soon as polymer is added into the flow, the viscous limit shifts and the whole

effect occurs at arbitrary low c. Then, Lumley (1973) claims that the momentum

transfer is unaltered, since above the new intersection point, the energy containing

eddies are unaffected and so the slope of the mean velocity profile is preserved,

attempting an interpretation of the LDR regime. As c increases further and the MDR

law is approached, the increased νeff will reduce the average strain rates responsible

for the coil-stretch transition, causing no further increase in the buffer layer thickness.

§If the assumption of homogeneity is reasonable and the classical picture of Kolmogorov (1941)
is roughly valid for turbulent fluctuations at high Reτ , away from the wall.
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Figure 4.3: Lumley’s picture of drag reduction - Distribution of wave vectors k at
various distances y from the wall.

Therefore, drag reduction is set independent from polymer concentration, with a

further increase in c just resulting in the same effective viscosity.

The limitations of Lumley’s phenomenology appear first in the assumption of

intrinsic viscosity enhancement due to highly stretched polymer molecules, which is

dubious, as the space-time strain rate fluctuations near the wall, even though high,

can only cause partial stretching of the coils according to Tabor and de Gennes

(1986); Sreenivasan and White (2000). Secondly, the whole concept has been built

on wall effects, as viscosity dominates near wall dynamics but, as was mentioned in

section 4.3, there have been experiments demonstrating that polymer injection at

the centre of a pipe can cause drag reduction before polymers reach the wall.

Procaccia et al. (2008) were able to formulate Lumley’s conceptual ideas through

scaling arguments and they were able to derive MDR as a marginal flow state of

wall-bounded turbulence by (a) assuming that polymers never feed energy back to

the flow, based on misleading computations¶. (b) They considered that coil-stretch

transition produces a space dependent effective viscosity νeff (y) with a linear varia-

¶The computation of viscoelastic turbulence, using models such as FENE-P, is a whole issue
that only recently was resolved and will be analysed further in chapter 5.
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tion in y, and (c) they also closed the problem with a supplementary relation between

Reynolds stress and turbulent kinetic energy −〈uv〉 ∝ 1
2
〈|u|2〉, that provided them

with a linear system to solve, between the momentum and the energy balance at

the asymptotic limit of We → ∞. They were able to demonstrate that the space-

dependent viscosity model, with linear variation with the distance y from the wall,

produces drag reduction (De Angelis et al., 2004). The simplicity of this model is

attractive for predictive purposes of polymer drag reduced flows.

4.3.2 Elastic theory: A ‘cascade theory’ for drag reduction

The elastic theory was essentially developed under the notion of a Richardson -

Kolmogorov cascade (Frisch, 1995) and the assumption of flow homogeneity (Tabor

and de Gennes, 1986). De Gennes (1990) made also a transposition of this ‘cascade

theory’ to wall-bounded turbulence to compare with Lumley’s picture. The basic

premise of elastic theory is that flexible polymer molecules in a turbulent flow behave

elastically at high frequencies. The starting point of the theory is basically Lumley’s

time-criterion, where polymer stretching takes place only when a time scale τr∗ ≡

(r∗2/ǫ)1/3 of an inertial range length scale r∗, determined by the average dissipation

rate of turbulent kinetic energy ǫ, matches τp. Note that through the time-criterion,

τr∗ depends on the number of monomers (see Eq. (4.1)), i.e. on molecular weight

but not on concentration. When the time-criterion is satisfied, coils are assumed

to be stretched partially by eddies of length scales r < r∗, with polymer elongation

obeying the scaling power law

λ(r) ∝

(
r∗

r

)n
(4.32)

where the exponent n depends on the dimensionality of stretching, i.e. 1 and 2 in two

and three physical dimensions, respectively. In addition, it was argued (De Gennes,

1990) that the elastic energy is

Ep ∝ Gλ(r)5/2 (4.33)

with G = cκBT/N having dimensions of an elastic modulus and all other symbols

are defined in section 4.1. Then, going towards smaller scales, a cut-off scale r∗∗
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exists given by the elastic limit‖

Gλ(r∗∗)5/2 ≃ ρu2
r∗∗ (4.34)

which is the balance between elastic and turbulent kinetic energy at scale r∗∗. So, in

the finite range of length scales r∗∗ < r < r∗, polymers undergo affine deformations

without significant reaction on the flow. This range is called the passive range, in the

sense that polymers will follow passively the fluid element and will deform according

to the power law Eq. (4.32).

Turning now the elastic theory into wall-bounded turbulence (De Gennes, 1990;

Sreenivasan and White, 2000) and using the time-criterion (r∗2(y)/ǫ)1/3 = τp and the

classical scaling ǫ ∝ u3
τ/y for the intermediate region δν ≪ y ≪ δ, one gets

r∗(y) ∝

(
τ 3
pu

3
τ

y

)1/2

(4.35)

where r∗ is now a function of the distance from the wall y due to the flow inhomo-

geneity. There is also an elastic limit as a function of y by combining Eq. (4.32),

(4.34) and (4.35),

r∗∗(y) ∝

(
G

ρu2
τ

y

τpuτ

)α(τ 3
pu

3
τ

y

)1/2

(4.36)

where the exponent α = (5n/2+2/3)−1 also depends on the dimensionality of stretch-

ing, as already mentioned for the exponent n in Eq. (4.32). This is a unique result,

with no counterpart in Lumley’s theory, where drag reduction was expected at arbi-

trarily low polymer concentration. Here, this cut-off scale depends on concentration

through G. The schematic in Fig. 4.4 represents de Gennes picture of drag reduction

in wall-bounded turbulence and depicts this dependence on c with the bold-dashed

line representing the elastic limit with a reversed sign slope.

For concentrations below a certain threshold co, the elastic limit intersects the

geometrical limit at y < δν , where no macroscopic effects are expected. The on-

set of these effects take place at c = co, whose scaling can be obtained by setting

r∗∗(δν) = δν . In the regime, co < c < c∗ drag reduction is expected and it is supposed

that dissipation is reduced. As c increases, %DR increases steadily along with the

‖A scenario of strongly stretched chains was also considered by De Gennes (1990), with the
elastic limit occurring at full stretching, suspecting severe chemical degradation.
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Figure 4.4: De Gennes’ picture of drag reduction - Distribution of wave vectors k at
various distances y from the wall.

buffer layer and the elastic limit shifts upwards (see Fig. 4.4). De Gennes (1990)

argues that MDR occurs when c = c∗ (see Fig. 4.4), where neighbouring coils are in

contact, so the concentration at this point can be specified as c∗ ≃ N/R3
G. In con-

trast, experimental data disputes this statement because concentrations below those

needed for the overlap of polymer coils are observed to reach the MDR asymptote

(Sreenivasan and White, 2000). Furthermore, it was claimed that the intersection

of the elastic limit with the Kolmogorov limit when c = c∗ implies that the largest

eddies do not satisfy anymore the time-criterion and therefore, c > c∗ will be less

effective, giving in that way an explanation for the MDR law.

Even De Gennes (1990) himself mentions that his discussions are very conjectural,

from the very beginning with a questionable existence of a power law for the elon-

gation at different scales and with an unclear fate of the turbulent energy for scales

r < r∗∗. Joseph (1990), however, speculates that scales below this cut-off behave

elastically. Finally, Sreenivasan and White (2000) reconsidered the elastic theory,

deriving some further scaling relations for the drag reduction onset and the MDR

asymptote and compared them with experimental data. The conclusion, however, is

that the elastic theory is tentative, as they also note and the issue is still open.



Chapter 5

Direct numerical simulation of

viscoelastic turbulence

The recent development of numerical methods for viscoelastic turbulent flow compu-

tation has made it possible to investigate turbulent drag reduction in dilute polymer

solutions using kinetic theory based models for polymer molecules. Here an overview

of the existing methodologies to numerically solve the FENE-P model is given, em-

phasising the challenges and the need for high resolution shock capturing schemes

(see section 5.1). With this in mind a state-of-the-art slope-limiter based method

(Vaithianathan et al., 2006) was applied here to solve the FENE-P model with the

aim of capturing the right magnitude of the polymer effect on the flow. Section

5.2 provides details on this high resolution scheme that was extended in this study

to non-periodic boundary conditions and on the use of some effective linear algebra

techniques, which led to the efficient numerical solution of the problem. In the end,

this numerical method is validated with an analytical solution of the FENE-P model

in section 5.3.

5.1 Overview

Numerical simulations allow a more detailed investigation of the mechanisms under-

lying the phenomenon of polymer drag reduction. The computationally demanding

three-dimensional DNS makes a Lagrangian approach for the polymer prohibitive and

also limits polymer models to simple representations (see section 4.1). A successful

79
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model in turbulent drag reduction DNS studies is the FENE-P model, a constitutive

equation in the Eulerian frame of reference (see Eqs. (4.22) and (4.23)), representing

a conformation field of polymer macromolecules that have been modelled as elastic

dumbbells (see section 4.2). This model is numerically solved in this work along with

the Navier-Stokes equations to study turbulent drag reduction in a channel flow.

The conformation tensor C of the FENE-P model is a strictly positive definite

(SPD) tensor, as already noted in section 4.2.1. It is well known that C should

remain SPD as it evolves in time (Hulsen, 1990), otherwise, Hadamard instabilities∗

can grow due to the loss of the strictly positive definiteness of C by cumulative

numerical errors that give rise to negative eigenvalues (Dupret and Marchal, 1986;

Joseph and Saut, 1986). Until relatively recently, this was the main challenge for DNS

of viscoelastic turbulence but Sureshkumar and Beris (1995), using spectral methods,

introduced globally an artificial diffusion (GAD) term χ∂k∂kCij on the right hand

side of Eq. (4.23), where χ is the dimensionless stress diffusivity, to overcome the

Gibbs phenomenon (Peyret, 2002) and consequently Hadamard instabilities. On the

other hand, Min et al. (2001) using finite differences, applied a second-order local

artificial diffusion (LAD) term χ(∆xk)
2∂k∂kCij, where ∆xk is the local grid spacing

in each k direction, only to locations where det(Cij) < 0. However, this is not a

sufficient condition to guarantee the SPD property for the conformation tensor as

it is discussed later in this chapter. Their reason for choosing a LAD rather than a

GAD was based on visualisations showing more significant smearing of C gradients

caused by GAD, which has also been confirmed from various investigators (Min et al.,

2001; Dubief et al., 2005; Li et al., 2006).

In both methods the value of χ is not straightforward and its actual values are

flow type dependent, so one has to conduct a parametric study on χ for each flow,

otherwise numerical breakdowns are likely to occur (Sureshkumar and Beris, 1995;

Min et al., 2001). Both approaches and slight variations thereof (Dubief et al., 2005;

Li et al., 2006) continue to be in common use by most investigators. Note that

generally, after several extensive parametric studies based on either GAD or LAD,

only a few recent computational results (Li et al., 2006; Kim et al., 2007) are able

∗Short wave instabilities, with growth rates which increase without bound as the wave length
tends to zero. Such instabilities are a catastrophe for numerical analysis; the finer the grid, the
worse the result. These instabilities arise in the study of an initial value problem for Laplace’s
equation. This is Hadamard’s model of an ill-posed initial value problem (Joseph, 1990; Owens and
Phillips, 2002).
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to capture some of the salient features of the different drag reduction regimes (see

section 4.3) observed experimentally. However, there are still a lot of divergent and

misleading results (White and Mungal, 2008) because of the artificial term introduced

in the governing equations.

The study by Jin and Collins (2007) stresses the fact that much finer grid resolu-

tions are required to fully resolve the polymer field than for the velocity and pressure

fields. Indeed, the hyperbolic nature of the FENE-P model Eq. (4.23) admits near

discontinuities in the conformation and polymer stress fields (Joseph and Saut, 1986).

Qualitatively similar problems occur with shock waves and their full resolution in

gas dynamic compressible flows, which is not practical using finer grids. In this case,

high resolution numerical schemes such as slope-limiter and Godunov-type methods

(LeVeque, 2002) have proved successful at capturing the shock waves by accurately

reproducing the Rankine-Hugoniot conditions across the discontinuity to ensure the

correct propagation speed. Motivated by these schemes, Vaithianathan et al. (2006)

adapted the second-order hyperbolic solver by Kurganov and Tadmor (2000), which

guarantees that a positive scalar remains positive over all space, to satisfy the SPD

property for the conformation tensor in the FENE-P model. It was demonstrated

that this scheme dissipates less elastic energy than methods based on artificial diffu-

sion, resulting in strong polymer-turbulence interactions (Vaithianathan et al., 2006).

For this reason a modification of this method was developed in this present study

to comply with non-periodic boundary conditions. The present peculiar discreti-

sation scheme is described in section 5.2.1 along with some minor corrections to

Vaithianathan et al. (2006) and further details on the numerical solution of the fully

discretised form of the FENE-P model.

5.2 Numerical method

The set of parameters for the numerical solution of the governing equations for a

turbulent channel flow with polymers is now reduced by introducing the following

dimensionless variables

x

δ
→ x,

tUc
δ

→ t,
u

Uc
→ u,

p

ρU2
c

→ p (5.1)
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given the channel half-width δ, the fluid density ρ and the centreline velocity of a

fully developed laminar Poiseuille flow Uc. In these variables, the incompressible

Navier-Stokes equations for a viscoelastic flow Eq. (4.4) become

∇ · u = 0

∂tu +
1

2
[∇(u ⊗ u) + (u · ∇)u] = −∇p+

β

Rec
∆u + ∇ · σ(p)

(5.2)

using the skew-symmetric form of the convection term (see appendix A.3), with the

polymer stress tensor for FENE-P dumbbells Eqs. (4.21) and (4.22) turning to

σ(p) =
1 − β

RecWec

(
L2
p − 3

L2
p − trC

C − I

)
(5.3)

where Rec = Ucδ/ν and Wec ≡ τpUc/δ are the Reynolds and Weissenberg numbers,

respectively, based on the centreline velocity and the channel’s half-width. More-

over, non-dimensionalisation of the FENE-P model Eqs. (4.22) and (4.23) with the

variables of Eq. (5.1) gives

∂tC + (u · ∇)C = C · ∇u + ∇u⊤ · C −
1

Wec
(
L2
p − 3

L2
p − trC

C − I). (5.4)

Note that the tilde symbol that denotes non-dimensional quantities (see section 4.2.1)

has been dropped for convenience.

