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We study the energetics of isothermal ratchets which are driven by a chemical reaction between
two states and operate in contact with a single heat bath of constant temperature. We discuss
generic aspects of energy transduction such as Onsager relations in the linear response regime as
well as the efficiency and dissipation close to and far from equilibrium. In the linear response regime
where the system operates reversibly the efficiency is in general nonzero. Studying the properties
for specific examples of energy landscapes and transitions, we observe in the linear response regime
that the efficiency can have a maximum as a function of temperature. Far from equilibrium in the
fully irreversible regime, we find a maximum of the efficiency with values larger than in the linear
regime for an optimal choice of the chemical driving force. We show that corresponding efficiencies
can be of the order of 50%. A simple analytic argument allows us to estimate the efficiency in this
irreversible regime for small external forces.
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I. INTRODUCTION

Biological systems provide an important motivation to study the physics of active processes which on a molecu-
lar scale are able to transduce chemical energy into mechanical work and motion. Important examples are motor
proteins and enzymes which move actively along DNA [1]. The properties of such systems differ in several respects
from macroscopic machines and heat engines: (i) active phenomena occur on a molecular scale in a very viscous
environment with overdamped dynamics, motion is thus stochastic and obeys only on average the first and second
laws of thermodynamics; (ii) these systems are isothermal and operate strictly at constant temperature as they are
in intimate contact with a thermal bath. In recent years, a number of theoretical approaches to describe this class of
systems have been developed [2-8].

In order to discuss the energy transduction of such systems, the concepts which have been developed for macroscopic
motors have to be applied with some care. Recently, there has been a growing interest in the energetics of Brownian
motors [9-21]. Tt is the aim of this article to discuss generic aspects of energy transduction of Brownian motors driven
by a chemical reaction and to provide several specific examples which reveal new and interesting properties.

The two-state models which we use [8] represent a useful paradigm for the description of energy transduction of
isothermal motors in the overdamped regime. They are motivated by cytoskeletal motor proteins which move along
polar and periodic filaments. Coupling a two state model to a chemical reaction, which induces transitions between
the two states of the motor, leads to motion and force-generation if the chemical potential difference Ap between
the fuel and its reaction products is nonzero and if the system has a polar symmetry. Assuming that the chemical
reservoirs coupled to a single motor are macroscopic in size, this chemical potential difference can be defined even
under out-of equilibrium conditions since in this limit the reaction driving the microscopic motor affects the reservoir
only weakly. Using Ay as the relevant control parameter, the consumed chemical free energy by the active process is
well defined. This leads to a simple definition of efficiency 7 as the ratio of the mechanical work performed and the
consumed chemical free energy.

We find three important results:

e The efficiency calculated for these models can be maximized far from equilibrium.

e Close to thermal equilibrium there exists a linear response regime which is important because of its universal
features. We demonstrate that the dependence of the efficiency in this regime on temperature is strongly model
dependent and can be non-monotonous in which case thermal fluctuations are essential for an efficient energy
transduction.

e The efficiencies vanish at stalling conditions ( zero average velocity) except in a singular limit where they reach
the ideal value n = 1.

The outline of our paper is as follows. In section II, we discuss generic aspects which are completely independent of
the model chosen. We define the efficiency and identify the generalized currents and forces which allow us to write a
linear response theory. We discuss the generic features of efficiency in this regime, in particular the maximal efficiency
under reversible conditions and the efficiency at stalling conditions. In Section III we choose an explicit realization of
the transport equations where the motor is described as a two-state model which is coupled to a chemical reaction and
we identify the energy fluxes in the system. Section IV discusses the energy transduction properties for specifically
chosen examples. We show that efficiency is typically optimized in the irreversible regime and give examples for the
temperature dependence of n when the system operates in the linear response regime. In our concluding remarks,
we relate our results to biological motors and discuss alternative definitions of efficiency which have been used in the
literature.

