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ABSTRACT We describe a simple computation of the worm-like chain model and obtain the corresponding force-versus-
extension curve. We propose an improvement to the Marko and Siggia interpolation formula of Bustamante et al (Science
1994, 265:1599-1600) that is useful for fitting experimental data. We apply it to the experimental elasticity curve of single DNA
molecules. Finally, we present a tool to study the agreement between the worm-like chain model and experiments.

INTRODUCTION

Stretching individual biomolecules is now achieved by aterm,e,(s), describes the resistance of the chain to bending

variety of techniques including flow stress (Smith et al.,and is proportional to the inverse square of the radius of

1992), AFM (Rief et al., 1997), micro-needles (Cluzel et al.,curvature R. One writesR 2 as the square of the derivative

1996), optical tweezers (Wang et al., 1997), and magnetiwith respect to the arc length, of the unit tangent vector,

tweezers (Strick et al., 1996) that allow measurement of(s), and gets

forces from 10 femtonewtons to hundreds of piconewtons.

Different biological molecules have now been analyzed

(Kellermayer et al., 1997) and the accuracy of these tech-

niques has sufficiently improved so that the theoretical

models used to analyze force-extension curves must b&he second terng(s), gives the stretching energy resulting

refined. In particular, Bustamante et al. (1994) have showiirom the application of a force;, to the end of the molec-

that the force-extension diagram of a DNA molecule is wellular chain. Taking the force along tlzeaxis, one arrives at

described by a worm-like chain (WLC) model. In this note, the final expression foE:

we present a simple derivation of the WLC model whose

solution can easily be implemented on a personal computer. JL" ds(A‘dt(s)
WLC 2

A

dt(s) 3
| =

_ A‘
e(s) =5 ds

Furthermore, we propose an improvement to the Marko and ds
Siggia (Bustamante et al., 1994) interpolation formula with

a relative error in force of 0.01% for any given extension. h is th | h .
This new interpolation scheme is easy to introduce into' 'c'€ cos(s) is the angle betweet(s) and thez axis, and

fitting algorithms and allows for accurate estimation of thelo 1S the contour length of the molecule. Experimental data

persistence length. We propose and discuss the possibilifé‘;re usually analyzed in terr]r_nf] of thle perS|st§nce leriggh,
of taking into account the enthalpic elasticity contribution (SOMetimes denoted by which is related to the quantit

that is observed experimentally in force-extension curves.by Ly = A [_B_WhereB_= 1kgT. .
The partition functionZ (Lo, F, to, t1), is given by the

path integral:

2-F cose(s)), (1)

EXACT SOLUTION OF THE WLC MODEL

The WLC model was first treated numerically by Fixman _ _
and Kovac (1973), after which a preliminary analytical Lo Fr o ty) = J@(t)exp( (BEwio) @
approach was performed by Kovac and Crabb (1982). Its
complete treatment was achieved by Marko and Siggia an€éb(t) is the integration measure in functional space of the
reported by Bustamante et al. (1994). paths drawn on the unit sphere starting at the ¢t 0) =

The energyE, of a stretched DNA molecule is given in ty and ending at(s = L) = t;. By performing an analytic
the WLC model by a line integral of two terms. The first continuation of thesintegral inE,,, - toward the imaginary
axis, one gets the action integral relative to a fictitious
rparticle of unit charge moving upon a sphere under the
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ing to the usual rules of quantum mechanics, by the matrioutward numerical integration oF () and inward numer-
element: ical integration of¥(6) up to an intermediate value 6f=
it 0, The energy eigenvalue is obtained as a matching con-
| ~ . . .
exp(—hf H) t0>! 3) dition for the two wave functions, which ensures the regu-
whereH is the Hamiltonian operator.

larity of the eigenfunction for the whole physical domain of
In the present case, the HamiltoniBky,, ¢, written in a

(tltf|t = 0to> = <t1

6. One requires, fob = 6,, equality of logarithmic deriv-
atives of W (60) and ¥ ,(0):

dimensionless reduced form, reads as follows: o, 96y,
ae/@'a—%/q’b=0. (9)
Flae = —5 = -sina 0 4
we = Tosingag S gg @ COSY: ) Eq. 9 is then solved by a standard iteration method. The

. . ) ) construction of Table 1 giving the elongati@r)/L, as a
where we have introduced the dimensionless quantity function of « is started with a small value af: one uses

BLF. Going back to the partition function, a simple adap—_az/3 as the ground state energy approximation given by

tation of Eq. 3 gives: the lowest order perturbation theory.