The next sections provide details only on the numerical aspects needed to com-

pute these non-dimensional governing equations that differ from the treatment in

Newtonian computations (see appendix A). The numerical method in appendix A

was mostly maintained for Eqs. (5.2) apart from the time advancement (see section

5.2.2), which had to be changed because of the restrictive, for stability reasons, time

discretisation of the FENE-P model. Note also that the polymer stress divergence

in Eq. (5.2) and the velocity gradients in Eq. (5.4) were discretised with sixth-order

compact finite difference schemes of Lele (1992) on a collocated grid (see appendix

A.2). The gradient of the conformation tensor in the wall normal direction was evalu-

ated using the grid stretching technique by Cain et al. (1984) and Avital et al. (2000)

that maps an equally spaced co-ordinate in the computational space to a non-equally

spaced co-ordinate in the physical space (see appendix A.6).
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5.2.1 FENE-P solver

The numerical scheme developed by Vaithianathan et al. (2006) is based on the

Kurganov and Tadmor (2000) scheme, as was mentioned in section 5.1. The main

idea behind these high-resolution central schemes is the use of higher-order recon-

structions, which enable the decrease of numerical dissipation so as to achieve higher

resolution of shocks. In essence, they employ more precise information of the lo-

cal propagation speeds. A key advantage of central schemes is that one avoids the

intricate and time-consuming characteristic decompositions based on approximate

Riemann solvers† (LeVeque, 2002). This is because these particular schemes realise

the approximate solution in terms of its cell averages integrated over the Riemann

fan (see Fig. 5.1).

i+1/2,j,kC
+
i+1/2,j,kC

H i+1/2,j,k

−

Figure 5.1: Central differencing approach – staggered integration over a local Rie-
mann fan denoted by the dashed-double dotted lines.

Considering the discretisation of the convection term of the FENE-P model only

in the x-direction, using the reconstruction illustrated in Fig. 5.1, the following

second-order discretisation is obtained

∂Cn
i,j,k

∂x
=

1

∆x
(Hn

i+1/2,j,k −Hn
i−1/2,j,k) (5.5)

†A numerical algorithm that solves the conservation law together with piecewise data having a
single discontinuity
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where

Hn
i+1/2,j,k =

1

2
ui+1/2,j,k(C

+
i+1/2,j,k + C−

i+1/2,j,k)

−
1

2
|ui+1/2,j,k|(C

+
i+1/2,j,k − C−

i+1/2,j,k) (5.6)

with

C±
i+1/2,j,k = Cn

i+1/2±1/2,j,k ∓
∆x

2
·
∂C

∂x

∣∣∣∣
n

i+1/2±1/2,j,k

(5.7)

and

∂C

∂x

∣∣∣∣
n

i,j,k

=





1
∆x

(Cn
i+1,j,k − Cn

i,j,k)

1
∆x

(Cn
i,j,k − Cn

i−1,j,k)

1
2∆x

(Cn
i+1,j,k − Cn

i−1,j,k).

(5.8)

Similarly, Eqs. (5.6)-(5.8) can be rewritten for Hn
i−1/2,j,k. The appropriate choice of

the derivative discretisation in Eq. (5.8) limits the slope so that the SPD property

for C is satisfied. The SPD criterion for this choice is that all the eigenvalues of

the conformation tensor should be positive, viz. λi > 0 and subsequently all its

invariants (see Eqs. (2.63) replacing ∇u with C) should be positive for at least one

of the discretisations. Note that just det(C) > 0, is not sufficient to guarantee the

SPD property for the tensor (Strang, 1988). In case none of the options in Eq. (5.8)

satisfy the criterion, then the derivative is set to zero reducing the scheme to first

order locally in space. The proof for C being SPD using this numerical scheme can be

found in Vaithianathan et al. (2006). The eigenvalues of the conformation tensor in

this implementation are computed using Cardano’s analytical solution (Press et al.,

1996) for the cubic polynomial (see Eq. (2.62)) avoiding any complicated and time-

consuming linear algebra matrix decompositions and inversions for just a 3×3 matrix.

Ultimately, the advantage of this slope-limiter based method is that it adjusts in the

vicinity of discontinuities so that the bounds on the eigenvalues cannot be violated,

eliminating the instabilities that can arise in these types of calculations, without

introducing a global stress diffusivity.

The complicated nature of the slope-limiting procedure raises difficulties in the

case of wall boundaries for a channel flow computation, leading to loss of symme-

try in the results. This had not been encountered by Vaithianathan et al. (2007),

since they only considered periodic boundary conditions. So, the implementation
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of the numerical method near the walls of the channel was modified for this study

considering ghost nodes beyond the wall boundaries to keep the original formula-

tion unaltered, preserving in that way the second-order accuracy at the boundaries.

The values at the ghost nodes were linearly extrapolated from the interior solution

(LeVeque, 2002), i.e.

Cn
i,j+1,k = Cn

i,j,k + (Cn
i,j,k − Cn

i,j−1,k) = 2Cn
i,j,k − Cn

i,j−1,k. (5.9)

The time advancement is done simply using the forward Euler update, treating

implicitly the stretching and the restoration term on the right hand side of Eq. (4.23)

due to the potential finite extensibility of the polymer. Hence, the fully discretised

form of the FENE-P model is

Cn+1
i,j,k = Cn

i,j,k

−
∆t

∆x
(Hn

i+1/2,j,k −Hn
i−1/2,j,k)

−
∆t

∆yj
(Hn

i,j+1/2,k −Hn
i,j−1/2,k)

−
∆t

∆z
(Hn

i,j,k+1/2 −Hn
i,j,k−1/2)

+ ∆t(Cn+1
i,j,k∇un

i,j,k + ∇un⊤

i,j,kC
n+1
i,j,k )

− ∆t

(
1

Wec
f(Cn+1

i,j,k )Cn+1
i,j,k − I

)
(5.10)

with

Cn
i,j,k =

1

6
(C−

i+1/2,j,k + C+
i−1/2,j,k

+C−
i,j+1/2,k + C+

i,j−1/2,k

+C−
i,j,k+1/2 + C+

i,j,k−1/2) (5.11)

so that the convection term and the explicit term coming from the time derivative

can be assembled in a convex sum

C∗ = Cn
i,j,k +

∂Cn
i,j,k

∂x
=

N∑

l=1

slCl (5.12)
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where all coefficients sl ≥ 0 satisfy
∑N

l=1 sl = 1, with C∗ being SPD if the matrices

Cl are SPD, ensuring the finite extensibility of the dumbbell, i.e. the trace of the

conformation tensor is bounded trC = λ1 + λ2 + λ3 ≤ L2
P (Vaithianathan et al.,

2006). The following CFL condition‡ needs to be satisfied for the coefficients sl to

be non-negative

CFL = max

{
|u|

∆x
,

|v|

∆ymin
,
|w|

∆z

}
· ∆t <

1

6
(5.13)

and it also determines the time step ∆t. Note that this CFL condition is more

strict than the one for compact finite differences (Lele, 1992) used for Newtonian

turbulence computations.

The numerical solution of Eq. (5.10) is carried out by first rewriting it in a

Sylvester-Lyapunov form (Petersen and Pedersen, 2008), separating the implicit and

explicit terms, i.e.

A⊤X + XA = B ⇒ (I ⊗ A⊤ + A⊤ ⊗ I)x = b (5.14)

where A ≡ 1
2
[1 + f(Cn+1

i,j,k ) ∆t
Wec

]I − ∆t∇un
i,j,k, X ≡ Cn+1

i,j,k and B ≡ C∗ + ∆t
Wec

I are

3×3 matrices, (I⊗A⊤ +A⊤⊗I) is a 9×9 matrix and x ≡ vec(X), b ≡ vec(B) are

9×1 vectors (see appendix C). The formula on the right hand side of Eq. (5.14) can

be reduced from 9×9 to a 6×6 system of equations considering the symmetry of the

conformation tensor. Note that Eq. (5.14) is nonlinear and can now be solved using

conventional methods. In this study, the Newton-Raphson method for nonlinear

systems was applied using the LU decomposition for the inversion of the Jacobian

(Dennis and Schnabel, 1983; Press et al., 1996).

5.2.2 Time advancement

After obtaining the new update of the conformation tensor Cn+1
i,j,k , the two-step (i.e.

three time-level) second-order Adams-Bashforth/Trapezoidal scheme is used for the

time integration of Eq. (5.2) through the following projection method (Peyret, 2002)

u∗ − un

∆t
=

1

2
(3F n − F n−1) +

1

2
(P ∗

n+1 + P n) (5.15)

‡Stability condition derived by Courant-Friedrichs-Lewy (Courant et al., 1967)
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un+1 − u∗

∆t
= −∇p̃n+1 (5.16)

where

F = −
1

2
[∇(u ⊗ u) + (u · ∇)u] +

1

Rec
∆u (5.17)

and

P =
1 − β

RecWec
∇ ·

(
L2
p − 3

L2
p − trC

C − I

)
(5.18)

with

p̃n+1 =
1

∆t

∫ tn+1

tn

p dt. (5.19)

The incompressibility condition ∇ · un+1 = 0 is verified by solving the Poisson

equation

∇ · ∇p̃n+1 =
∇ · u∗

∆t
(5.20)

which is done in Fourier space (see appendix A.5). It is well known that these

multistep methods are not self-starting and require a single-step method to provide

the first time level (Peyret, 2002; LeVeque, 2007). In this study, explicit Euler was

chosen for just the first iteration of these computations, viz. un = un−1 + ∆tF n−1.

5.3 Numerical validation with analytical solution

The numerical implementation of the FENE-P model is validated here by compar-

ing the stationary numerical and analytical solution for a fully developed laminar

Poiseuille flow between two parallel plates and velocity u = (1− (y − 1)2, 0, 0) ∀ y ∈

[0, 2]. The stationary analytical solution of the FENE-P model for a steady unidi-

rectional shear flow u = (U(y), 0, 0) can be easily obtained considering Eq. (5.4),

which reduces to

0 = Ci2∂x2
ui + Cj2∂x2

ui −
1

Wec
(f(Ckk)Cij − δij) (5.21)
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where f(Ckk) is the Peterlin function (see Eq. (4.22)). Then, rewriting each compo-

nent of the equation as follows taking into account the symmetry of Cij

C11 =
1

f(Ckk)

(
1 +

2We2c
f 2(Ckk)

(
dU

dy

)2
)

C12 =
Wec

f 2(Ckk)

dU

dy

C13 = C23 = 0

C22 = C33 =
1

f(Ckk)

(5.22)

and combining Eq. (4.22) with the trace Ckk determined by Eqs. (5.22), one gets

f(Ckk) =
L2
p − 3

L2
p − Ckk

⇒ L2
pf −

2We2c
f 2(Ckk)

(
dU

dy

)2

= L2
p ⇒ f 3 − f 2 − Ω2 = 0 (5.23)

where Ω =
√

2Wec

Lp

dU
dy

. The trigonometric solution (Birkhoff and Mac Lane, 1977) of

this cubic polynomial is

f =
2

3
cosh

φ

3
+

1

3
(5.24)

with φ = cosh−1
(

27
2
Ω2 + 1

)
. Ultimately, Eqs. (5.22) and (5.24) comprise the full

analytical solution of the FENE-P model for any steady unidirectional flow with

velocity u = (U(y), 0, 0). The required analytical solution for the fully developed

laminar Poiseuille flow is determined by the velocity gradient, which in this case is

dU/dy = 2 − 2y ∀ y ∈ [0, 2].

The numerical parameters for the validation testcase are tabulated below and the

velocity field was imposed to be u = (1 − (y − 1)2, 0, 0) ∀ y ∈ [0, 2]. The resolution

in this laminar Poiseuille flow is important in the wall-normal direction y, so it was

ensured that there are enough grid points to generate smooth profiles. The initial

configuration of the conformation tensor was isotropic, i.e. Cij = δij, which implies

that the flow undergoes a transient for a certain time. The computation was marched

far enough in time to obtain a fully developed steady state.

The numerical results are compared with the analytical solution in Figs. 5.2. In

detail, both numerical and analytical profiles of the components of the conformation

tensor are plotted together with the absolute error, defined by error ≡ |Canal
ij −Cnum

ij |,
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Wec Lp Lx × Ly × Lz Nx × Ny × Nz

5 120 πδ × 2δ × πδ 32 × 65 × 32

Table 5.1: Parameters for the validation of the FENE-P model.
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Figure 5.2: Validation of the FENE-P model for an imposed laminar Poiseuille flow.
−×: analytical solution, −◦: numerical solution, —: absolute error.

as functions of the distance y from the channel’s walls. Here, only the components

C11, C12 and C22 are considered for illustration, since the numerical solution gives

C33 = C22 and C13 = C23 = 0 in agreement with the analytical solution. The

absolute errors in the plots are very low, essentially denoting machine accuracy and
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this is also obvious from the fact that the numerical and analytical profiles of Cij

are indistinguishable. The shear in the flow causes the stretching of the FENE-

P dumbbells and most of it comes from near the walls (see Fig. 5.2), where the

velocity gradient is the highest. The conformation tensor is strongly anisotropic,

i.e. C11 > C12 > C22, reflecting a persistent preferential alignment of the stretched

polymers in the x direction with a slight inclination in the wall-normal direction

y. This anisotropic behaviour resembles the behaviour of 〈Cij〉 in turbulent channel

flow, i.e. 〈C11〉 > 〈C12〉 > 〈C22〉, as it will be shown in the next chapter.