II. ISOTHERMAL RATCHETS: GENERIC ASPECTS
A. Force, velocity and efficiency

Motivated by linear biological motor proteins which move along a linear filament, we will consider chemically driven
systems which can induce motion along a one-dimensional track. The energy source is the difference of the chemical
potentials Ay of fuel and products. Being motivated by biological motors, we use the hydrolysis ATP = ADP + P
as example [1]. We define

Ap=pa—pp (1)



where 4 and pp are the chemical potentials of ATP and ADP+P, respectively. In order to perform useful mechanical
work, the system has to move against an external force feoyx; applied parallel to the track. In addition to the two
generalized forces Ay and fex: acting on the system, we can define two generalized velocities: (i) the average velocity
of motion v of the motor along the track; and (ii) the chemical reaction rate r defining the average number of ATP
molecules consumed per unit time. The motor can thus be characterized by the equations of state

v = 'U(fext s A,u) (2)
r= r(fext; A/‘L) (3)

which describe the velocities of the system as a function of the generalized forces [22]. The mechanical work performed
per unit time against the external force is given by

W = fext v (4)

The amount of chemical energy consumed per unit time is

Q=rAp . ()

For a system which performs mechanical work, i.e. fextv < 0, we can define the (mechanical) energy transduction
efficiency as [23]

_Jewv (6)

= rAp

Because of energy conservation, the amount of energy dissipated per unit time therefore reads:
M= fexev+rAp . (7)

From the second law of thermodynamics it follows that II must always be positive.

B. Linear response theory

Close to thermal equilibrium, i.e. for small forces fexy € T/l and Ap < T, where [ is a typical length scale of the
motor and T is the temperature measured in units of kg, we can expand Eq. (3) to linear order:

v = A1 fext + A2Ap
T = Aa1 fext + Ao2Ap . (8)

The matrix A;; of linear response coefficients has the following physical meaning: A;; is a mobility giving the response
of the velocity to the applied force. Agg plays a similar role for fuel consumption. It describes the ’chemical admittance’
or the response of the chemical reaction rate r to the chemical force Apu. The coefficients A5 and As; are mechano-
chemical coupling coefficients which are responsible for energy transduction.

Looking at the symmetry of the problem, we find that v and fey; transform like vectors for z — —z while r and
Ay are scalars which do not change under inversions. As a consequence, the coefficients A;; and Asy transform as
scalars while Ao and As; are vector coefficients. The latter can be nonzero only if the system has a polar symmetry.
Thus, the polarity of the system (polar filaments) is essential for motion to exist.

Calculating the dissipation rate II in the linear regime, we find that II is positive exactly if the diagonal elements
are positive, A;; > 0 and if the determinant is positive

A11A22 — A2z >0 . (9)

On general grounds, we expect a symmetry relation between the Onsager coefficients if microscopic reversibility is
obeyed:

)\12 = )\21 . (10)

This is a general result of non-equilibrium thermodynamics.



C. Modes of operation

Different modes of operation of the motor can be distinguished by looking at the input and output of energy of
the system. The dissipation rate II corresponds to the total flux of energy to the thermal bath at temperature 7.
Passive regimes of the motor are those cases where both rApu and fexiv are positive: Work performed on the system
is dissipated and lost.

More interesting are the active regimes where the motor transforms chemical energy into mechanical work or vice
versa while dissipating only a part of the energy input. Four such active regimes exist, see Fig. 1:
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FIG. 1. Operation diagram for an isothermal motor in the linear response regime as a function of external force fext and
chemical potential difference Au. General case with four different regimes A-D, separated by lines v = 0 and r = 0 where the
velocity and the fuel consumption vanish, respectively. The maximal efficiency occurs along a line nmax-.

A: 7Ap > 0, fexiv < 0, The motor uses the chemical energy of the ATP in excess as input and performs mechanical
work moving with v > 0 against a negative force fexr < 0.

B: rApu < 0, fextv > 0, The motor produces ATP, although already in excess, from mechanical input due to a
negative force fext < 0 inducing a negative velocity v < 0.

C: rAp > 0, fextv < 0, The motor uses ADP in excess to perform mechanical work.

D: rAp < 0, fextv > 0, The motor produces ADP already in excess from mechanical work.

The different regimes are separated by the lines fext = 0, A =0, v = 0 and » = 0. For regimes A and C, where the

motor performs mechanical work the mechanical efficiency is the one defined in Eq. (6): n = —fextv/rAp. Similarly,
in regimes B and D, where the system performs chemical work, the chemical efficiency n. = —rApu/ fextv is more
useful.