o Because the present method used to solve the eigenvalue
ex%—LHWLC> to>. (5) problem automatically yields the eigenfunctitdfy(6), one

P uses Eq. 7 in order to get(dey/da) = ((2/Ly). One can
Introducing the eigenvalues,, and eigenwavefunctions, then proceed to the neighboring value + Ac, using
¥, (6), of the WLC HamiItonian:HWLC\Pn(e) = ¢, ¥ (0), eotAa(del/da) as a starting eigenvalue. In this way we
the partition function given by Eq. 5, can be written as ahave easily obtained, using numerical methods, the ground
series of eigenstates, each term being of the order cftate energy eigenvalues for the complete range of experi-
exp(—Lo/L,(€,)). In practicel, >> L,, so itis legitimate to  mental interest (0.0&= (2/L, = 0.97), with a precision in
retain only the ground state contribution. The logarithm of(2)/L, better than 10° (for a given force). These results are
the partition function is given by the simple expression: used in the next section to obtain an analytical interpolation
of the force-extension formula of the WLC model, which
turns out to be somewhat more precise than the interpolation
formula proposed by Bustamante et al. (1994).

Z(LOl F1 tOl tl) = <tl

INZLo Fr o 1) = el +OL),

where ey(a) is the ground state energy BfWLC and O(1)
stands for a term of order unity associated with a prefactoAN IMPROVED FIT TO THE WLC MODEL

mvolymg the_ground state wave funct_|orIf,O(0). We a'® |1 this section we shall use the notatiprr (2). Marko and
now in a position to compute the relative extension of theSiggia (Bustamante et al., 1994) proposed the following

chain:
@ 1 9dlnz dey TABLE 1 Normalized force a = FL_/kgT versus extension of
L. = BT 9F = T a (a) = <\I’o’ COSG"I’0>1 @) the exact worm-like chain
0 0
(2L, a = FLJkg
where the second part of the above equation follows from 0.066343 o1
first order perturbation theory applied to the infinitesimal 0130807 0.2
Hamiltonian resulting from a small variation of 0.191795 03
We must now solve the eigenvalue problétg, ~¥(0) = 0.248177 0.4
€, Vo(0). Instead of using linear algebra methods to diago- 0.345160 0.6
nalize large matrices, we solve the ordinary differential 8'33222 g'g
equation associated with the eigenvalue equation: 0594418 16
1 9 5 0.672583 2.4
Y aing ® _ 0.717901 3.2
5sing ae(sm 0 90 \1/0(9)) + (o cOSO + €0)Wo(6) = 0. 0.754505 o
(8) 0.801653 6.4
0.828069 8.5
We look for a solution which satisfies regularity conditions 0.855420 12
for both6 = 0 and6 = . These requirements are necessary 0-878525 ;7
in order forH,,, ¢ to be a self-adjoint operator, and can be 8'2?22 4‘2 32
fglfilled if and only if the reduced energy, belongs to a 0929264 50
discrete set of values. 0.942251 75
As a first step, one constructs by a series expansion two 0.949991 100
solutions of Eq. 8 () andW,(6), which are respectively 0.959170 150
0.964642 200

regular for6 = 0 and6 = ar. One then proceeds with an
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interpolation formula as a useful approximation to the WLCof 5-50 pN, but above 60 pN a drastic structural change

model: occurs leading to an abrupt increase in length (the so-called
“overstretch transition”). So far, no exact model has been

E= kBT[ 1 _ } n z (10) derived to incorporate the latter effect in the WLC model.

L, [41—2ZLo)* 4 LoJ An appropriate model for the behavior below the over-

. . . . stretch transition was proposed by Wang et al. (1997) and
Their expression hgs the nice property of reducing to thefnspired by Odijk (1995); it consists of replacimL, by
exact solution as either — 0 or z — L,. In between it 7L, — FIK,. Analogously we obtain:

reproduces the general behavior of the exact solution but
may differ by as much as 10% fafL, ~ 0.5 (Bustamante
etal., 1994). Using this interpolation in the fitting procedure F =
leads to a small overestimate in the valud.gfthe error is
typically of the order of 5%, but will actually depend upon
the range of extensions spanned by an experiment and Byith | = Z/Ls — F/Kq.
the statistical error for each point. In practice, withK, ranging from~500 pN to~1500 pN