Chapter 6

Polymer dynamics in viscoelastic

turbulent channel flow

Recent progress in DNS of viscoelastic turbulence has begun to elucidate some of the

dynamical interactions between polymers and turbulence, which are responsible for

drag reduction. The aim in this chapter is to study polymer-induced turbulent drag

reduction reproduced by numerical computations. The necessary details on the nu-

merical parameters and procedures followed to perform DNS in viscoelastic turbulent

channel flow using the FENE-P model are provided in section 6.1. Various viscoelas-

tic turbulent statistics are analysed in section 6.2 for all the drag reduction regimes

achieved in this study, with the novel numerical approach in wall-bounded flows for

the FENE-P model described in chapter 5. Specifically, the effects of polymer exten-

sibility and Reynolds number are briefly considered, whereas the statistics of mean

velocity, fluctuating velocities and vorticities are examined in depth demonstrating

that the current computations are closer to experimental observations than previous

numerical studies. Section 6.3 presents extensively the conformation tensor statistics

and the scaling of polymer stress tensor components at the high Weissenberg num-

ber limit, which assists in a new asymptotic result for the shear stress balance (see

section 6.4). Finally, the polymer-turbulence interactions are studied in section 6.5

through the energy balance, where a refined and extended picture of a conceptual

model for drag reduction based on viscoelastic dissipation is proposed (see section

6.6) before summing up the important results in section 6.7.

91
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6.1 DNS of viscoelastic turbulent channel flow

Incompressible viscoelastic turbulence in a channel was simulated in a rectangular

geometry (see Fig. 2.1) by numerically solving the non-dimensional Eqs. (5.2)-

(5.4) in Cartesian co-ordinates employing the methodology of chapter 5. Periodic

boundary conditions for u ≡ (u, v, w) are applied in the x and z homogeneous

directions and no-slip boundary conditions at the walls (see Eq. (2.33)). The mean

flow is in the x direction, i.e. 〈u〉 = (〈u(y)〉 , 0, 0), where 〈 〉 in this chapter denotes

average in x, z spatial directions and time (see Eq. (3.3)). The bulk velocity Ub in the

x direction was kept constant for all computations at all times by adjusting the mean

pressure gradient −d 〈p〉 /dx at each time step. The choice of Ub in the computations

for the Newtonian fluid is made based on Dean’s formula Reτ0 ≃ 0.119Re7/8c (Dean,

1978; Lesieur, 1997) for a required Reτ0 ≡
uτ0

δ

ν
, where uτ0 is the friction velocity for

Newtonian fluid flow, i.e. β = 1 (see N cases in Table 6.1).

The procedure used for the computation of the viscoelastic turbulent channel

flows of Table 6.1 is the following. First DNS of the Newtonian fluid, i.e. β = 1,

were performed for the various Reynolds numbers until they reached a steady state.

Then, the initial conditions for the viscoelastic DNS were these turbulent Newtonian

velocity fields as well as Eqs. (5.22) and (5.24) for the Cij tensor components, with
d
dy
U = −6(y− 1)7 given that U(y) = 0.75(1− (y− 1)8) ∀ y ∈ [0, 2] is a close approx-

imation to the averaged velocity profile of a Newtonian fully developed turbulent

channel flow at moderate Reynolds numbers (Moin and Kim, 1980). Initially, the

governing equations were integrated uncoupled, i.e. β = 1, until the conformation

tensor achieved a stationary state. From then on the fully coupled system of equa-

tions, i.e. β 6= 1, was marched far in time, while u and C statistics were monitored

for several successive time integrals until a fully developed steady state is reached,

which satisfies the total shear stress balance across the channel, viz.

β

Rec

d 〈u〉

dy
− 〈uv〉 + 〈σ12〉 = u2

τ

(
1 −

y

δ

)
(6.1)

where 〈σ12〉 = 1−β
RecWec

〈
L2

p−3

L2
p−Ckk

C12

〉
is the mean polymer shear stress, avoiding for

convenience thereafter the superscript (p), which denotes the polymeric nature of

the stress. Finally, after reaching a statistically steady state, statistics were collected

for several decades of through-flow time scales Lx/Ub. In addition, existing turbulent
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velocity and conformation tensor fields were restarted for computations where Wec

or Lp was modified. In these cases, the flow undergoes a transient time, where again

sufficient statistics were collected after reaching a stationary state.

According to Eqs. (5.2)-(5.4), the four dimensionless groups that can fully char-

acterise the velocity and the conformation tensor fields are Wec, Lp, β and Rec, and

they are tabulated below. The main purpose of this study is to investigate the poly-

mer dynamics and their influence on flow quantities in the different drag reduction

regimes. Having that in mind, the reasons behind the choice of the particular pa-

rameter values is outlined below. The rationale here follows the thorough parametric

study by Li et al. (2006).

Case Wec Weτ0
Lp β Rec Reτ Lx × Ly × Lz Nx × Ny × Nz %DR

N1 - - - 1 2750 123.8 6.5πδ × 2δ × 1.5πδ 200 × 65 × 100 0
N2 - - - 1 4250 181 4.5πδ × 2δ × πδ 200 × 97 × 100 0
N3 - - - 1 10400 392.6 2πδ × 2δ × 0.5πδ 200 × 193 × 100 0
A 2 15.4 120 0.9 4250 167.7 4.5πδ × 2δ × πδ 200 × 97 × 100 -14.2
B 4 30.8 120 0.9 4250 147.3 4.5πδ × 2δ × πδ 200 × 97 × 100 -33.8
C 7 54 120 0.9 4250 121.8 4.5πδ × 2δ × πδ 200 × 97 × 100 -54.7
D 9 69.4 120 0.9 4250 118.3 4.5πδ × 2δ × πδ 200 × 97 × 100 -57.3
D1 9 69.4 60 0.9 4250 124.7 4.5πδ × 2δ × πδ 200 × 97 × 100 -52.5
D2 9 69.4 30 0.9 4250 150.3 4.5πδ × 2δ × πδ 200 × 97 × 100 -31
E 11 84.8 120 0.9 4250 113.3 4.5πδ × 2δ × πδ 200 × 97 × 100 -60.8
F 13 100.2 120 0.9 4250 112.4 4.5πδ × 2δ × πδ 200 × 97 × 100 -61.4
G 15 115.6 120 0.9 4250 111.4 4.5πδ × 2δ × πδ 200 × 97 × 100 -62.1
H 17 131 120 0.9 4250 107.8 8πδ × 2δ × πδ 200 × 97 × 100 -64.5
I 2 29.6 120 0.9 10400 323.3 2πδ × 2δ × 0.5πδ 200 × 193 × 100 -32.2
J 4 22.3 120 0.9 2750 106.9 6.5πδ × 2δ × 1.5πδ 200 × 65 × 100 -25.4
K 7 39 120 0.9 2750 91.1 6.5πδ × 2δ × 1.5πδ 200 × 65 × 100 -45.9

Table 6.1: Parameters for the DNS of viscoelastic turbulent channel flow. The friction
Weissenberg number is defined by Weτ0 ≡

τpu2
τ0

ν
. LDR cases: A, B, D2, I, J; HDR

cases: C, D, D1, E, F, G, K; MDR case: H.

Drag reduction effects are expected to be stronger at high Weissenberg numbers

but also higher levels of %DR even at MDR have been measured for higher Reτ

(Virk, 1975), showing the Reynolds number dependence on drag reduction ampli-

tude. In this work, an extensive parametric study has been carried out by mainly

varying Wec for the computationally affordable Rec = 4250 to determine the impact

of polymer dynamics on the extent of drag reduction. Note that the Weissenberg

number is not a direct measure of the concentration which is the usual parameter
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in drag reduction experiments, however, they are related through Eq. (4.1). The

Reynolds numbers considered here, Rec = 2750, 4250 and 10400 which correspond

to Reτ0 ≃ 125, 180 and 395 respectively using Dean’s formula, are small in compar-

ison to most experimental studies but fall within the range of most DNS studies of

polymer-induced turbulent drag reduction. Nevertheless, these Reynolds numbers

are sufficiently large for the flow to be always turbulent and allow to study the dy-

namics of viscoelastic turbulence. Different maximum dumbbell lengths were also

taken into account to check their effects for the same Wec and Rec. The chosen

L2
p = b + 3 values are representative of real polymer molecule extensibilities, which

can be related through Eq. (4.16).

Low β values were used in most prior DNS to achieve high levels of drag reduction,

in view of the attenuation of the polymer-turbulence interactions due to the addi-

tional artificial diffusion term in the FENE-P model and their low Reynolds numbers,

usually Reτ ≤ 395. In fact, values as low as β = 0.4 have been applied amplify-

ing viscoelastic effects to reach the HDR regime (Ptasinski et al., 2003). However,

such low β values may lead to significant shear-thinning∗ (Joseph, 1990) unlike in

experiments of polymer drag reduction. The fact that the current numerical scheme

for the FENE-P model (see section 5.2.1) is expected to provide stronger polymer-

turbulence interactions allows the value of β, which is inversely proportional to the

polymer concentration, to be high in this study, i.e. β = 0.9, representative of dilute

polymer solutions used in experiments.

The box sizes Lx × Ly × Lz, where subscripts indicate the three Cartesian co-

ordinates (see Fig. 2.1), were chosen with reference to the systematic study by Li

et al. (2006) on how the domain size influences the numerical accuracy. In detail, they

point out that long boxes are required in DNS of polymer drag reduction, particularly

in the streamwise direction because of longer streamwise correlations at higher %DR,

as opposed to the minimal flow unit (Jiménez and Moin, 1991) used in many earlier

works. Different grid resolutions Nx × Ny × Nz were tested for convergence. In

particular, the following set of resolutions 128 × 65 × 64, 200 × 97 × 100 and 256 ×

129×128 were tried for Reτ0 ≃ 180 with the two latter giving identical mean velocity

profiles and not significantly different rms velocity and vorticity profiles. Similar, grid

sensitivity tests were carried out for the other Reτ0 cases. Eventually, the sufficient

∗the shear stress increases slower than linear σ12 ∝ S12
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resolutions for each Newtonian fluid computation were validated against previously

published databases for the corresponding Reτ0 cases (Moser et al., 1999; Iwamoto

et al., 2002; Hu et al., 2006). Note that if the resolutions for Newtonian turbulent

computations are adequately resolving the flow scales, then the same resolutions are

sufficient for viscoelastic turbulent computations, since the size of vortex filaments

in these flows increases while their number decreases as drag reduces (White and

Mungal, 2008).

For a given resolution, viscoelastic computations require approximately 4 times

more memory and 2 times more CPU time per time step compared to the Newtonian

case. The time step ∆t used in viscoelastic computations is typically a factor of 5

smaller than that used in the Newtonian cases due to the stricter CFL condition of

the present numerical method for the FENE-P model (see Eq. (5.13) and (Lele, 1992)

for more details on the time step constraint using compact schemes). Ultimately, the

viscoelastic computations require approximately 10 times more CPU resources than

the Newtonian computations for a given computational time period.

6.2 Viscoelastic turbulence statistics

6.2.1 Polymer drag reduction

Since the computations are performed with a constant flow rate by adjusting the

pressure gradient, %DR is manifested via a decrease in skin friction, i.e. lower Reτ

values, defined by Eq. (4.28). Figure 6.1 depicts the capability of the current nu-

merical scheme used for the FENE-P model to enable stronger polymer-turbulence

interactions than artificial diffusion methods. Higher values of percentage drag re-

duction as function of Weissenberg number are obtained comparing with earlier DNS

studies without the need for their low β values (see e.g. Fig. 1b in Min et al. (2003a)

or Table 1 in Ptasinski et al. (2003)). These %DR values extend throughout the

drag reduction regimes (see Fig. 6.1), based on Warholic et al. (1999) classification

of drag reduction (see also section 4.3). The MDR limit is approached in this case

at |%DR| ≃ 65 because of the moderate Rec in these computations. Even so, this

amount of drag reduction falls within the MDR regime, allowing to study the MDR

dynamics of the polymer molecules and their effects on the flow in this asymptotic

state.
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Figure 6.1: Variation of percentage drag reduction with Weissenberg number.

6.2.2 Effects of polymer extensibility and Reynolds number

The effects of maximum dumbbell extensibility is briefly considered for three differ-

ent extensibilities Lp = 30, 60 and 120 for the same Wec and Rec (see D cases in

Table 6.1). Figure 6.1 shows that the extent of drag reduction is amplified by longer

polymer chains consistent with other DNS studies (Dimitropoulos et al., 1998; Li

et al., 2006). This effect is related to the fact that the average actual length of the

dumbbells, represented by the trace of the conformation tensor 〈Ckk〉, increases fur-

ther for larger Lp according to Fig. 6.2a, inducing stronger influence of the polymers

on the flow. The percentage increase, however, of the polymers extension is less for

larger FENE-P dumbbells (see Fig. 6.2b), suggesting that large polymer molecules

could be less susceptible to chain scission degradation†, which causes loss of drag

reduction in experiments (White and Mungal, 2008). The near-wall turbulence dy-

namics play an important role for all three cases, as most of the stretching happens

near the wall, where the highest fluctuating strain rates are expected. Eventually,

the largest maximum length, i.e. Lp = 120, was used for the rest of the computations

considered in this work in order to explore the polymer dynamics at effective drag

reductions, which are interesting not only fundamentally but also in many real life

applications.

Based on DNS using the GAD methodology (see section 5.1), Housiadas and

†The degradation of polymers by breakage of the chemical bonds forming smaller molecules.
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Figure 6.2: Effect of maximum dumbbell length. Plots of (a) average actual dumbbell
extensibility and (b) percentage average dumbbell extensibility as functions of y/δ.