Within the linear response regime, the efficiency can be calculated using the Onsager coefficients

Ar1a? + Aza
A21a + Aag

, (11)



where @ = fexe/Ap. If we choose a constant Ay > 0, the efficiency vanishes for fex; = 0 (no work is performed). 5
becomes positive for fex: < 0 (note the minus sign which indicates that the force is applied in the direction opposing
movement), reaches a maximum for a certain value of the force and becomes zero again at the stall force for which
v = 0. According to Eq. (11), the efficiency is constant along straight lines fexs = aAu which correspond to constant
a. Thus, at the origin of the (fext, Au)-plane which corresponds to thermal equilibrium and reversible, quasistatic
operation, the efficiency 1 has a singularity and is multi-valued.

Maximal efficiency occurs for a certain value a for which dn/da = 0. It is given by [24,8]

Nmax = (1 = V1 —=A)2/A . (12)

Here, A = A2, /(A11)a2). It varies between nmax = 0 for Ajg = 0 and fmax = 1 if A}y = A1 A22. Larger values A > 1
violate thermodynamics according to Eq. (9) and the Onsager relation (see Eq. (10)).

These arguments demonstrate that the efficiency vanishes under stalling conditions v = 0. This is an important
difference from Carnot engine for which the efficiency is optimized under quasistatic conditions without net motion.
It results from the fact that the energy transduction driven by a chemical reaction considered here will in general still
have a nonzero consumption rate r even when motion stops, or in other words v = 0 and r = 0 do not occur for the
same conditions.

There is however one limiting case where this is no longer true: If A — 1, the two lines = 0 and v = 0 in the
(fext, Ap)-plane tend towards each other. In this limit the chemical reaction and motion are strictly coupled (i.e. one
can’t occur without the other) and the efficiency reaches the maximum n = 1. This situation is an idealized case
which applies to good approximation to polymerization forces and motion generated by polymerization processes as
in the case of RNA polymerase [25,15]

III. TWO STATE MODEL
A. Transport equations

We study energy transduction and efficiencies of isothermal motors using simple two-state models. The motor
is characterized by its position z along a one dimensional coordinate describing the polar and periodic track. We
assume that the motor exists in two different conformations or states ¢ = 1,2. The interaction between motor and
track depends on o and is described by potentials W, (z) with polar symmetry which are periodic with period .

The role of the chemical reaction is to trigger transitions between the two states. We introduce the position
dependent rate constants wj (z) and wy(x) which characterize the probability per unit time for the transitions 1 — 2
and 2 — 1 at position z, respectively. The probability densities Py (z,t) and Pa(2,1) for the system to be at time ¢ at
position z in one of the two states obey the Fokker-Planck Equations [6]

3tP1 + ale = —wl(m)Pl —|—LJ2(I)P2
3tP2—|—8xJ2 I(.u‘l(;l‘)Pl —WQ(I)PQ (13)

The particle currents are given by
Ja Eg_l[_TaxPa_PaaxWa+Pafext] 3 (14)

where €71 is an effective mobility, the temperature 7" is measured in units of kg and f.x is the external force
introduced above.

For given rates w, the system relaxes to a steady state with d; P, = 0. The normalized distributions which satisfy
periodic boundary conditions (fol de (P + P3) =1, P,(0) = Py(!) and 8, P>(0) = 9z P5(l)) in the steady state allow
us to calculate the average velocity

v = /l dx (Jl —+ JQ) . (15)



B. Coupling to a chemical reaction

We now consider the situation where the transitions between states 1 and 2 occur as a result of a chemical reaction
scheme which we model separately. In order to be general and to capture different situations, we consider the following
scheme:

aq
ATP+ M, & My+ ADP+ P (16)
&%}
71
ADP+P+4+M; = My+ ATP (17)
Y2

B
fa
where «;, v; and §; denote the forward and backward rates, respectively. The reaction pathway « involves ATP
hydrolysis with chemical free energy gain Ap when changing from state 1 to state 2, while pathway ~ involves

hydrolysis in the opposite direction. The transitions § are do not involve a chemical potential difference. Chemical
kinetics requires

M, My | (18)

