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ABSTRACT We describe a simple computation of the worm-like chain model and obtain the corresponding force-versus-
extension curve. We propose an improvement to the Marko and Siggia interpolation formula of Bustamante et al (Science
1994, 265:1599–1600) that is useful for fitting experimental data. We apply it to the experimental elasticity curve of single DNA
molecules. Finally, we present a tool to study the agreement between the worm-like chain model and experiments.

INTRODUCTION

Stretching individual biomolecules is now achieved by a
variety of techniques including flow stress (Smith et al.,
1992), AFM (Rief et al., 1997), micro-needles (Cluzel et al.,
1996), optical tweezers (Wang et al., 1997), and magnetic
tweezers (Strick et al., 1996) that allow measurement of
forces from 10 femtonewtons to hundreds of piconewtons.
Different biological molecules have now been analyzed
(Kellermayer et al., 1997) and the accuracy of these tech-
niques has sufficiently improved so that the theoretical
models used to analyze force-extension curves must be
refined. In particular, Bustamante et al. (1994) have shown
that the force-extension diagram of a DNA molecule is well
described by a worm-like chain (WLC) model. In this note,
we present a simple derivation of the WLC model whose
solution can easily be implemented on a personal computer.
Furthermore, we propose an improvement to the Marko and
Siggia (Bustamante et al., 1994) interpolation formula with
a relative error in force of 0.01% for any given extension.
This new interpolation scheme is easy to introduce into
fitting algorithms and allows for accurate estimation of the
persistence length. We propose and discuss the possibility
of taking into account the enthalpic elasticity contribution
that is observed experimentally in force-extension curves.

EXACT SOLUTION OF THE WLC MODEL

The WLC model was first treated numerically by Fixman
and Kovac (1973), after which a preliminary analytical
approach was performed by Kovac and Crabb (1982). Its
complete treatment was achieved by Marko and Siggia and
reported by Bustamante et al. (1994).

The energy,E, of a stretched DNA molecule is given in
the WLC model by a line integral of two terms. The first

term,eb(s), describes the resistance of the chain to bending
and is proportional to the inverse square of the radius of
curvature,R. One writesR22 as the square of the derivative
with respect to the arc length,s, of the unit tangent vector,
t(s), and gets

eb~s! 5
A

2
Udt~s!

ds
U2

5
A

2R2.

The second term,ef(s), gives the stretching energy resulting
from the application of a force,F, to the end of the molec-
ular chain. Taking the force along thez axis, one arrives at
the final expression forE:

EWLC 5 E
0

L0

dsSA2Udt~s!
ds

U2 2 F cosu~s!D, (1)

where cosu(s) is the angle betweent(s) and thez axis, and
L0 is the contour length of the molecule. Experimental data
are usually analyzed in terms of the persistence length,Lp,
(sometimes denoted byj) which is related to the quantityA
by Lp 5 A b whereb 5 1/kBT.

The partition function,Z (L0, F, t0, t1), is given by the
path integral:

Z~L0, F, t0, t1! 5 E $~t!exp~2~bEWLC!. (2)

$(t) is the integration measure in functional space of the
paths drawn on the unit sphere starting at the pointt(s5 0) 5
t0 and ending att(s 5 L0) 5 t1. By performing an analytic
continuation of thes integral inEWLC toward the imaginary
axis, one gets the action integral relative to a fictitious
particle of unit charge moving upon a sphere under the
influence of an electric field,F, with the time variable
t } Im(s). The above analytic continuation of the partition
function, Z(L0, F, t0, t1), maps to the Feynman transition
probability amplitudêt1tf ut 5 0t0& for the fictitious particle,
initially localized at the coordinatet0, at the final timetf at
the point of coordinatet1. This amplitude is given, accord-
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ing to the usual rules of quantum mechanics, by the matrix
element:

^t1tfut 5 0t0& 5 Kt1UexpS2it f

\
ĤDUt0L, (3)

whereĤ is the Hamiltonian operator.
In the present case, the HamiltonianĤWLC, written in a

dimensionless reduced form, reads as follows:

ĤWLC 5 2
1

2 sinu

­

­u
sin ­

­

­u
2 a cosu, (4)

where we have introduced the dimensionless quantitya 5
bLpF. Going back to the partition function, a simple adap-
tation of Eq. 3 gives:

Z~L0, F, t0, t1! 5 Kt1U expS2L0

Lp
ĤWLCDUt0L. (5)