Beris (2003) claim that the extent of drag reduction is rather insensitive to Reynolds

numbers ranging between 125 ≤ Reτ0 ≤ 590 for LDR flows. On the other hand,

avoiding the use of artificial diffusion in this study, the Reynolds number dependence

on drag reduction for cases with identical Wec values but different Reynolds numbers,

i.e. Rec = 2750, 4250 and 10400, is obvious by comparing %DR of case A with I

and case B with J (LDR regime), as well as case C with K (HDR regime), where the

%DR increases for higher Rec at all instances (see Table 6.1). This Reynolds number

dependence is further depicted in the polymer dynamics of viscoelastic turbulence

through the profiles of 〈Ckk〉 /L
2
p in Fig. 6.3, which amplify closer to the wall, due to

more intense strain rates in this region at increasing Rec and collapse towards the

centre of the channel. The disparate behaviour of 〈Ckk〉 with respect to y/δ due to

the Reynolds number dependence is anticipated by the broader spectra of flow time

scales that are encountered at higher Rec by the dumbbells with fixed relaxation

time scale. As a final comment, the fact that the current DNS could capture the

Reynolds number dependence on drag reduction and polymer dynamics, emphasises

once more the strong polymer-turbulence interactions that can be attained by the

present numerical approach even at low levels of drag reduction.

It is essential to note at this point that the intermediate dynamics between the von

Kármán and the MDR law, i.e. the LDR and HDR regimes (see section 4.3), are non-

universal because they depend on polymer concentration, chemical characteristics of
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Figure 6.3: Effect of Reynolds number on percentage average dumbbell extensibility
as function of y/δ. Identical colours correspond to cases with the same Wec values.

polymers, Reynolds number, etc. (Virk, 1975; Procaccia et al., 2008). Here, this is

illustrated by the maximum dumbbell length and Reynolds number dependencies of

the polymer dynamics in Figs. 6.2 and 6.3, respectively. However, at the MDR limit,

which is achieved at Wec ≫ 1 and Rec ≫ 1, the dynamics are known to be universal

(Virk, 1975; Procaccia et al., 2008), i.e. independent of polymer and flow conditions.

6.2.3 Mean and fluctuating velocity statistics

The picture of drag reduction can be analysed in further detail with the statistics

of the turbulent velocity field introduced in Fig. 6.4. The distinct differences in the

statistical trends of the turbulent velocity field between the LDR and HDR regime,

that have been observed experimentally (Warholic et al., 1999; Ptasinski et al., 2001),

are clearly identified in these results. For clarity, a few indicative cases from the data

of Table 6.1 have been chosen for plotting, representing the LDR, HDR and MDR

regimes for different Weissenberg numbers at Rec = 4250.

According to Fig. 6.4a and noting that β = 0.9 for all viscoelastic cases, all

mean velocity profiles collapse in the viscous sublayer y+ . 10 to the linear variation

U+ = β−1y+, which can be deduced for viscoelastic flows by rewriting Eq. (6.1) in

viscous scales

β
dU+

dy+

−
〈uv〉

u2
τ

+
〈σ12〉

u2
τ

= 1 −
y+

Reτ
(6.2)
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(c) Wall-normal rms velocity profiles versus y/δ
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(d) Spanwise rms velocity profiles versus y/δ

Figure 6.4: Mean and rms velocity profiles for the LDR, HDR and MDR regimes.

and neglecting the normalised Reynolds and mean polymer shear stress in the viscous

sublayer y+ → 0 (see also section 6.4). Figure 6.4a presents the clear impact of %DR

on the mean flow with the skin friction decreasing and the mean velocity increasing

away from the wall in comparison to the Newtonian case N2 as a result of higher

Wec values at the same Rec. The profile of the Newtonian case N2 is in agreement

with the von Kármán law Eq. (2.49), which does not hold for viscoelastic turbulent

flows. Specifically, the curves of cases A and B (LDR regime) are shifted upwards

with higher values of the intercept constant B, i.e. parallel to the profile of the

Newtonian flow (see Fig. 6.4a), increasing %DR. This picture is consistent with

the phenomenological description by Lumley (1969, 1973), where the upward shift

of the inertial sublayer can be interpreted as a thickening of the buffer or elastic
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layer for viscoelastic flows, which is equivalent to drag reduction. HDR cases D and

G exhibit different statistical behaviour than LDR flows with the slope of the log-

region increasing until the MDR asymptote is reached by case H. Overall, the same

behaviour across the extent of drag reduction in viscoelastic turbulent flows have

been seen in several experimental and numerical results (White and Mungal, 2008).

Different statistical trends between low and high drag reduction have also been

observed experimentally (see Figs. 4 and 11 in Warholic et al. (1999) and Fig. 5

in Ptasinski et al. (2001)) for the rms streamwise velocity fluctuations normalised

with uτ . Figure 6.4b illustrates the growth of the peak in the profile of u′+ for

LDR case A and B at low Wec and a notable decrease for the rest of the cases at

HDR/MDR with high Wec values. The peaks move monotonically away from the

wall throughout the drag reduction regimes indicating the thickening of the elastic

layer, which is compatible with that of the mean velocity profile.

Note that this is the first time that a DNS computation can so distinctly attain

this behaviour. This is attributed to the accurate shock-capturing numerical scheme

applied for the FENE-P model in this study. It has to be mentioned however that

there have been three earlier studies (Min et al., 2003a; Ptasinski et al., 2003; Dubief

et al., 2004), which use the artificial diffusion algorithms for FENE-P and showed

similar but not as clear trends for u′+ in a DNS of viscoelastic turbulent channel flow.

In fact, Min et al. (2003a) reached the HDR/MDR regime at roughly |%DR| ≃ 40,

clearly very low to afford the correct dynamics and Ptasinski et al. (2003) had to use

β = 0.4 to approach HDR/MDR, encountering considerable shear-thinning effects.

It is interesting to mention that other recent studies (Handler et al., 2006; Li et al.,

2006), using the artificial diffusion methodology, with more extensive Weissenberg

number data and high β values, have not been able to obtain this transition effect

on the statistics of u′+ between the drag reduction regimes.

Finally, the wall-normal v′+ and spanwise w′
+ rms velocity fluctuations in Figs.

6.4c and 6.4d, respectively, are continuously attenuated while %DR is enhanced by

increasing the polymer relaxation time scale. Again, the monotonic displacement of

their peaks towards the centre of the channel as drag reduction amplifies is consistent

with that of the mean velocity profile and with experimental and other numerical

studies (White and Mungal, 2008).
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6.2.4 Fluctuating vorticity statistics

The rms statistics of the fluctuating vorticity field normalised by viscous scales, i.e.

ω′
+ ≡ ω′δν/uτ , are presented in Fig. 6.5 for representative cases from Table 6.1 at

various levels of drag reduction. The streamwise vorticity fluctuations ω′
x+

demon-
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(c) Spanwise rms vorticity profiles versus y/δ

Figure 6.5: Rms vorticity profiles for the LDR, HDR and MDR regimes.

strate a persistent attenuation along the normalised distance y/δ as drag reduction

enhances due to the increase of Wec (see Fig. 6.5a). In the near-wall region y/δ < 0.2

of Fig. 6.5a there is a characteristic local minimum and maximum that could be in-

terpreted to correspond to the average edge and centre of the streamwise vortices,

respectively (Kim et al., 1987; Li et al., 2006). Then, the average size of these large

streamwise vortices is roughly equal to the distance between these two peaks. The

fact that these peaks are displaced away from each other and at the same time away

from the wall, as %DR builds up, implies an increase in the average size of the
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streamwise vortices and a thickening of the buffer layer, respectively, in agreement

with earlier works (Sureshkumar et al., 1997; Li et al., 2006; Kim et al., 2007; White

and Mungal, 2008). The attenuation in the intensity of ω′
x+

provides evidence for a

drag reduction mechanism based on the suppression of the near-wall counter-rotating

steamwise vortices (Kim et al., 2007, 2008), which underpin considerable amount of

the turbulence production (Kim et al., 1971).

The wall-normal rms vorticity is zero at the wall due to the no-slip boundary

condition and reaches its peak within the buffer layer (see Fig. 6.5b). The intensity of

ω′
y+

is reduced for all levels of drag reduction according to Fig. 6.5b, with the position

of the near-wall peaks moving towards the centre of the channel as Wec becomes

larger, representing once more the thickening of the elastic layer in a consistent way.

Most of the inhibition of ω′
y+

happens near the wall and slightly towards the centre

of the channel only for the HDR/MDR cases G and H, i.e. for |%DR| > 60.

Figure 6.5c shows a more interesting behaviour for ω′
z+

, where the spanwise vortic-

ity fluctuations decrease in the near-wall region y/δ . 0.2 and increase further away

while drag reduces. This effect may be related to the transitional behaviour of u′+ be-

tween the LDR and HDR/MDR regimes (see Fig. 6.4b) plus the continuous drop of

v′+ (see Fig. 6.4c) in viscoelastic drag reduced flows. As a final note, ω′
z+
> ω′

x+
> ω′

y+

in the viscous sublayer, i.e. y/δ < 0.05 for all cases and ω′
z+

≃ ω′
x+

≃ ω′
y+

in the

inertial and outer layer for the Newtonian case N2. However, ω′
z+

> ω′
y+

> ω′
x+

away from the wall when drag reduces for viscoelastic flows, which manifests the

dominance of anisotropy in the inertial and outer layer at HDR and MDR.

6.3 Conformation and polymer stress tensor

Before looking at the mean momentum and energy balance, the study of the confor-

mation tensor field is essential to get an understanding of the polymer dynamics in

support of the results provided by this new numerical method for the FENE-P model

in turbulent channel flow. The symmetries in the flow geometry determine proper-

ties of tensor components in the average sense (Pope, 2000). In the current DNS of

turbulent channel flow, statistics are independent of the z direction and the flow is

also statistically invariant under reflections of the z co-ordinate axis. Therefore, for

the probability density function f(Q; x, t) of a vector Q, these two conditions imply

∂f/∂z = 0 and f(Q1, Q2, Q3;x, y, z, t) = f(Q1, Q2,−Q3;x, y,−z, t). Then, at z = 0
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reflectional symmetry suggests that 〈Q3〉 = −〈Q3〉 ⇒ 〈Q3〉 = 0 and similarly for

〈Q1Q3〉 = 〈Q2Q3〉 = 0. So, in this case the mean conformation tensor reduces to

〈Cij〉 =



〈C11〉 〈C12〉 0

〈C12〉 〈C22〉 0

0 0 〈C33〉


 (6.3)

where the non-zero components normalised with Lp are presented in Fig. 6.6 with re-

spect to y/δ for cases at various drag reduction regimes (see Table 6.1). In this study,

the zero components have been found to be zero within the machine accuracy. Turbu-

lent channel flow is also statistically symmetric about the plane y = δ. Therefore, this

reflectional symmetry imposes f(Q1, Q2, Q3;x, y, z, t) = f(Q1,−Q2, Q3;x,−y, z, t),

which implies that the normal components of 〈Cij〉 are even functions and 〈C12〉 is

an odd function comparable to the Reynolds stress tensor components.

The normalised trace of the mean conformation tensor 〈Ckk〉 /L
2
p is plotted in

Fig. 6.6a together with 〈C11〉 /L
2
p. Notice that the dominant contribution in the

trace comes from 〈C11〉, i.e. 〈Ckk〉 ≃ 〈C11〉 at all Weissenberg numbers, reflecting

on average a strong preferential orientation of the stretched dumbbells along the

streamwise direction. The fact that 〈C11〉 ≫ 〈C12〉 ≃ 〈C33〉 > 〈C22〉 denotes the

strong anisotropic behaviour of the mean conformation tensor caused by the mean

shear in turbulent channel flow. This anisotropy influences the statistics of the

fluctuating velocity field particularly at small scales, as was mentioned in section

6.2.4 for the vorticity fluctuations. The curves of 〈C11〉 /L
2
p and consequently of

〈Ckk〉 /L
2
p constantly rise with most of the stretching happening close to the wall

and growing towards the centre of the channel, since higher values of polymer time

scale are influenced from a wider spectrum of flow time scales. A local minimum and

a maximum emerge in the near-wall region y/δ < 0.2, induced by the streamwise

vortices (Dubief et al., 2004; Dimitropoulos et al., 2005). These peaks move apart

from each other and away from the wall for higher Wec values. Figure 6.6a also

shows that the amplitudes of these peaks seem inversely proportional to the peak

amplitudes of ω′
x+

as drag reduces (see also Fig. 6.5a).

Moreover, as Wec increases the profiles of 〈C12〉 /L
2
p and 〈C33〉 /L

2
p amplify, reach-

ing their peaks at not much different y/δ for each Wec case (see Figs. 6.6b and 6.6d).

In particular, the values of 〈C12〉 /L
2
p at the wall are dependent on the polymer re-
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Figure 6.6: Profiles of the mean conformation tensor components for the LDR, HDR
and MDR regimes.

laxation time scale unlike for 〈C33〉 /L
2
p. On the other hand, the values of 〈C33〉 /L

2
p

depend on Weissenberg number at y = δ in contrast to 〈C12〉 /L
2
p, which is zero for

all cases because of the symmetry mentioned above. The behaviour of 〈C22〉 /L
2
p in

Fig. 6.6c is more peculiar with respect to Wec, with the profiles increasing within

the LDR regime and attenuate for HDR and MDR cases, in a similar manner to

u′+ (see Fig. 6.4b). Its peak values are achieved closer to the core of the channel

in comparison to the rest of the conformation tensor components. This points out

the different flow time scales that are important for 〈C22〉, exemplifying the complex

dynamics of the polymers, even in this simple mechanical model.

It is interesting to mention that the components of 〈Cij〉 have different asymptotic

rates of convergence towards the limit Wec → ∞. It is known that for Wec ≫ 1 the
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upper bound for the trace is 〈Ckk〉 ≤ L2
p and subsequently in this case 〈C11〉 . L2

p

(see Fig. 6.6a), where this upper bound is far from achieved in these computations.

This result demonstrates that highly stretched polymers are not required for the

manifestation of drag reduction or even of the MDR asymptote, as De Gennes (1990)

claims against Lumley’s assumption of a coil-stretch transition (Lumley, 1969), i.e.

highly stretched polymer molecules, for the enhancement of intrinsic viscosity (see

section 4.3). The components 〈C12〉 /L
2
p and 〈C33〉 /L

2
p seem to have almost reached

their asymptotic limit with the MDR case H according to Figs. 6.6b and 6.6d,

respectively. Finally, 〈C22〉 /L
2
p has not yet converged to its limit, decreasing with

a slow rate towards very small values for high Wec. In fact, L’vov et al. (2005);

Procaccia et al. (2008) argued theoretically that 〈C22〉 → 0 in the limit of infinite

Weissenberg number.