AL _ (Wi—WatAn)/T (19)
&%}
T (Wi—Wa—Ap)/T (20)
2
Py — oWi=-W2)/T (21)
B2

The transition rates can therefore be written as

W1 = aneMW1=WatAW)/T | ((Wi=WamBw)[T | g, (Wi=W2)/T

wa=as+y2+f2 (22)

where unknown (I-periodic) functions as(z), y2(2) and B2(z) define the conformation dependence of transitions rates
[26]. With these expressions, the net steady state ATP consumption rate is given by

r:/o de [(a1(z) = ni(2)) Pr(2) — (a2(z) — 72(2)) Pa(2)] - (23)

C. Detailed balance

If Ay = 0, the chemical reaction is in equilibrium and the transition rates are just thermal fluctuations and obey the
relation of detailed balance wy /wa = exp((W1 — W3)/T). Breaking of detailed balance for Ay # 0 is a requirement for
spontaneous motion and force generation to be possible. In order to quantify the departure from thermal equilibrium
and the extend to which detailed balance is broken, we define the quantity

0e) = wne) — wali)exp (-2 ) (24)

with AW (z) = Wy(z) — Wi (x). Detailed balance is obeyed only if Q(z) = 0 for all . Using the transition rates as
given by Eq. (22), we find

Qz) = e~ AW/T {az(a:) (eA”/T — 1) + a2 () (e_A“/T — 1)} . (25)

If Ap #0, we distinguish two interesting limits: for small Ap/T < 1



—aw/T Ap
Qz) = (2(z) — y2(x))e /T :

indicating that Q is proportional to Ap. If Ap/T is large compared to one,  depends only on the ratio k =
[ATP]/[ADP][P]:

(26)

Qz) = (an(x) e Tk + yy(x)e 20T =Y (27)

where Ap® = %, p —p%pp — 1%, Here, we used the relation p; = p? +T'In[i] where [7] is the concentration of species
i, and p) the so called standard chemical potential.

D. Energy conservation and dissipation

The first law of thermodynamics requires that the energy flow through the system is conserved as described by Eq.
(7). This energy conservation can be derived from the transport equations. This leads to expressions for the local
density of energy dissipation which gives interesting insights in how energy transduction is occurring.

We distinguish two types of dissipation rates: (i) the dissipation rates II,, with ¢ = 1,2 corresponding to sliding
within the potential profiles and (ii) the dissipation rates II,,, with 4 = «, #,7 corresponding to transitions between
the two states. In addition to the total dissipation rates II, and II,, we introduce local dissipation densities O, (z)
and ©,(z) with II = fol dzO(z).

For a particle sliding in the potential W, (z) with a steady state distribution P, (x) [27,28]

O, = —J, 0, H, (28)
and
m, = — /0 e Jo ()0l () (29)
where
Hy(2) = Wo () — foxea + Tn(Py () (30)

is an enthalpy whose gradient induces the Fokker-Planck current J,:
Jo = —€¢1P,0,H, . (31)

Therefore, 11, is positive definite as expected for a dissipation rate. Similarly, the dissipation densities corresponding
to chemical transitions are given by

604 = (a1P1 - Otsz)(Hl — H2 + A,u)
Oy = (11 P1 — 2 P2)(H1 — Ha — Ap)
Op = (51 P1 — BoP2)(H1 — Ha) (32)

and
!
Hu:/ dz O4(z) (33)
0

for 4 = o, 3,v. Again, Il,, Ilg and II, are positive definite as required. For a steady state with periodic boundary
conditions, we can partially integrate Eq. (29) and find together with Eq. (13)

I +1I, = fol de (H104J1 + Ho0p J2) + fextv

} (34)
= [y dx (Hy — Ha)(wiPy —waPs) + fexev
Using Eqns. (14),(22) and (23), we find that, the total dissipation rate
=10 + Iy + I, + I + 11, (35)

satisfies Eq. (7) and energy conservation is obeyed.

For small Au and small fey;, the two state model has a linear response regime which obeys the general properties
required by thermodynamics. In particular it can be demonstrated that the model satisfies the symmetry relation of
Eq. (10) as we describe in appendix A.



IV. EFFICIENCIES CLOSE TO AND FAR FROM EQUILIBRIUM
A. Specific examples

We have introduced a general framework which allows us to study a large variety of systems which differ in their
potential shapes and in the transition rates as, v and §3. We now discuss three particular examples which we have
chosen as prototypes to illustrate the physics of energy transduction.