Introducing the eigenvalues,en, and eigenwavefunctions,
Cn(u), of the WLC Hamiltonian:ĤWLCCn(u) 5 enCn(u),
the partition function given by Eq. 5, can be written as a
series of eigenstates, each term being of the order of
exp(2L0/Lp(en)). In practiceL0 .. Lp, so it is legitimate to
retain only the ground state contribution. The logarithm of
the partition function is given by the simple expression:

ln~Z~L0, F, t0, t1!! 5 2
L0

Lp
e0~a! 1 O~1!), (6)

wheree0(a) is the ground state energy ofĤWLC andO(1)
stands for a term of order unity associated with a prefactor
involving the ground state wave function,C0(u). We are
now in a position to compute the relative extension of the
chain:

^z&

L0
5

1

bL0

­ ln Z

­F
5 2

­e0

­a
~a! 5 ^C0u cosuuC0&, (7)

where the second part of the above equation follows from
first order perturbation theory applied to the infinitesimal
Hamiltonian resulting from a small variation ofa.

We must now solve the eigenvalue problem,ĤWLCC0(u) 5
e0 C0(u). Instead of using linear algebra methods to diago-
nalize large matrices, we solve the ordinary differential
equation associated with the eigenvalue equation:

1

2 sinu

­

­uSsin u
­

­u
C0~u!D 1 ~a cosu 1 e0!C0~u! 5 0.

(8)

We look for a solution which satisfies regularity conditions
for bothu 5 0 andu 5 p. These requirements are necessary
in order forĤWLC to be a self-adjoint operator, and can be
fulfilled if and only if the reduced energy,e, belongs to a
discrete set of values.

As a first step, one constructs by a series expansion two
solutions of Eq. 8,Ca(u) andCb(u), which are respectively
regular foru 5 0 andu 5 p. One then proceeds with an

outward numerical integration ofCa(u) and inward numer-
ical integration ofCb(u) up to an intermediate value ofu 5
u0. The energy eigenvalue is obtained as a matching con-
dition for the two wave functions, which ensures the regu-
larity of the eigenfunction for the whole physical domain of
u. One requires, foru 5 u0, equality of logarithmic deriv-
atives ofCa(u) andCb(u):

­Ca

­u YCa 2
­ub

­uYCb 5 0. (9)

Eq. 9 is then solved by a standard iteration method. The
construction of Table 1 giving the elongation^z&/L0 as a
function of a is started with a small value ofa: one uses
2a2/3 as the ground state energy approximation given by
the lowest order perturbation theory.

Because the present method used to solve the eigenvalue
problem automatically yields the eigenfunctionC0(u), one
uses Eq. 7 in order to get2(­e0/­a) 5 (^z&/L0). One can
then proceed to the neighboring valuea 1 Da, using
e01Da(­e0/­a) as a starting eigenvalue. In this way we
have easily obtained, using numerical methods, the ground
state energy eigenvalues for the complete range of experi-
mental interest (0.06# ^z&/L0 # 0.97), with a precision in
^z&/L0 better than 1025 (for a given force). These results are
used in the next section to obtain an analytical interpolation
of the force-extension formula of the WLC model, which
turns out to be somewhat more precise than the interpolation
formula proposed by Bustamante et al. (1994).

AN IMPROVED FIT TO THE WLC MODEL

In this section we shall use the notationz 5 ^z&. Marko and
Siggia (Bustamante et al., 1994) proposed the following

TABLE 1 Normalized force a 5 FLp/kBT versus extension of
the exact worm-like chain

^z&/L0 a 5 FLp/kB

0.066343 0.1
0.130807 0.2
0.191795 0.3
0.248177 0.4
0.345160 0.6
0.421692 0.8
0.527686 1.2
0.594418 1.6
0.672583 2.4
0.717901 3.2
0.754505 4.2
0.801653 6.4
0.828069 8.5
0.855420 12
0.878595 17
0.899926 25
0.915441 35
0.929264 50
0.942251 75
0.949991 100
0.959170 150
0.964642 200
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interpolation formula as a useful approximation to the WLC
model:

F 5
kBT

Lp
F 1

4~1 2 z/L0!
2 2

1

4
1

z

L0
G. (10)

Their expression has the nice property of reducing to the
exact solution as eitherz 3 0 or z 3 L0. In between it
reproduces the general behavior of the exact solution but
may differ by as much as 10% forz/L0 ; 0.5 (Bustamante
et al., 1994). Using this interpolation in the fitting procedure
leads to a small overestimate in the value ofLp: the error is
typically of the order of 5%, but will actually depend upon
the range of extensions spanned by an experiment and by
the statistical error for each point.