Polymer stresses are nonlinear with respect to the conformation tensor and their

asymptotic scaling with Weissenberg number is a key element for the understanding

of the polymer dynamics at MDR. Hence, following Benzi et al. (2006) consider

the FENE-P model integrated over the x, z spatial directions and time, assuming

statistical stationarity and homogeneity in x and z

〈u2∂x2
Cij〉 = 〈Cik∂xk

uj〉 + 〈Cjk∂xk
ui〉 −

1

Wec
〈f(Ckk)Cij − δij〉 . (6.4)

Taking the Reynolds decomposition of the velocity field ui = 〈ui〉 + u′i, one obtains

1

Wec
〈f(Ckk)Cij − δij〉 = 〈Cik〉 ∂xk

〈uj〉 + 〈Cjk〉 ∂xk
〈ui〉 +Qij (6.5)

where Qij =
〈
Cik∂xk

u′j
〉

+ 〈Cjk∂xk
u′i〉 − 〈u′2∂x2

Cij〉. Therefore, the average polymer

stress tensor defined by Eqs. (5.3) and (4.22) takes the form

〈σij〉 =
1 − β

Rec




2 〈C12〉 ∂x2
〈u1〉 +Q11 〈C22〉 ∂x2

〈u1〉 +Q12 Q13

〈C22〉 ∂x2
〈u1〉 +Q12 Q22 Q23

Q13 Q23 Q33


 . (6.6)

Now, the important assumption at the limit of a local WeS ≡ τp
d
dy

〈u〉 → ∞ is that

Q11 and Q12 can be neglected, considering the polymers to be stiff, i.e. Cij → 〈Cij〉,

mostly in the main stretching directions and the correlations between fluctuating
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conformation tensor and velocity fields in the other Cartesian directions to remain

minimal at this limit. In this case, as a result

〈σ11〉 = A1
1 − β

Rec
2 〈C12〉 ∂x2

〈u1〉 (6.7)

〈σ12〉 = A2
1 − β

Rec
〈C22〉 ∂x2

〈u1〉 (6.8)

where A1 and A2 are expected to be independent of y and equal to 1 in a region

somewhere between the wall and the centreline of the channel as WeS ≫ 1. This

hypothesis is checked in Fig. 6.7 against various viscoelastic DNS from Table 6.1.
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Figure 6.7: Scalings of the polymer stress components 〈σ11〉 and 〈σ12〉.

Figure 6.7a shows clearly that A1 tends to 1 in the region 0 . y/δ . 0.8 for high

WeS values justifying that Q11 can be neglected for HDR and MDR cases. Note that

A1 deviates from 1 towards the centre of the channel because WeS becomes small

in this region. A2 is approximately independent of y in some intermediate region

in the flow for almost all cases and appears to tend towards 1 as WeS increases

(see Fig. 6.7b). However, the polymer relaxation time scales used in this study

are not sufficiently high for A2 → 1. So, in this case the polymer shear stress can

be considered to be 〈σ12〉 ∝ 1−β
Rec

〈C22〉 ∂x2
〈u1〉 in the range 0.2 . y/δ . 0.6. It is

appealing to see that 〈C22〉 is the component involved in the MDR dynamics, bearing

in mind that 〈C11〉 ≫ 〈C12〉 ≃ 〈C33〉 > 〈C22〉. In the end, both Figs. 6.6 and 6.7

confirm the claims that 〈C12〉 has reached its asymptotic limit within the Weissenberg

numbers considered here at this particular Reynolds number, unlike 〈C22〉.
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6.4 Shear stress balance

The balance of shear stresses Eq. (6.1) is considered in this section. The total

shear stress in viscoelastic turbulent channel flow contains an extra stress term in

contrast to Eq. (2.38), as has already been shown. This extra term is the mean

polymer shear stress and it is also referred to as the Reynolds stress deficit since

ν d
dy

〈u〉 − 〈uv〉 6= u2
τ (1 − y/δ). The viscous stress of the solvent, the Reynolds shear

stress and the mean polymer shear stress normalised with viscous scales are presented

in Fig. 6.8 at different levels of %DR for cases with the same Rec from Table 6.1.
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Figure 6.8: Mean shear stresses profiles for the LDR, HDR and MDR regimes.

At the wall, the no-slip boundary condition enforces −〈uv〉
∣∣
y=0

= 0. Then, the

wall shear stress and the viscous sublayer are governed by 90% viscous as well as

10% polymer contribution for all viscoelastic cases as opposed to the Newtonian case
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N2. Viscosity is the dominant parameter in the near-wall region but becomes more

influential in the outer regions as drag reduction enhances. This is clear from Fig.

6.8a where β d
dy+

U+ increases monotonically towards the centre of the channel as

Wec increases. Viscoelastic effects become also more significant towards the centre

of the channel for higher Wec cases. Reynolds shear stress, on the other hand, is

constantly decorrelated at higher %DR with its peak shifting away from the wall. It

is interesting to see that for the HDR case D −〈uv〉 and 〈σ12〉 are comparable and

as MDR is approached the polymer shear stress plays an increasingly fundamental

role in sustaining turbulence due to the vast attenuation of the Reynolds shear stress

at these finite Reynolds number computations. This becomes apparent in the next

section by analysing the turbulent kinetic energy budget.

Notice that Reynolds shear stress remains finite at MDR confirming the exper-

imental measurements by Ptasinski et al. (2001) against the complete depletion of

−〈uv〉 reported by Warholic et al. (1999) and their subsequent claim that turbulence

is sustained entirely by polymer stresses. What can be said theoretically on this con-

troversy is the following. Consider first the limit of WeS → ∞, where A2 → 1 for

Eq. (6.8) even at finite Reynolds numbers, as Fig. 6.7b indicated. Then, the total

shear stress balance can be rewritten using Eq. (6.8)

ν(β + (1 − β) 〈C22〉)
d 〈u〉

dy
− 〈uv〉 ≃ u2

τ

(
1 −

y

δ

)
(6.9)

where νeff (y) ≡ ν(β + (1 − β) 〈C22〉) is an effective viscosity similar to the one en-

countered in Lumley’s phenomenology (Lumley, 1973; Procaccia et al., 2008). Now,

when WeS ≫ 1 assume that 〈C22〉 becomes minimal based on theoretical claims by

L’vov et al. (2005); Procaccia et al. (2008) and observational indications in this study.

Then, for high enough Reynolds number along the universal MDR asymptotic line,

i.e. taking first the infinite Weissenberg number limit and then the infinite Reynolds

number limit, one might expect an intermediate region δν ≪ y ≪ δ of approximately

constant Reynolds shear stress, i.e. −〈uv〉 /u2
τ → 1, implied by Eq. (6.9) when

taking the limits of y/δ → 0 and y/δν → ∞ with the reasonable assumption that

νβ d
dy

〈u〉 → 0 as y ≫ δν . This statement denotes that the classical way of turbulence

production does not vanish in the infinite Weissenberg and Reynolds number limit.

Ultimately, the conjecture here is that 〈σ12〉 can be minor under both limits. This,

however, does not indicate that drag reduction is depleted, it rather suggests that
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the MDR asymptote could be entirely determined by the energetics in these infinite

limits. Nevertheless, polymers play a crucial role in the dynamics at MDR and this

will be explored further in the next section.

6.5 Polymer-turbulence dynamical interactions

The balance equation for the turbulent kinetic energy of a viscoelastic fluid provides

further insight into the dynamical interactions between polymers and turbulence.

Following a similar procedure to section 2.2 and assuming statistical stationarity

and homogeneity in x and z directions, an equivalent energy balance to Eq. (2.29)

can be derived for this case

0 = −∂y

(
1

ρ

〈
u′jp

′〉+
1

2

〈
u′iu

′
ju

′
j

〉
− 2

β

Rec
〈u′isij〉 +

〈
u′iσ

′
ij

〉)
+ P − εN − εP (6.10)

where two extra terms arise due to polymers, a transport term ∂y
〈
u′iσ

′
ij

〉
and a

dissipation rate of energy εP ≡
〈
σ′
ij∂xj

u′i
〉

due to fluctuating viscoelastic stresses.

Note that εP has a dual nature, i.e. it can serve either as dissipation or production

depending on the signs of the polymer stress fluctuations and that of the fluctuating

velocity gradients. All energy balance terms are made dimensionless according to

the variables in Eq. (5.1). Integration of Eq. (6.10) over the y direction yields

∫
P dy =

∫
εN dy +

∫
εP dy (6.11)

with no contribution from the transport terms in the parenthesis due to the no-slip

boundary condition, using the divergence theorem. The viscous dissipation of turbu-

lent kinetic energy is denoted here as εN ≡ 2 β
Rec

〈sijsij〉 and turbulence production

P by Reynolds shear stress is defined in Eq. (2.59).

Figure 6.9 presents each term of Eq. (6.11) normalised by δν/u
3
τ with respect

to Weτ0 for all cases from Table 6.1 at Rec = 4250. An asymptotic behaviour to a

marginal flow state can be observed by increasing the polymer relaxation time scale

with a vast attenuation occurring in the total production and viscous dissipation,

while viscoelastic dissipation grows mildly in the LDR regime and constantly de-

cays within HDR and MDR. Overall,
∫
εP dy becomes pivotal in the dynamics of

the flow relative to
∫
P dy and

∫
εN dy for HDR and MDR flows. Most importantly
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Figure 6.9: Terms of the y-integrated turbulent energy balance with respect to Weτ0 .

∫
εP dy < 0 for high Weτ0 values according to Fig. 6.9, in agreement with experimen-

tal measurements (see Table V in Ptasinski et al. (2001)), implying that polymers

somehow can sustain turbulence by producing turbulent kinetic energy. Notice, that

in this plot both dissipations are presented as positive quantities and this was done

on purpose to emphasise the interplay between production and viscous dissipation

from LDR to HDR. It is noteworthy that
∫
P dy >

∫
εN dy for LDR cases A and

B but
∫
P dy <

∫
εN dy for HDR cases and gets even smaller as drag reduction

approaches its maximum limit. This observation hints that polymer dynamics get

somehow involved in the production of turbulent kinetic energy so that turbulence

does not die out at HDR and MDR. Such a mechanism will be analysed in the next

section.

Let us now look in more detail at the profiles of P , εN and εP scaled by δν/u
3
τ with

respect to normalised distance from the wall y/δ for representative cases at various

levels of drag reduction from Table 6.1 (see Fig. 6.10). Dissipation represents drain

of energy, hence, εN and εP have been plotted here as negative quantities.

The production of turbulent energy by Reynolds stresses, which is continuously

reduced over the extend of drag reduction as a function of Wec, serves to exchange

kinetic energy between the mean flow and the turbulence. The local peak of P is

reached within the buffer layer and in fact for Newtonian flows it can be easily shown

that the maximum production occurs where −〈uv〉 = ν d
dy

〈u〉 and Pmaxδν/u
3
τ <

1
4

(Pope, 2000). The peak turbulence production within the LDR regime also occurs at
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Figure 6.10: Profiles of turbulence production, viscous and viscoelastic dissipation
for the LDR, HDR and MDR regimes.

the intersection point of viscous and Reynolds shear stress (compare Figs. 6.8a and

6.8b with Fig. 6.10a), which shifts away from the wall as Wec increases, indicating

the thickening of the elastic layer. However, for HDR and MDR cases Pmaxδν/u
3
τ

is within 0.1 < y/δ . 0.3, where the maximum Reynolds stress roughly appears,

without following the −〈uv〉 = βν d
dy

〈u〉 intersection point, which does not even

exist for cases G and H (see Figs. 6.8a and 6.8b).

Viscous dissipation exhibits monotonic attenuation as drag reduces for higher

values of Wec with the maximum dissipation arising at the wall for the Newtonian

case N2 and the LDR cases A and B (see Fig. 6.10b). Although the kinetic energy

is zero at the wall since u′|y=0 = 0 imposed by the no-slip boundary conditions, the

fluctuating strain rate and consequently εN is non-zero. At high %DR, it is surprising



6.5 Polymer-turbulence dynamical interactions 112

to observe that the highest fluctuating strain rates are encountered away from the

wall providing a completely different picture of the near-wall dissipation dynamics.

The local kink in the buffer/elastic layer, which arises due to intense activity in this

region, exists at corresponding y/δ with Pmaxδν/u
3
τ for all cases considered in Fig.

6.10b and becomes a global minimum for the HDR and MDR cases, dominating the

profiles of viscous dissipation.

The profiles of viscoelastic dissipation obey a characteristic transitional trend

similar to what has been already observed for u′+ (see Fig. 6.4b) and 〈C22〉 (see

Fig. 6.6c) from LDR to HDR regime, as Wec increases. In detail, the curves of

LDR cases A and B shift downwards increasing viscoelastic dissipation but those

of the HDR/MDR cases move upwards enhancing the positive nature of −εP δν/u
3
τ .