System A is a system with two periodic potentials of equal amplitude U which are piecewise linear and which are
shifted with respect to each other by a displacement ¢ as shown schematically in Fig. 2 (a).

W/U ' ' | (@ wwu ' ' ' (b
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FIG. 2. Three choices of potentials Wi and W> with period ! and transition regions indicated in grey. The position a of
the maximum of W) characterizes the potential asymmetry, U denotes the potential amplitudes. (a) System A with potentials
shifted by a distance é and offset Uy. Active transitions o and thermal transitions 3 are localized within regions of size d near
the potential minima. (b) System B with symmetric states. The potentials are shifted by a distance of {/2, active transitions
a and 7 are chosen such that the system is symmetric with respect to an exchange of the two states. (c) System C with a flat
potential W5, localized active transitions o and non-localized thermal transitions 3.

Furthermore, they differ by a constant value Uy: Wa(z) = Wi(2 — d) + Up. The potentials are characterized by
the asymmetry parameter a which denotes the position of the potential maximum of W;. We choose a reaction
scheme with chemically activated transitions o 3 between the low energy state 1 and the high energy state 2, passive
transition 312 and ;2 = 0. The chemical cycle corresponds to subsequent transitions o and @ which we choose
localized within intervals of size d:



w |—d<zx<l
az(x) = { 0  otherwise, (36)

localized near the minimum of W; and fa(z) = as(x — J) localized near the minimum of W5, see Fig. 2 (a). Here we
have for simplicity introduced a single parameter w which sets the typical time scale of transition rates. The transition
rates w, of system A obey

2($)€(W1—W2+AH)/T+Q2(I _ 5)6(W1—W2)/T

2(z) +as(x —0) . (37)

wy(z)

wa(z)

0%
0%

System A is chosen in such a way that diffusion within the potentials is not necessary for motion generation and each
chemical cycle generates with high probability a forward step along the z-coordinate.

System B has different symmetry and different topology of the chemical reaction scheme as compared to system
A, see Fig 2 (b). The two potentials are shifted by exactly half a potential period § = 1/2: Wy = Wy(z —{/2) and
Up = 0. This allows us to introduce a new symmetry: the system is invariant under a shift # — « + /2 if at the
same time the states are exchanged: 1 — 2. This situation is realized by choosing transition rates $; 2 = 0 and
1 (2) = az(x —1/2) where we localize all transitions near the potential minima. We can therefore write for system B

2(r)e(W1_W2+A“)/T+a2(x —1/2)

2 () tag(z —1/2)eWa-Wrtam/T

wi(z) =

wa(z)

a
@ , (38)
with as(x) given by Eq. (36). Note, that system B involves two active chemical steps per potential period. However,
because of its additional symmetry it is [/2-periodic. Furthermore, all chemical transitions involve ATP hydrolysis,
there are no passive transitions.

System C is shown in Fig. 2 (c). It is a variant of model A with a weakly bound state W5(z) = Uy of constant
energy. As for system A we choose a reaction scheme with 41 3 = 0 and localized active transitions near the minima
using again definition (36). Since the potential W3 is structureless, we assume passive transitions to be non-localized
with B2(2) = w. Therefore in system C

(x)e(Wl—Wz-FAH)/T_}_we(Wl -Wa2)

wy(z)

wa(z)

2() tw . (39)

«
«

In this case motion generation involves a diffusive step in state 2 which we expect to reduce the efficiency of energy
transduction.

In order to discuss these models, we identify the relevant dimensionless parameters: the dimensionless position
z = z/l, reduced temperature ¢ = T/U, reduced potentials w, = W,/U — fext!/U and reduced transition rates
We = we/w. Eqns. (13) and (14) can for a steady state be written as

—0z(t0z P1 + P10zw1) = x(—w1 Py + @2 Py)

—85(15351[’2 + P235w2) = X(@1P1 — (Z)QPQ) . (40)
The dimensionless parameter
wél?
= 41
X= (41)

compares two time-scales: (i) the typical chemical time w=! and (ii) the typical sliding time in the potentials £I?/U.
For x > 1 transitions are fast compared to sliding while for x < 1 sliding is fast. The model is fully characterized by
the dimensionless parameters x, T/U, Aup/U, a/l, d/l, §/l and Uy/U. The results discussed in the following section
are obtained by numerically solving Eq. (40) with periodic boundary conditions for the three different systems.