We have subtracted the Marko-Siggia interpolation for-
mula from the exact numerical solution of the WLC model
and expressed the residuals as a seventh-order polynomial,
which provides all the correction terms. We therefore write:

F 5
kBT

Lp
F 1

4~1 2 z/L0!
2 2

1

4
1

z

L0
1 O

i52

i#7

aiS z

L0
DiG , (11)

with a2 5 20.5164228,a3 5 22.737418,a4 5 16.07497,
a5 5 238.87607,a6 5 39.49944, anda7 5 214.17718. It
can be verified that the above formula is compatible with
the properties ofF as an analytic function ofz.

The order of the polynomial is arbitrary; lower or higher
order could also be used. We choose the seventh order since
it leads to an accuracy better than 0.01% over the useful
extension range (which is more accurate than required for
experiments but useful inasmuch as the derivative­F/­z is
often needed in the fitting procedure).

Vologodskii has also proposed an interpolation formula
(Eq. 4 of Vologodskii, 1994) which describes the force-
versus-extension curve of a WLC model obtained by Monte
Carlo simulation. This formula is neither valid at small
extensionz/L0 , 0.1 nor at large extensionz/L0 . 0.97, yet
in between the agreement with the exact WLC model is
good, the relative error in force being smaller than 5%.
Recently Moroz and Nelson (1997) also proposed the fol-
lowing approximation for the extension-versus-force curve
valid for forces larger than 0.1 pN:

^z&

L0
5 1 2

1

2FLoF

kBT
2

1

32G
21/2

1
F

K0
. (12)

A finite size effect may be added to this equation in the form
kBT/L0F.

ENTHALPIC CORRECTIONS AT HIGH FORCE

As shown by Smith et al. (1996) and Wang et al. (1997), the
B-DNA structure displays a linear stretching behavior at
high force. Indeed, the chemical bonds are slightly modified
by the strong stretching, leading to a small increase in the
length of the molecule. This behavior is evident in the range

of 5–50 pN, but above 60 pN a drastic structural change
occurs leading to an abrupt increase in length (the so-called
“overstretch transition”). So far, no exact model has been
derived to incorporate the latter effect in the WLC model.
An appropriate model for the behavior below the over-
stretch transition was proposed by Wang et al. (1997) and
inspired by Odijk (1995); it consists of replacingz/L0 by
z/L0 2 F/K0. Analogously we obtain:

F 5 SkBT

Lp
DF 1

4~1 2 l!2 2
1

4
1 l 1 O

i52

i#7

ai~l!
iG (13)

with l 5 z/L0 2 F/K0.
In practice, withK0 ranging from;500 pN to;1500 pN

(which covers the existing experimental measurements), the
enthalpic correction will not affect the estimation of the
persistence length within 1% accuracy, provided that only
the data below 1–2 pN are fit. Failing to account for the
enthalpic correction for forces as small as 5–10 pN leads to
underestimation ofLp. However, nonlinear elasticity is also
expected and the domain of validity of Eq. 13 is not known.

As may be seen in Fig. 1, we used this more elaborate
approach to fit the data of Fig. 5 of Wang et al. (1997) and
found slightly different values for the fit parameters (see
Fig. 1) as compared with the values found in Wang et al.
(1997) (L 5 1314 nm 6 1, Lp 5 43.3 nm 6 0.5 K0 5
1246 6 10 pN, p 5 0.18). The fit is somewhat improved
using the exact WLC model, the value ofLp being smaller
by 3 nm.

FIGURE 1 Experimental data (points) and fit (solid line) corresponding
to figure 5 of Wang et al. (1997). The inset is a blow-up of the small force
regime. The optical tweezers used here allow for quick measurements with
roughly a constant noise level when the force is,6 pN (see the inset) and
an increasing error above 6 pN as indicated by the two error bars (shifted
by 25 nm from the data). The exact model leads to a better overall fit in
terms ofxn

2.
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In the same spirit, in Fig. 2 we have analyzed another
DNA stretching experiment using a different measurement
technique (Strick et al. 1996). The very good fit demon-
strates that the WLC model applies over a large range of
forces.

COMPARISON WITH EXPERIMENTS

How well does the WLC work?

The WLC’s force-versus-extension curve is a highly non-
linear function: at low extension, force grows linearly with
x with a slope 3kBT/2LpL0, whereas at high extension, the
force diverges as (kBT/Lp) [4(1 2 z/L0)

2]21. For moderate
extensions, a crossover occurs between these two regimes.
Thus various approaches may be tried to determineLp:
concentrating on the low extension regime, considering the
molecule near its full extension, or considering it over the
entire domain. An interesting test of the WLC model’s
validity is given by the equality between the values ofLpl

andLph obtained for low and high extension, respectively.
So far, this test has been partially completed: Marko and

Siggia carefully analyzed data of Smith et al. (1992) and
plotted the effective persistence length versus the applied
force, which should remain constant if the WLC applies
exactly (Marko and Siggia, 1995). They have shown that the
WLC model correctly describes the experiment performed
in a 10-mM salt buffer. In a low-salt buffer, the long range

interaction added by electrostatic effects (Barrat and
Joanny, 1993) induces significant departures from the WLC
model. To be more specific, in a 1-mM buffer, Marko and
Siggia show that Smith et al.’s data leads toLpl 5 85 6 10
nm, whereasLph ; 50nm. This result contrasts with the new
one published by the same experimental group (Baumann et
al., 1997) using a different technique, namelyLph ; 95 6 6
nm.