The dual nature of εP is clearly depicted in Fig. 6.10c with polymers dissipating

and producing turbulent kinetic energy in different regions, which depend on the

polymer relaxation time scale at a given Reynolds number. A Reynolds number

dependence of these regions is expected owing to the effect of different flow time

scales on dumbbells with a particular relaxation time scale. Figure 6.11 compares

cases of identical Weissenberg numbers and different Reynolds numbers (see Table

6.1), illustrating a weaker Rec dependence on viscoelastic dissipation in comparison

to the stronger Wec dependence in Fig. 6.10c, particularly at HDR and MDR.
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Figure 6.11: Effect of Reynolds number on viscoelastic dissipation as function of y/δ.
Identical colours correspond to cases with the same Wec values.
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Now, considering each component of the correlation matrix εP ≡
〈
σ′
ij∂xj

u′i
〉
,

where summation applies over the indices i and j, it can be observed that compo-

nents with i = 2, 3 can be ignored, with most of the contribution ascribed to i = 1

components according to Fig. 6.12a which is very similar to Fig. 6.10c. The quali-
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Figure 6.12: Profiles of viscoelastic dissipation components for the LDR, HDR and
MDR regimes.

tative features of εP are clearly captured by
〈
σ′

1j∂xj
u′1
〉
, simplifying the underpining

dynamics of viscoelastic dissipation. However, to be precise εP is neither exactly

approximate nor proportional to
〈
σ′

1j∂xj
u′1
〉
. Note that the positive nature of εP is

caused by the correlations −〈σ′
11∂x1

u′1〉 and −〈σ′
13∂x3

u′1〉 (see Figs. 6.12b and 6.12d).

The rest of the components are negative for all cases considered here and decrease

monotonically as Wec increases like −〈σ′
12∂x2

u′1〉 in Fig. 6.12c. The only exception

though is −〈σ′
32∂x2

u′3〉, which also exhibits a dual trend, negligible however in com-
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parison to the components presented in Fig. 6.12. Finally, the correlations in Figs.

6.12b and 6.12d are also responsible for the transitional behaviour of viscoelastic

dissipation profiles from LDR to HDR discussed earlier.

The current picture of the dual nature of εP was first predicted by Min et al.

(2003b) at low Weissenberg numbers, using the LAD scheme to numerically solve

the FENE-P model (see section 5.1). However, the present DNS are the first to cap-

ture so clearly these regions throughout the drag reduction regimes, predicting the

appropriate dynamics at corresponding Wec values. Once more, this is attributed

to the numerical approach applied here for the FENE-P model that is able to pro-

vide stronger polymer-turbulence interactions than algorithms based on artificial

diffusion. There are even results using the artificial diffusion methodologies that er-

roneously predict polymers never feeding energy back to the flow (Ptasinski et al.,

2003; Procaccia et al., 2008). Hence, in view of the current distinctly transparent

observations a conceptual model for the mechanism of drag reduction is deduced in

the next section.

6.6 Drag reduction mechanism

The recent review on polymer drag reduction by White and Mungal (2008) reports

that the numerical evidence is somewhat conflicting regarding the flow regions where

polymers extend and contract. In this study, these regions can be identified by

applying the Reynolds decompositions ui = 〈ui〉 + u′i and σij = 〈σij〉 + σ′
ij to Eq.

(4.27), following the spirit of Min et al. (2003b); Ptasinski et al. (2003). Then, it

can be noticed that
〈
σ′
ij∂xj

u′i
〉

appears as a production term due to turbulence for

the mean polymer elastic energy. Now, from the definition of polymer elastic energy

Eq. (4.24), it is evident that 〈Ep〉 ∝ ln 〈f(Ckk)〉. So, the FENE-P dumbbells are

stretched when −εP δν/u
3
τ < 0 in Fig. 6.10c and then elastic energy is stored on

polymers, absorbing turbulent kinetic energy from the flow. Hence, a mechanism of

drag reduction can be proposed based on the polymers stretching or in other words

the behaviour of viscoelastic dissipation as a function of the distance y from the wall.
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According to Figs. 6.10c and 6.11 there are three main regions in the profiles of

viscoelastic dissipation

−εP δν/u
3
τ =





−ve for 0 ≤ y/δ < δ1(Wec,Rec)

+ve for δ1(Wec,Rec) ≤ y/δ ≤ δ2(Wec,Rec)

−ve for δ2(Wec,Rec) < y/δ ≤ 1.

(6.12)

The first region is at the proximity of the wall, where polymers unravel because

of the high mean shear, consistent with other studies (Massah and Hanratty, 1997;

Min et al., 2003b; Terrapon et al., 2004; Dubief et al., 2004), storing elastic potential

energy. The range of this region has a weak dependence on Weissenberg and Reynolds

number with its upper bound being within the viscous sublayer δ1(Wec,Rec) . 0.05

for all Wec and Rec cases considered.

The second region is the most interesting since polymers release energy back to

the flow, contracting towards their equilibrium length, as they are convected away

from the wall by the near-wall vortical motions. The manifestation of turbulence pro-

duction by polymers can be interpreted in terms of the correlation of the polymers

with the local fluctuating strain rates and their persistence in this region. In par-

ticular, −
〈
σ′
ij∂xj

u′i
〉

reveals that −〈σ′
11∂x1

u′1〉 as well as −〈σ′
13∂x3

u′1〉 are responsible

for the contraction of the dumbbells and consequently for the release of the stored

elastic energy, since they are positively correlated in this region away from the wall

(see Figs. 6.12b and 6.12d). This region exists in an intermediate y/δ range, whose

upper bound δ2(Wec,Rec) is strongly dependent on Wec and less on Rec values. As

drag reduction amplifies for larger polymer relaxation time scales this positive region

expands to a wider y/δ range, which dominates the nature of −εP δν/u
3
τ at MDR (see

Fig. 6.10c).

Finally, polymers transported away from the wall get also negatively correlated

with the persistent fluctuating strain rates (see Fig. 6.12c) and are extended in the

region δ2(Wec,Rec) < y/δ ≤ 1, which is a sink for turbulent kinetic energy, prevailing

the LDR flows. However, this region is diminished for HDR and MDR flows (see Fig.

6.10c) due to the interplay between the productive and dissipative inherent features

of εP , which mainly depend on the polymer relaxation time scale and the existence

of intense velocity fluctuations that are able to stretch the polymers.
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The phenomenology of the proposed mechanism shares many similarities with

various conceptual models of earlier works (White and Mungal, 2008). In this study,

the basic idea is that the transport of the elastic potential energy, stored by polymers

near the wall, is mainly associated with the polymer relaxation time scale. The latter

determines the distribution of energy away from the wall and as a consequence the

near-wall turbulence dynamics weaken. Up to this point, the mechanism agrees with

the interpretation of Min et al. (2003b), which is essentially confirmed by the present

illustrative computations. However, the novelty here is that this mechanism is valid

for higher Wec values and levels of %DR in contrast to Min et al. (2003a), who claim

that it is not valid for HDR/MDR flows basing their arguments on their debatable

numerical results (see also section 6.2.3).

In addition, the refinement of the proposed conceptual mechanism resides on the

reduction of εP with
〈
σ′

1j∂xj
u′1
〉

and even more on the correlations 〈σ′
11∂x1

u′1〉 and

〈σ′
13∂x3

u′1〉, which are responsible for the turbulence production by polymer coils.

The existence of a third dissipative region away from the wall is also emphasised in

this mechanism, where polymers, after their contraction, are now stretched again by

the intense fluctuating velocity field. This outer region dominates the viscoelastic

dissipative dynamics of the LDR regime and diminishes asymptotically as Wec in-

creases but it never disappears. Ultimately, this picture along with the anisotropy

introduced into the components of turbulent kinetic energy, i.e. E = 1
2
(u′2+v′2+w′2),

comprise the present drag reduction mechanism deduced in this study.

6.7 Summary

This chapter is devoted to the polymer dynamics in viscoelastic turbulent channel

flow and their effects on the flow, reproducing turbulent drag reduction by DNS

using a novel numerical scheme in wall-bounded flows to solve the FENE-P model.

The potential of this methodology to capture the strong polymer-turbulence dynam-

ical interactions led to the following observations. (i) All the statistical quantities

are qualitatively closer to experimental measurements than prior numerical studies

using the artificial diffusion algorithms. (ii) The onset of drag reduction and the

MDR asymptote are realisable without polymers undergoing coil-stretch transition

in contrast to Lumley’s (1969) theory, since 〈Ckk〉 /L
2
p ≪ 1 for all Wec values. (iii)

The increase of anisotropy in the fluctuating flow field, particularly at HDR and
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MDR, is due to the strong anisotropic behaviour of the mean conformation tensor,

i.e. 〈C11〉 ≫ 〈C12〉 ≃ 〈C33〉 > 〈C22〉 caused by the mean shear. (iv) The dependence

of dynamics on Lp and Rec for %DR between the von Kármán and the MDR law

confirm the non-universal aspects of polymer-induced drag reduction. On the other

hand, the MDR universal asymptote is reached for high enough Wec values at a

moderate Rec. (v) Assuming that polymers can be considered as almost rigid, i.e.

Cij ≃ 〈Cij〉, mostly in the main extending direction in the limit of WeS → ∞, then

〈σ12〉 ≃ A2
1−β
Rec

〈C22〉
d
dy

〈u〉, with A2 → 1 for 0 . y/δ . 0.8 at finite Rec. (vi) It

is conjectured that 〈C22〉 becomes negligible in the limit of WeS → ∞. Then, at

high enough Reynolds number along the universal MDR asymptotic line, one might

expect −〈uv〉 /u2
τ → 1 in an intermediate region δν ≪ y ≪ δ when taking the limits

of y/δ → 0 and y/δν → ∞ with νβ d
dy

〈u〉 → 0 for y ≫ δν . (vii) The
∫
εP dy sub-

stantiates that polymer molecules dissipate energy at LDR but remarkably produce

energy at HDR and MDR. (viii) The redistribution of energy away from the wall by

the polymers weakens the dynamics of near-wall turbulence in the spirit of Min et al.

(2003b). The present computations extend this conceptual mechanism to higher Wec

and levels of %DR and refine it by identifying the important correlations that induce

the production of energy by polymer molecules.



Chapter 7

Conclusions

An attempt is made in this thesis to contribute to the advance of our understanding

on two main topics of vital importance in hydrodynamic wall-bounded turbulence,

the mean velocity in terms of its scaling with Reynolds number, re-examining the

basis of the asymptotic scaling relationships from a different viewpoint and the phe-

nomenon of turbulent drag reduction in viscoelastic turbulence, adapting a state-

of-the-art numerical method for the first time in a wall-bounded flow. The main

results of this numerical and theoretical study are reviewed here, conveying their

implications and where these lead in terms of future research directions.

DNS of turbulent channel flows considered in this work suggest that B1 = λ/ℓs

and Cs = nsδ
3
νy+ are approximately constant in the region δν ≪ y . δ. In view of

these DNS cases, these well-defined approximate constancies were demonstrated for

Reτ as low as a few hundred. These constancies imply that, in the region δν ≪ y . δ,

the eddy turnover time τ = 3
2
κsy/uτ with κs = B2

1/Cs. Assuming the constancies

of B1 and Cs to be early manifestations of a high Reynolds number behaviour, i.e.

that B1, Cs and therefore κs are independent of y in δν ≪ y . δ as Reτ → ∞, it

follows that d〈u〉
dy

≃ 2
3
E+

uτ

κsy
in the equilibrium region δν ≪ y ≪ δ where production

may be expected to balance dissipation and −〈uv〉 ≃ u2
τ . The asymptotic equality

−〈uv〉 ≃ u2
τ is mathematically supported only for turbulent channel/pipe flows.

The classical intermediate asymptotics, which assume no dependence of the mean

velocity gradient on ν and δ where δν ≪ y ≪ δ, do not consider the effect that

Townsend’s inactive motions may or may not have on d
dy

〈u〉. However, if a new

intermediate asymptotic approach is taken where the assumption of no dependence

118
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on ν and δ is applied to τ ≡ E/ε instead of d
dy

〈u〉, then τ ∝ y/uτ , and the small effects

of Townsend’s inactive motions on d
dy

〈u〉 may not be neglected because τ ≃ 3
2
κsy/uτ ,

−〈uv〉 ≃ u2
τ and −〈uv〉 d

dy
〈u〉 ≃ ε yield Eq. (3.16) which explicitly contains E+. If

E does not scale as u2
τ as a result of inactive motions, then this revised intermediate

asymptotic approach will not predict a log-law for the mean profile even though

a stagnation point von Kármán coefficient κs exists and is well defined within the

approach. The mean flow prediction of this approach is instead controlled by the

intermediate asymptotic dependence of E+ on y+ and Reτ . If this dependence on y+

is a power-law E+ ∝ y−n+ in the intermediate range δν ≪ y ≪ δ, then the mean flow

profile will also be a power law, i.e. d
dy+

U+ ∝ y
−(1+n)
+ , in that intermediate layer.

DNS of turbulent channel flow with the highest values of Reτ currently available

(Hoyas and Jiménez, 2006) suggest n = 2/15 in both E+ ∝ y−n+ and d
dy+

U+ ∝ y
−(1+n)
+

in support of the present procedure and Eq. (3.16). However, caution should be

taken against extrapolating this value of the exponent n to higher values of Reτ , in

particular in the laboratory where the boundary conditions are in fact different from

the DNS which is periodic in x and z directions. It has to be stressed that the main

point of value here is the support that these elaborate high Reτ DNS (Hoyas and

Jiménez, 2006) bring to the present approach and especially to the new Eq. (3.16).

Note also that the stagnation point von Kármán coefficient is defined by ε =
2
3
E+

u3
τ

κsy
in the range δν ≪ y . δ irrespective of whether the mean flow profile is a

log-law or a power-law. Power-law profiles of E+ and d
dy+

U+ in the intermediate layer

δν ≪ y ≪ δ, simply force ε ≃ 2
3
E+

u3
τ

κsy
to imply that the classical relation ε ≃ u3

τ

κy

does not hold in that layer.

DNS observations that Eqs. (3.9) and (3.11) are valid in the region δν ≪ y . δ

support this new intermediate asymptotic approach because Eqs. (3.9) and (3.11)

imply τ ≃ 3
2
κsy/uτ with κs = B2

1/Cs. The relation κs = B2
1/Cs offers a link between

the underlying flow structure, described in terms of stagnation points, and the dis-

sipation/cascade statistics of the turbulence. The universality in terms of both Reτ

and flow-type dependencies of κs becomes a question concerning the universality of

the stagnation point structure of the turbulent fluctuations. To what extent does

this structure depend on boundary and wall forcing conditions? Is it the same in tur-

bulent channel and turbulent pipe flows? Is it the same in DNS of such flows where

periodic boundary conditions are used and in laboratory realisations of such flows

where boundary conditions are clearly not periodic? These are questions which must
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be left for future investigation, but the approach here makes them fully legitimate

as there is no reason to expect the stagnation point structure of turbulent velocity

fluctuations to be exactly the same in all these cases.