B. Efficiencies close to equilibrium

Numerical examples for the maximal efficiency in the linear response regime as a function of temperature are
displayed in Fig. 3 for systems A, B and C and different values of y = wél?/U.
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FIG. 3. Maximal efficiency 7max in the linear response regime as function of reduced temperature T/U for systems A, B and
C with a/l = 0.1 as shown in Fig. 2. (a) System A with §/1 = 0.65, Ug /U = 0.4, at different y. (b) Same diagram for system
B at different x. (c¢) Same diagram for system C with Up /U = 1.2 at different .

They have been obtained by first calculating Onsager coeflicients from steady state solutions for small Ay and
small fexs and using Eq. (12). The orders of magnitude of the efficiency differ for systems A, B and C. The efficiency
7 depends on x and increases in general with increasing x. System B has the largest efficiency which approaches
n ~ 1 for small T/U and decreases monotonically as a function of temperature. For systems A and C the efficiency
has a maximum as a function of temperature and vanishes in the limit of small 7/U. This indicates in these cases
the importance of thermal fluctuations for energy transduction. Note, that the limit of small temperatures is subtle
since in linear response Ap < T must be obeyed. Therefore, this limit corresponds to first sending Ay to zero and
T afterwards. Even for small temperatures the system thus remains in a regime where thermally activated passage
over energy barriers rests important. While system A can have significant efficiencies of the order of n ~ 0.06 in the
linear response regime, the efficiency of system C which relies on diffusive steps is small (n ~ 107%), see Fig. 3.

C. Efficiencies far from equilibrium

We have shown that the two state model transduces chemical energy into mechanical work in the linear response
regime, however with varying efficiencies. In linear response the chemical action represents a small bias of the
dominant thermal fluctuations. We are now comparing these results with the properties of energy transduction far
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from equilibrium.

System A: Fig. 4 (a) displays the efficiency 7 as a function of the applied force for the system A as defined in Fig.
2 for Au/T = 8 and different temperatures. The efficiency vanishes for fext = 0 as well as for the stall force for which
the velocity vanishes. For an intermediate value of the force, the efficiency reaches a maximum. This value 7y 18
displayed in Fig. 4 (b) as a function of Ay. This diagram reveals the main characteristics of energy transduction:
for small Au we find again the non-vanishing efficiency of the linear regime. The efficiency increases as a function
of Ap, reaches a maximal value and decreases for large Ay to zero. For sufficiently large values of Ay the efficiency
increases for decreasing temperatures and reaches in the example shown a value of § ~ 0.4 for T/U ~ 0.1. The results
obtained for different temperatures intersect for small Ay which corresponds to the observation discussed above that
the efficiency in the linear regime displays a maximum as a function of temperature. Fig. 4(c) shows the behavior of
Nmaz for fixed Ap/U as a function of ¥ = €l%w/U over a range of 6 decades. The efficiency increases monotonically
with increasing x from zero to a plateau value. As an important result we find that the largest values of the efficiency
for the relevant energy scale T'/U ~ 0.1 are of the order of  ~ 0.5 and occur for Ay ~ U comparable to the energy
difference between the two states at the transition and thus far from the linear regime.

n
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0.1l 01l T/U =0.30

ML LT s JEe————u=oan_

0.7 06 05 -04 -03 02 01 0 0 02 04 06 08 10 L2 14

fext /U AIJ/ U

(d)