We cannot resolve this discrepancy here but we empha-
size that the fits done by Barrat and Joanny (1993) as well
as the analysis of the effective persistence length (Marko
and Siggia, 1995) were based on the interpolation formula
(Eq. 10), which is less accurate in the crossover regime. We
propose the following expression, derived from Eq. 13, to
provide an improved effective persistence length test:

Lpeff 5 SkBT

F DF 1

4~1 2 l!2 2
1

4
1 l 1 O

i52

i#7

ai~l!
iG (14)

with l 5 z/L0 2 F/K0.
In Fig. 3 A we have applied this analysis to the interpo-

lation formulae of Marko and Siggia, Vologodskii, and
Moroz and Nelson, and finally in Fig. 3B to the data of Fig.
2. This figure should be compared with Fig. 4 of Marko and
Siggia (1995). Clearly the WLC model works remarkably
well for this experiment performed in a 10-mM phosphate
buffer (pH 8). This agreement is even better than one should
expect from figure 4 of Marko and Siggia (1995). Repeating
this test for low-salt buffer (as in Figure 5 of Marko and
Siggia (1995)) and performing a careful error analysis
should allow one to determine whether electrostatic stiffen-
ing leads to a departure of the experimental curve from the
WLC model.

Although Fig. 1 corresponds to very accurate measure-
ments, the effective persistence length (data not shown) is
meaningful only at high force. Thus measuring the persis-
tence length using a polymer’s force-versus-extension curve
requires accurate force measurements over a large range of
forces. Moreover, the determination of a persistence
length’s value should be associated with the force regime or
extension domain explored. We propose to define the mean
extension corresponding to thex2 fit of Lp:

zmean

L0
5

Oi~zi/L0! F2~zi, L0, Lp, K0!/si
2

OiF
2~zi, L0, Lp, K0!/si

2 , (15)

wheresi represents the error in force for the experimental
point i andF2(zi, L0, Lp, K0) is the estimated force using Eq.
13 with the measured extensionzi andL0, Lp, andK0 (the
parameters of the best fit). In the same spirit, the mean force
may be defined by replacingzi/L0 with Fi. Applying this to
the data presented in Fig. 1 leads tozmean/L0 5 0.945 and
Fmean5 6.95 pN; applied to the data in Fig. 2 it leads to
zmean/L0 5 0.77 andFmean5 0.37 pN.

The high force regime has been quite well investigated
(Baumann et al., 1997; Wang et al., 1997). In this regime the

FIGURE 2 Experimental data and fit corresponding to the extension of
a l-DNA molecule in 10 mM PB buffer obtained using the Brownian
motion method (Strick et al., 1996). This method is particularly well suited
to measuring small forces. Moreover, the relative error in the force (ver-
tical error bars) may be kept constant by adjusting the acquisition time.
The semilogarithmic scale facilitates visualization of the large force range.
The WLC model (solid line) nicely fits the experimental data. Note that the
forces are too small to allow an accurate measurement ofK0. The error bars
correspond to statistical errors, but the systematic ones are more difficult to
evaluate. We estimate the calibration errors in the range of 5%.
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enthalpic elasticity cannot be neglected and electrostatic
effects may lead to departures from the WLC model (Marko
and Siggia, 1995). We are definitely missing the very small
force regime (with better resolution than in Smith et al.,
1992), which should allow one to measureLpl.

Finally, the WLC model has been used to describe the
stretching of titin protein (Kellermayer et al., 1997; Rief et
al., 1997; Tskhovrebova et al., 1997), yielding a persistence
length equal to a few times the monomer size. This is
somewhat surprising since the Kratky-Porod model leads
asymptotically to the WLC only when the number of mono-
mers per persistence length is large (Kratky and Porod,
1949). Using the concept of effective persistence length
should show how well the WLC works in this case.

We supply an improved method to analyze the force-
versus-extension curve of a stretched polymer using the

WLC model. We hope that this method will allow more
accurate determination of the properties of biological and
other polymers. Furthermore, it may help to identify any
experimental departures from the ideal WLC and reveal if
electrostatic effects are their major cause, as originally
proposed by Marko and Siggia (1995).
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