The implications of this new approach for the mean flow profile in turbulent chan-

nel/pipe flows come by invoking a local balance between production and dissipation

as well as −〈uv〉 ≃ u2
τ in the intermediate range δν ≪ y ≪ δ as Reτ → ∞. A direct

test against data of d
dy+

U+ ≃ 2
3
E+

κsy+
in that same range and limit cannot be expected

to be successful if Reτ is not large enough for −〈uv〉 to equal u2
τ over the range

δν ≪ y ≪ δ. As clearly shown by various experimental and numerical data, this

equality is well beyond the highest Reynolds numbers currently available both nu-

merically and in the laboratory. The significant finite Reynolds number deviations

from −〈uv〉 ≃ u2
τ appears to compensate the deviations from a log-law and from

the local production-dissipation balance with the result that plots of y d
dy
U+ have a

less varying appearance than plots of 3
2
y
E+

d
dy
U+. At face value this could be misin-

terpreted as better support for the log-law d
dy+

U+ ≃ 1
κy+

than for d
dy+

U+ ≃ 2
3
E+

κsy+
.

However, plots of B2/κs look significantly better than plots of B2/κ thus demonstrat-

ing that 3
2
y
E+

d
dy
U+ = B2/(B3κs) looks worse than y d

dy
U+ = B2/(B3κ) only because

B3 = −〈uv〉 /u2
τ is so significantly non-constant (see Fig. 3.16).

Future investigations should attempt to uncover the small-scale intermittency

corrections to the new scalings presented in this chapter by determining the weak

dependencies thatB1 may have on Reτ and y+ as a result of small-scale intermittency.

These dependencies will cause dependencies of κs on Reτ and y+. It is remarkable

that small-scale intermittency may have an impact, even if small, on the scalings

of mean flow profiles. These Reynolds number parts of their scalings should be

distinguished from those that Townsend’s attached eddies may be contributing via

the scaling of E+ on Reτ .

Moving now to the study of the polymer-induced turbulent drag reduction phe-

nomenon, strong polymer-turbulence interactions can be captured in view of the

advanced and novel algorithm for the DNS of viscoelastic turbulent channel flow

employed in this study. This allowed β values to remain high, more representative

of dilute polymer solutions used in experiments. Even then higher %DR for given

Wec values are obtained than previous numerical studies. The experimentally ob-

served distinct differences in the statistical trends of the turbulent velocity field,

particularly for u′+ (see Fig. 6.4b), are also clearly identified with the current nu-



121

merical approach in comparison with other simulations, most of which do not even

approach such a characteristic trend. Overall, the peaks of the statistical profiles

of velocity and vorticity fluctuations shift away from the wall as %DR increases, in

agreement with other experimental and numerical studies, indicating the thickening

of the buffer layer. At the same time, νβ d
dy

〈u〉 increases towards the centre of the

channel for higher Wec, denoting the importance of viscosity away from the wall at

these moderate Reynolds number DNS.

Lumley’s phenomenology on the manifestation of drag reduction is based on

the conjecture of coil-stretch transition, i.e. exponential full uncoiling of polymer

molecules, for the build-up of intrinsic viscosity. However, the numerical results of

this work illustrate that the onset of drag reduction and even the MDR asymptotic

state can be reached while 〈Ckk〉 ≪ L2
p with Lp large enough. This is in agreement

with the initial claim by Tabor and de Gennes (1986) that even high space-time

strain rate fluctuations near the wall can only partially stretch polymer coils. It is

also shown that the percentage polymer extension is less but the actual extension is

more for larger Lp, amplifying %DR. Thus, large polymer coils that do not reach

their critical full extensibility should be of interest to experimental investigations on

scission degradation of polymer chains and drag reduction effectiveness. Such macro-

molecules would be less vulnerable to rupture avoiding the loss of the drag reduction

effect. Besides, they should be able to stretch substantially making a stronger impact

on turbulent activity and consequently enhance %DR. The effects of Lp and Rec on

the results support the claims for non-universality of the dynamics for intermediate

levels of %DR between the von Kármán and the MDR law. The universal MDR

asymptote, on the other hand, is reached in this study at high enough Wec and Lp

values for a given moderate Rec.

The analysis of the conformation tensor field provides great insight into the poly-

mer dynamics and their influence on the flow. The dominant anisotropic behaviour

of the mean conformation tensor, i.e. 〈C11〉 ≫ 〈C12〉 ≃ 〈C33〉 > 〈C22〉, due to the

mean shear in viscoelastic turbulent channel flow, influences the anisotropy of the

fluctuating flow field. The anisotropy in the HDR and MDR regimes is depicted at

the small scales of the present DNS outside the buffer layer and towards the cen-

tre of the channel by ω′
z+
> ω′

y+
> ω′

x+
. Different asymptotic rates of convergence

are observed for the conformation tensor components towards the limit of infinite

Weissenberg number demonstrating the complex polymer dynamics even in this sim-
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plified dumbbell model. In the limit WeS → ∞ polymers can be considered as stiff,

i.e. Cij → 〈Cij〉, mostly in the main directions of elongation and the correlations

of the fluctuating conformation tensor and velocity fields in the other directions are

assumed to remain minimal at this limit. Therefore, 〈σ11〉 = A1
1−β
Rec

2 〈C12〉
d
dy

〈u〉 and

〈σ12〉 = A2
1−β
Rec

〈C22〉
d
dy

〈u〉, with A1 → 1 and A2 → 1 in a region somewhere between

the wall and the centre of the channel in that limit. Our numerical results show that

A1 → 1 in such a region but not A2. A2 on the other hand is about contant in the

range 0.2 . y/δ . 0.6 and shows a tendency towards 1 as WeS increases.

The following theoretical view could be stated with regards to the controversy

over the existence or not of Reynolds shear stress at the MDR limit, which is of

fundamental importance to the dynamics of turbulence production at this limit. It

is conjectured that at the MDR limit 〈σ12〉 is negligible. This is based on the idea

mentioned above about the stiffness of polymers at WeS → ∞ plus the assumption

that 〈C22〉 becomes negligible at the same limit. Then, it is supposed that this

behaviour is also valid under both the infinite Weissenberg and Reynolds number

limits by taking carefully these limits, so that one is going along the universal MDR

asymptotic line. Hence, one might expect an intermediate region δν ≪ y ≪ δ of

approximately constant Reynolds shear stress, i.e. −〈uv〉 /u2
τ → 1, implied by the

balance of shear stresses when taking the limits of y/δ → 0 and y/δν → ∞ with

the reasonable assumption that νβ d
dy

〈u〉 → 0 for y ≫ δν . In summary, the classical

turbulence generation by −〈uv〉 seems to survive at the MDR limit, based on the

above assumptions.

Polymer-turbulence dynamical interactions can be expressed through viscoelastic

dissipation εP ≡
〈
σ′
ij∂xj

u′i
〉
, which can either dissipate or produce turbulent kinetic

energy. This dual nature is determined by the signs of σ′
ij and ∂xj

u′i. For HDR and

MDR flows,
∫
εP dy becomes vital in the flow dynamics in proportion to

∫
P dy and∫

εN dy due to the vast inhibition of Reynolds shear stress and fluctuating strain

rates, respectively. In particular, a different view of the near-wall dissipation dy-

namics is shown for HDR/MDR flows, with the maximum dissipation arising away

from the wall. It is intriguing to note that εP follows a transitional pattern from

LDR to HDR regime (see Fig. 6.10c) similar to u′+ (see Fig. 6.4b) and 〈C22〉 (see Fig.

6.6c). This characteristic behaviour is also reproduced on average in
∫
εP dy, where

its dissipative feature enhances in the LDR regime but attenuates for HDR/MDR

flows, with the productive nature dominating for high %DR. Thus, polymers get
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somehow involved in the production dynamics of turbulent kinetic energy.

In view of the current viscoelastic DNS the following conceptual picture of drag

reduction is deduced, which is an extension to and refinement of the mechanism

proposed by Min et al. (2003b). Polymers in the near-wall region extract energy from

the flow due to the uncoiling caused by the mean shear and release some portion of

this stored elastic energy back to the flow by contracting as they move away from the

wall. This transport of energy depends on Weissenberg number which determines the

distribution of energy away from the wall. Ultimately, this process undermines the

dynamics of near-wall turbulence. Note that polymers also unravel due to velocity

fluctuations, as they move towards the core region of the flow, extracting again energy

from the flow. This mechanism appears to be valid for all drag reduction regimes

with the dissipative and productive elements of viscoelastic dissipation competing

in an intermediate region 0 < y/δ < 1 for the different levels of %DR. It is also

observed that the correlation
〈
σ′

1j∂xj
u′1
〉

is able to resemble the dynamics of εP and

that 〈σ′
11∂x1

u′1〉 and 〈σ′
13∂x3

u′1〉 are specifically the correlations responsible for the

production of turbulent kinetic energy by polymers.

So far, in the limited context of the FENE-P model and at moderate Reynolds

number DNS, the proposed phenomenology agrees with the majority of experimental

and numerical data, where dampening of near-wall turbulence has long been spec-

ulated with various analyses and interpretations. Here, the transfer of energy from

the flow to the polymers, its redistribution by the latter in the flow field and the

prevalence of anisotropy over the components of E = 1
2
〈|u′|2〉 in the three Cartesian

directions is suggested as a possible cause of drag reduction. However, further work

is required to enhance our understanding.

In this respect, higher Reynolds number experiments and computations at MDR

are necessary to shed light on the role of Reynolds shear stress and accordingly dis-

prove or support the related arguments presented in this work. An important refine-

ment specifically to the present mechanism would be the study of alignments between

σ′
ij and ∂xj

u′i. This would uncover the detailed dynamics of polymer molecules in

relation to the fluctuating strain rates that could lead to the clarification of the dual

nature of εP . The understanding of the dynamics of viscoelastic dissipation and its

scaling with Reynolds and Weissenberg numbers are crucial for the elucidation of the

MDR asymptote.



Appendix A

Navier-Stokes solver

In this study, the Navier-Stokes equations (3.2) are discretised on a Cartesian grid

using Finite Difference (FD) schemes. The method of FDs was preferred for this

study rather than spectral methods (Kim et al., 1987) for the ease of compatibility

with the peculiar numerical scheme for the FENE-P model (see section 5.2.1), which

was constructed by FD schemes. A concise description of the numerical method of

the Navier-Stokes solver follows. For more detailed description of the code the reader

can refer to Laizet and Lamballais (2009).

A.1 Time advancement

The time integration of Eq. (3.2) is done using a three stage third-order Runge-Kutta

scheme (RK3) (Williamson, 1980), based on the following projection or fractional

step method (Peyret, 2002)

u∗ − un

∆t
= akF

n + bkF
n−1 (A.1)

un+1 − u∗

∆t
= −ck∇p̃n+1 (A.2)

with

F = −
1

2
[∇(u ⊗ u) + (u · ∇)u] +

1

Rec
∆u (A.3)

and

p̃n+1 =
1

ck∆t

∫ tn+1

tn

p dt. (A.4)
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The coefficients ak, bk and ck of the RK3 scheme are tabulated below.

Scheme Order ak bk ck

RK3
a1 = 8/15 b1 = 0 c1 = a1 + b1

∼ O(∆t)3 a2 = 5/12 b2 = −17/60 c2 = a2 + b2
a3 = 3/4 b3 = −5/12 c3 = a3 + b3

Table A.1: Coefficients of the three stage Runge-Kutta scheme.

The incompressibility condition ∇ · un+1 = 0 is verified by solving the Poisson

equation

∇ · ∇p̃n+1 =
∇ · u∗

ck∆t
. (A.5)

A.2 Spatial discretisation in physical space

The spatial discretisation of the terms in the Navier-Stokes equations (3.2) is done

using sixth-order compact schemes with “spectral-like resolution” (Lele, 1992), mean-

ing that the schemes have high resolution, representing accurately a wide range of

scales. In this code, the pressure is stored on a staggered grid and the velocities on a

collocated grid (see Fig. A.1) to avoid any numerical instabilities (Ferziger and Perić,

2002). The approximation for the first derivative of a function f(x) on a collocated

Figure A.1: Staggered grid. Courtesy Laizet and Lamballais (2009).
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uniformly spaced grid with distance ∆x can be expressed in terms of f(x) as follows

αf ′
i−1 + f ′

i + αf ′
i+1 = a

fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
(A.6)

where α = 1/3, a = 14/9 and b = 1/9 in order to achieve sixth-order accuracy (Lele,

1992). Similarly, for the second derivative of the function f(x), one gets

αf ′′
i−1 + f ′′

i + αf ′′
i+1 = a

fi+1 − 2fi + fi−1

∆x2
+ b

fi+2 − 2fi + fi−2

4∆x2
(A.7)

with α = 2/11, a = 12/11 and b = 3/11 for sixth-order accuracy (Lele, 1992). For

the computation of the first derivative f ′
i+1/2 on the nodes staggered by ∆x/2 (see

Fig. A.1) one needs the following expression for a compact scheme of the sixth-order

αf ′
i−1/2 + f ′

i+1/2 + αf ′
i+3/2 = a

fi+1 − fi
∆x

+ b
fi+2 − fi−1

3∆x
(A.8)

where α = 9/62, a = 63/62 and b = 17/62. Although the staggered schemes are more

accurate than the collocated (Lele, 1992), they are computationally more expensive,

because they require a midpoint interpolation. The sixth order compact midpoint

interpolation to obtain an approximation for fi+1/2 is of the following form

αf Ii−1/2 + f Ii+1/2 + αf Ii+3/2 = a
fi+1 − fi

2
+ b

fi+2 − fi−1

2
(A.9)

with α = 3/10, a = 3/4 and b = 1/20.