We have subtracted the Marko-Siggia interpolation for-(which covers the existing experimental measurements), the
mula from the exact numerical solution of the WLC model €nthalpic correction will not affect the estimation of the
and expressed the residuals as a seventh-order polynomif€rsistence length within 1% accuracy, provided that only

which provides all the correction terms. We therefore write:the data below 1-2 pN are fit. Failing to account for the
enthalpic correction for forces as small as 5-10 pN leads to

KT 1 1 7z = ' underestimation of,. However, nonlinear elasticity is also
F= L |a@ i) 4 ot > e (11)  expected and the domain of validity of Eq. 13 is not known.
P 0 0 =2 As may be seen in Fig. 1, we used this more elaborate
) approach to fit the data of Fig. 5 of Wang et al. (1997) and
with a, = —0.5164228a; = —2.737418a, = 16.07497,  ¢,nq glightly different values for the fit parameters (see

as = —38.876078, = 39.49944, ana, = —14.17718. It g 1) 45 compared with the values found in Wang et al.
can be verified that the above formula is compatible Wlth(1997) (= 1314nm+ 1,L, = 43.3nm = 0.5K, =
1L . + 0.

T\ 1 1 I

the properties of as an analytic function at 1246 + 10 pN, p = 0.18). The fit is somewhat improved

The order of the polynomial is arbitrary; lower or highgr using the exact WLC model, the value lof being smaller
order could also be used. We choose the seventh order sin 3 nm.

it leads to an accuracy better than 0.01% over the useful
extension range (which is more accurate than required for
experiments but useful inasmuch as the derivativ®z is

often needed in the fitting procedure). 50 T " ' ' i ]
Vologodskii has also proposed an interpolation formula I L, = 1317.52 nm +/- 0.9 i
(Eq. 4 of Vologodskii, 1994) which describes the force- 1 L, = 40.6 nm +/- 0.5 ]
versus-extension curve of a WLC model obtained by Monte 40 |- Ko = 1318 pN +/- 27 =
Carlo simulation. This formula is neither valid at small I X =104 (v=673)p =022 ]
extensiorz/Ly < 0.1 nor at large extensiariL, > 0.97, yet [ 25 .
in between the agreement with the exact WLC model is 30 - -
good, the relative error in force being smaller than 5%. = [ 2f ]
Recently Moroz and Nelson (1997) also proposed the fol- & [ st i |
lowing approximation for the extension-versus-force curve = 2o -
valid for forces larger than 0.1 pN: L F ]
0.5 1
—1/2 3 1
Q: _l[LOF_l] E (12) 0 of N
Lo 2| ksT 32 Ko L . , .
r 200 400 600 800
A finite size effect may be added to this equation in the form I ]
°r
kg T/LoF. , ) ] , .
200 400 600 800 1000 1200

z[nm)]
ENTHALPIC CORRECTIONS AT HIGH FORCE _ _ N .
FIGURE 1 Experimental datgpg@intg and fit (solid line) corresponding

As shown by Smith et al. (1996) and Wang et al. (1997), thdo figure 5 of Wang et al. (1997). The inset is a blow-up of the small force

B-DNA structure displays a linear Stretching behavior atregime. The optical tweezers used here allow for quick measurements with
high force. Indeed. the chemical bonds are slightl modiﬁecéoughlyaconstant noise level when the forcedg pN (see the inset) and
g ) ! ghtly n increasing error above 6 pN as indicated by the two error bars (shifted

by the strong stretching, leading to a small increase in th@y 25 nm from the data). The exact model leads to a better overall fit in
length of the molecule. This behavior is evident in the rangaerms of x2.
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In the same spirit, in Fig. 2 we have analyzed anotheinteraction added by electrostatic effects (Barrat and
DNA stretching experiment using a different measuremenfloanny, 1993) induces significant departures from the WLC
technique (Strick et al. 1996). The very good fit demon-model. To be more specific, in a 1-mM buffer, Marko and
strates that the WLC model applies over a large range oSiggia show that Smith et al.’s data leadd fp= 85 + 10
forces. nm wheread ,, ~ 50nm This result contrasts with the new
one published by the same experimental group (Baumann et

. . . " on 4
COMPARISON WITH EXPERIMENTS zdm 1997) using a different technique, namely ~ 95 = 6
How well does the WLC work? We cannot resolve this discrepancy here but we empha-
size that the fits done by Barrat and Joanny (1993) as well
as the analysis of the effective persistence length (Marko
and Siggia, 1995) were based on the interpolation formula
(Eg. 10), which is less accurate in the crossover regime. We

ropose the following expression, derived from Eqg. 13, to
ovide an improved effective persistence length test:

The WLC'’s force-versus-extension curve is a highly non-
linear function: at low extension, force grows linearly with
x with a slope 8gT/2L Lo, whereas at high extension, the
force diverges askiT/L,) [4(1 — ZLy)’] " For moderate
extensions, a crossover occurs between these two regim
Thus various approaches may be tried to deterntige
concentrating on the low extension regime, considering the =7

molecule near its full extension, or considering it over the _ keT g _ } +1+ D a() (14)
entire domain. An interesting test of the WLC model's pef 41-1% 4 izza‘

validity is given by the equality between the valuesLgf

andL,, obtained for low and high extension, respectively. with | = z/L, — F/K,.

So far, this test has been partially completed: Marko and In Fig. 3 A we have applied this analysis to the interpo-
Siggia carefully analyzed data of Smith et al. (1992) andation formulae of Marko and Siggia, Vologodskii, and
plotted the effective persistence length versus the applieMoroz and Nelson, and finally in Fig.Bto the data of Fig.
force, which should remain constant if the WLC applies2. This figure should be compared with Fig. 4 of Marko and
exactly (Marko and Siggia, 1995). They have shown that thesiggia (1995). Clearly the WLC model works remarkably
WLC model correctly describes the experiment performeduwell for this experiment performed in a 10-mM phosphate
in a 10-mM salt buffer. In a low-salt buffer, the long range buffer (pH 8). This agreement is even better than one should
expect from figure 4 of Marko and Siggia (1995). Repeating
this test for low-salt buffer (as in Figure 5 of Marko and
. . . . Siggia (1995)) and performing a careful error analysis
10! should allow one to determine whether electrostatic stiffen-
Ly =15.809 pm +/- 0.062 ing leads to a departure of the experimental curve from the
5t L, =5.35 nm +/-2 ] WLC model.

2 }:°_= 1269 pf‘ */ —fuo Although Fig. 1 corresponds to very accurate measure-
X2 =0.43 (v =13) p = 0.96 X I .

£ ments, the effective persistence length (data not shown) is
B meaningful only at high force. Thus measuring the persis-
tence length using a polymer’s force-versus-extension curve
requires accurate force measurements over a large range of
forces. Moreover, the determination of a persistence
length’s value should be associated with the force regime or
extension domain explored. We propose to define the mean
extension corresponding to thé fit of Lp:

Zmean_ EI(ZI/LO) FZ(Z! LO: Lp! KO)/UIZ
1O.~2_ L 3 LO a Ein(zi! LO! Lp; KO)/O-IZ '

4] 5 12) 15
Extension z (um) where o, represents the error in force for the experimental

. . . o oPoint] andF*(z, Lo, Ly, Ko) is the estimated force using Eq.
FIGURE 2 Experimental data and fit corresponding to the extension o . ]
a A-DNA molecule in 10 mM PB buffer obtained using the Brownian 13 with the measured e_xtensuzinand LO’ L_p’_ and KO (the
motion method (Strick et al., 1996). This method is particularly well suited Parameters of the best fit). In the same spirit, the mean force
to measuring small forces. Moreover, the relative error in the foree- ( may be defined by replacing/L, with F;. Applying this to
tical error barsg) may be kept constant by adjusting the acquisition time. the data presented in Fig. 1 leadszQ,, /L, = 0.945 and

The semilogarithmic scale facilitates visualization of the large force rangep = 6.95 pN: applied to the data in Fig. 2 it leads to
The WLC model $olid line) nicely fits the experimental data. Note that the _ "M€" =9 PN, app 9-

forces are too small to allow an accurate measuremefy.ofhe error bars Zmeaf‘LO : 0.77 andF“ﬁea” = 0.37 pN. . . .
correspond to statistical errors, but the systematic ones are more difficultto 1 N€ high force regime has been quite well _mves_tlgated
evaluate. We estimate the calibration errors in the range of 5%. (Baumann et al., 1997; Wang et al., 1997). In this regime the

=|F

Force (pN)
(3

ty

(15)
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WLC model. We hope that this method will allow more

: ] accurate determination of the properties of biological and
el Vologodskii ] other polymers. Furthermore, it may help to identify any
; ] experimental departures from the ideal WLC and reveal if
o M Momz/¢ Nelson -] electrostatic effects are their major cause, as originally
\§ ; P : proposed by Marko and Siggia (1995).
PR ~ /.
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