Generally, FD methods are restricted at the boundaries, since the stencil of the

scheme can lie outside the boundaries, particularly when the stencil contains a lot of

grid points, as in the case of sixth-order compact shemes, i.e. five-point stencil. In a

channel flow, periodic boundary conditions are applied in the homogeneous directions

and no-slip conditions at the walls (see section 2.3). In the periodic directions there

is no problem implementing the full stencil at the boundaries, since one can use the

adjacent nodes, however, these schemes are constrained at the wall boundaries. In

this case, there are usually two main approaches, either to use the same stencil by

“extending” the grid using ghost nodes and extrapolating or reduce the stencil by

reducing the accuracy of the schemes near the boundaries. In this Navier-Stokes

solver the latter approach has been implemented. Thus, third-order single sided
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approximations are used for the first and second derivatives at the wall boundaries

f ′
1 + 2f ′

2 =
1

2∆x
(−5f1 + 4f2 + f3) (A.10)

f ′′
1 + 11f ′′

2 =
1

∆x2
(13f1 − 27f2 + 15f3 − f4) (A.11)

and for the adjacent grid points a three-point stencil was employed with the imple-

mentation of the following fourth-order Padé schemes

1

4
f ′

1 + f ′
2 +

1

4
f ′

3 =
3

2

f3 − f1

2∆x
(A.12)

1

10
f ′′

1 + f ′′
2 +

1

10
f ′′

3 =
6

5

f3 − 2f2 + f1

∆x2
. (A.13)

The computational cost for the convective and diffusive terms with the sixth-

order compact FD schemes is the inversion of tridiagonal matrices and an extra

computational cost comes for periodic boundary conditions, where cyclic matrices

need to be inverted.

A.3 Nonlinear convection term

In this study, the convection term of the Navier-Stokes equations (3.2) has been

implemented in its skew-symmetric form. Kravchenko and Moin (1997) noticed that

numerical errors have different effects for the following different forms of the nonlinear

term in the Navier-Stokes equations

Convective ≡ (u · ∇)u

Divergence ≡ ∇(u ⊗ u)

Rotational ≡ u ·
(
∇u − ∇u⊤)+

1

2
∇(u · u)

Skew-symmetric ≡
1

2
[∇(u ⊗ u) + (u · ∇)u].

(A.14)

It was shown that for the divergence and convective forms, spectral methods are

energy conserving only if dealiasing∗ is performed (Peyret, 2002). For the skew-

symmetric and rotational forms, both spectral and FD methods are energy preserv-

∗Cancellation of spurious modes generated by the nonlinear terms
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ing. Moreover, turbulent channel flow computations were performed (Kravchenko

and Moin, 1997) to show the effect on the numerical errors for each formulation of

Eqs. (A.14). Kravchenko and Moin (1997) concluded that the skew-symmetric form

had the smallest aliasing error and the differences between aliased and dealiased re-

sults were minimal among the various forms of the nonlinear term. Furthermore,

the divergence form is conservative for FD schemes when a staggered grid and/or

suitable averaging operators are used. However, staggered FD schemes are more ex-

pensive computationally than collocated, as it was noted in section A.2. Ultimately,

due to the above reasons the skew-symmetric form was chosen to be used for this

study.

A.4 Spatial discretisation in Fourier space

The spatial discretisation for the solution of Eq. (A.5) is done in Fourier space using

discrete Fourier transforms. In the case of periodic function f(x + Lx) = f(x) the

Fourier transform takes the following form

f̂l =
1

nx

nx∑

i=1

fie
−ikxxi (A.15)

and its inverse

fi =

nx/2−1∑

l=−nx/2

f̂le
−ikxxi (A.16)

where kx = 2πl/Lx is the wave number. However, in the case of symmetric boundary

conditions, i.e. f(x) = ±f(−x) and f(x+Lx) = ±f(−x+Lx) at x = 0 and x = Lx,

respectively

f̂l =
1

nx

nx∑

i=1

fi cos(kxxi) (A.17)

and its inverse

fi =
f̂0

2

nx−1∑

l=1

f̂l cos(kxxi) + (−1)n
f̂n
2

(A.18)

where kx = πl/Lx. The equivalent shifted transforms (i→ i+1/2) for the staggering

of the pressure can be also computed using Fast Fourier Transforms (FFTs) and this

is shown in Canuto et al. (1988).



A.5 Numerical solution of the Poisson equation 129

A.4.1 Spectral equivalence

The Fourier transform of the first derivative of a function f , given by Eq. (A.6) on

a collocated grid, is equal to ik′x times the transform of the original function given

by Eq. (A.15), viz.

f̂ ′
l = ik′xf̂l (A.19)

where k′x is the modified wavenumber and according to Lele (1992) it is a function

of the actual wavenumber kx, i.e.

k′x∆x =
a sin(kx∆x) + (b/2) sin(2kx∆x)

1 + 2α cos(kx∆x)
(A.20)

with the coefficients a, b and α being identical to the coefficients of Eq. (A.6). In

the case of a staggered derivative approximation, the modified wavenumber takes the

following form

k′x∆x =
2a sin(kx∆x/2) + (2b/3) sin(3kx∆x/2)

1 + 2α cos(kx∆x)
(A.21)

where the coefficients a, b and α being the same as for Eq. (A.8).

Similarly, the Fourier transform of the midpoint interpolation is related to the

transform of the function f , as follows

f̂ Il = Tx(kx∆x)f̂l (A.22)

where Tx(kx∆x) is the transfer function defined as

Tx(kx∆x) =
2a cos(kx∆x/2) + (2b/3) cos(3kx∆x/2)

1 + 2α cos(kx∆x)
(A.23)

with the coefficients a, b and α correspond to the coefficients of Eq. (A.9).

A.5 Numerical solution of the Poisson equation

The solution of the Poisson equation is a necessary step in the projection method to

satisfy the incompressibility condition, as was mentioned in section A.1. Equation

(A.5) is the most computationally expensive part of the whole computation, due to
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the non-local nature of the inverse Laplacian operator (see section 2.1), especially

when using high-order numerical schemes in combination with iterative techniques.

There are different techniques in the literature to tackle this problem (Ferziger and

Perić, 2002; Peyret, 2002). In this code, the Poisson equation is solved using Fourier

series, which is clearly much cheaper than iterative methods and easy to code using

conventional FFTs. Using this method, one could think that the problem is con-

strained to periodic boundary conditions. However, the Fourier representation for

the pressure treatment does not have to get restricted to the same boundary condi-

tions with the Navier-Stokes equations. It has been shown that the solution of the

Poisson equation using spectral methods introduces a second-order error locally by

non-periodic boundary conditions (Wilhelmson and Ericksen, 1977; Swarztrauber,

1977). Even then, using the modified wavenumbers, the incompressibility can be

enforced up to the machine accuracy, providing satisfactory results for the pressure

(Laizet and Lamballais, 2009).

The Poisson step in this fractional step method starts with the computation of the

divergence. To preserve compatibility between the discrete differentiation operators

in physical and Fourier spaces for the pressure, the calculation of ∇ ·u∗ must be done

using the staggered schemes, preserving the set of boundary conditions considered.

Then, the following 3D discrete Fourier transform and its inverse are applied using

conventional FFT routines to solve Eq. (A.5) in Fourier space,

ˆ̃plmn =
1

nxnynz

∑

i

∑

j

∑

k

pijkWx(kxxi)Wy(kyyj)Wz(kzzk) (A.24)

pijk =
∑

l

∑

m

∑

n

ˆ̃plmnWx(−kxxi)Wy(−kyyj)Wz(−kzzk) (A.25)

where the sums, the base functions (Wx,Wy,Wz) and the wave numbers (kx, ky, kz)

correspond to the ones defined in section A.4.

Now, let D = ∇ ·u∗. Then, taking the Fourier transform of the Poisson equation

Flmn ˆ̃pn+1
lmn = D̂lmn ⇒ ˆ̃pn+1

lmn =
D̂lmn

Flmn
(A.26)

where the factor Flmn depends on the grid configuration and for the staggered case

it must take into account the midpoint interpolation through the use of the transfer
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functions, i.e.

Flmn = −
[
(k′xTyTz)

2
+
(
k′yTxTz

)2
+ (k′zTxTy)

2
]
∆t. (A.27)

Finally, to compute the pressure in the physical space, the inverse Fourier transform

Eq. (A.25) is applied and the pressure gradient ∇p̃n+1 can be obtained using the

staggered compact schemes of section A.2.

A.6 Non-uniform grids using Fourier Transforms

In this code, the Fourier method provides favourable properties such as spectral

accuracy and fast solution of the Poisson equation (A.5). However, the discrete

Fourier transform is restricted to the use of an equally spaced co-ordinate in a finite

domain. In order to overcome this constraint, first Cain et al. (1984) and then

Avital et al. (2000) suggested a grid stretching technique that maps an equally space

co-ordinate in the computational space to a non-equally spaced co-ordinate in the

physical space.

In detail, let x be the physical space co-ordinate and let the computational co-

ordinate s to be introduced through a mapping

x = h(s) = −β cot(πs), 0 6 s < 1 and −∞ 6 x <∞. (A.28)

Then the first and second derivatives of a function f in the two co-ordinate systems

are related via the chain rule, as follows

∂f

∂x
=
∂f

∂s

ds

dx
=

1

h′
∂f

∂s
(A.29)

∂2f

∂x2
=
∂2f

∂s2

(
ds

dx

)2

+
∂f

∂s

d2s

dx2
=

1

h′2
∂2f

∂s2
+
h′′

h′3
d2s

dx2
. (A.30)

Hence, the spatial derivatives are first calculated using the FFT and then multiplied
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by the stretching ratio of the mapping to yield the derivatives in the physical space

α
∂f

∂x

∣∣∣∣
i−1

+
∂f

∂x

∣∣∣∣
i

+ α
∂f

∂x

∣∣∣∣
i+1

= αh′i−1

∂f

∂s

∣∣∣∣
i−1

+ h′i
∂f

∂s

∣∣∣∣
i

+ αh′i+1

∂f

∂s

∣∣∣∣
i+1

= a
fi+1 − fi−1

∆s
+ b

fi+2 − fi−2

∆s
(A.31)

where h′i = ∂sh(si) and α, a and b take the values previously denoted in section A.2.

The final result yields alias-free differentiation operators (Cain et al., 1984; Avital

et al., 2000).



Appendix B

Numerical method for the

computation of stagnation points

This study of turbulent channel flow focuses on stagnation points of the fluctuating

velocity field, i.e.

u′(x, t) ≡ u(x, t) − 〈u〉 = 0 (B.1)

where 〈 〉 denotes here an average in space over the homogeneous directions x and z

at a particular instant in time. These zero-velocity points are Galilean invariant and

result from the intersections of the three random surfaces u′(x, t) = 0, v′(x, t) = 0 and

w′(x, t) = 0. Intersections of two random surfaces gives lines and the intersections

of these lines with a third random surface gives points.

A root finding method is required to obtain where in space the random function

u′(x, t) is locally zero. Here, the iterative Newton-Raphson method is applied

xnew = xold + δx with [∇u′]L δx = −u′
L (B.2)

where ∇u′(x, t) ≡ ∇u(x, t)− 〈∇u〉 and the subscript L stands for an interpolated

quantity. The interpolation of the velocity and its gradient was done using fourth-

order Lagrangian interpolation (Press et al., 1996). The particular choice of the

interpolation was chosen based on robustness, accuracy and computational efficiency.

The 3 × 3 linear system of equations was solved for δx simply using the Cramer’s
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rule

δx = −

[
det(u′

L,
∂u′

∂y

∣∣
L,

∂u′

∂z

∣∣
L), det(∂u′

∂x

∣∣
L,u

′
L,

∂u′

∂z

∣∣
L), det(∂u′

∂x

∣∣
L,

∂u′

∂y

∣∣
L,u

′
L)
]

det(∂u′

∂x

∣∣
L,

∂u′

∂y

∣∣
L,

∂u′

∂z

∣∣
L)

(B.3)

assuming that det(∂u′

∂x

∣∣
L,

∂u′

∂y

∣∣
L,

∂u′

∂z

∣∣
L) 6= 0.

The Newton-Raphson method gives a very rapid local convergence to a root if

the initial guess is sufficiently good. So, to have a chance at good starting points,

these were taken midway between two consecutive grid points throughout the com-

putational domain. It is well known that different initial guesses can converge to

the same solution, due to the unpredictable global convergence properties of this

iterative method. To avoid this issue the root finding was bounded no further than

the neighbouring computational cells and it was also ensured that no more than one

stagnation point exists in a cell, which is what should be expected from a smooth

velocity field of a well resolved DNS.

This method was also compared to an algorithm proposed in Schmelcher and Di-

akonos (1998) for the detection of unstable periodic orbits in chaotic dynamical sys-

tems, which has good global convergence due to its attracting nature. This method

is based on a universal set of linear transformations, which transform unstable fixed

points to stable ones whilst mainting their positions. However, this method can be

expensive in more than two dimensions and this is the reason why Newton-Raphson

was chosen here, which is as accurate.

The number of zero-velocity points Ns are computed within thin slabs of dimen-

sions Lx × δy ×Lz, with δy ∝ δν , parallel to the channel’s wall. Time averages of Ns

were taken by repeating the same procedure for several time instances.



Appendix C

Kronecker and Vec operator

The Kronecker product of an n× n matrix A with the n× n identity matrix I is an

n2 × n2 matrix, taking the following form

A ⊗ I =




A11I A12I · · · A1nI

A21I A22I · · · A1nI
...

...
. . .

...

An1I An2I · · · AnnI




(C.1)

and

I ⊗ A =




I11A

I22A
. . .

InnA




(C.2)

The vec operator applied on an m×n matrix B stacks the columns into a vector,

viz.

vec(B) = (B11, B12, · · · , B1n, B21, B22, · · · , B2n, · · · · ·, Bm1, Bm2, · · · , Bmn)
⊤ (C.3)
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