0 N n
02 1 102 0 02 04 06 08 1.0 1.2 14
X 0 ALu

FIG. 4. Energy transduction of system (A) with a/l = 0.1 and Uy /U = 0.4. (a) Efficiency 7 as a function of the external force
fext for Ap/U = 0.8, x = £l%w/U = 200, and different reduced temperatures T'/U. Broken lines represent the approximation
discussed in the text. (b) Maximal efficiency nmax as a function of Au/U for x = 200 and different temperatures. (c) Maximal
efficiency as a function of x for Au/U = 0.8 and different temperatures. (d) Relative dissipation rates as a function of Ay for
the same system: shown are the fraction of energy dissipated by potential sliding 11 4+ 12 and the fraction dissipated via active
transitions 7n,. For details see text.
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The dissipation rate II can, according to Eq. 35, be divided into separate contributions of potential sliding 11,
and chemical transitions II,, with u = «,8,v. It is useful to define relative dissipation rates 7, = II,/rAu and
Ne = o /rAp which are analog to the efficiency and describe the fraction of dissipated energy relative to the
consumed chemical work. Note that n+ 71 + 12 4+ 9o +ns + 17, = 1 follows from energy conservation. Fig. 4 (d) shows
the dominant relative dissipation rates together with the efficiency 7. The dominant dissipation is II; + Il resulting
from potential friction, dissipation II, of chemical transitions, plays a minor role. The dissipation ng corresponding
to passive transitions is smaller than 0.01 and can be neglected. It is therefore not shown. The maximum of 5
corresponds to a minimum of 7 + 7s.

The main energy loss results from thermally activated backward steps. This idea can be directly tested by calculating
the local dissipation density ©;(z) + ©2(z) as defined in Eq. (28). This quantity is displayed in Fig. 5.

(@ Oy

31

0 02 04 06 08 10
X/l

FIG. 5. Density ©1(z) + ©2(z) as defined in Eq. (28) of the dissipation rate as a function of position z for system A with
UL/ fexs = —0.48, y = 200, Ap/U = 0.80.

The plot reveals that maximal dissipation occurs for § —a < # < J, i.e. along the steep potential slope of the
potential W5. A second maximum of local dissipation exists for 0 < z < a along the steep slope of Wj. In contrast,
minimal dissipation occurs near the potential minima where transitions between states take place. The steep potential
slopes where the density of energy dissipation is large indeed are accessed via thermally activated backward hopping
events. The probability of such events increases in the presence of an “adverse” external force which limits the
efficiency of the system.

System B: Fig. 6 displays the same information for system B. The diagram reveals that efficiencies are in general
larger than for system A, reaching values up to n ~ 0.7 for 7'/U = 0.05. Furthermore, the maximum of the efficiency
as a function of Ay is less pronounced and shifted to small values of Ay as compared to system A. One might expect
that the dissipation due to passive transitions 7 in system A which does not exist in system B could play a role in
improving the efficiency of system B. However as discussed above 1 can be neglected and is thus not responsible for
this effect. The main reason for the improved efficiency of system B is the fact that the effective energy barrier for
thermally activated passage over the potential maxima is larger in system B as compared to system A. Therefore,
fluctuations leading to “backward steps” in the opposite direction of average motion which completely dissipate a
consumed ATP molecule are less likely. Each active chemical transition is thus transduced into work with high
probability. Fig. 6 (c) shows qualitatively the same behavior of the efficiency as a function of yx for system B as
compared to system A. Also as discussed for system A, the dominant dissipation process corresponds to sliding in
the potentials, see Fig.6 (d). Note that the efficiency is larger than in system A, which correlates with the increased
barrier height reducing the probability of backward steps.
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FIG. 6. Energy transduction of system B with a/l = 0.1. (a) Efficiency n as a function of the external force fex; for

Ap/U = 0.4, x = ¢1Pw/U = 400, and different reduced temperatures T/U. (b) Maximal efficiency nmax as a function of Ap/U
for x = 400 and different temperatures. (c) Maximal efficiency as a function of y for Au/U = 0.4 and different temperatures.
(d) Relative dissipation rates as a function of Au: the fraction of energy dissipated by potential sliding n + 72 and the fraction
dissipated via active transitions na + 1.

System C: Energy transduction of system C which involves diffusive steps and non-localized de-excitations. Max-
imal efficiencies are of the order of 0.02 and thus much smaller than those for systems A and B, see Fig. 7. As
in system A the largest efficiencies occur for Ay > T and thus far from equilibrium. The reason for the reduced
efficiency becomes clear when studying the relative dissipation rates shown in Fig. 7 (b): Most energy is in this case
dissipated by the passive and active transitions, potential sliding is less important. In particular, the non-localized
and passive de-excitations dominate dissipation far from equilibrium. Very striking is the behavior of the efficiency
as a function of x shown in Fig. 7 (c): The efficiency displays a maximum for certain values of x but vanishes both
for large and small x. This property reflects the fact that a matching of time scales is crucial for this system: The
life-time in the excited state should be comparable to the diffusion-time over a potential period:

P~T/tw . (42)

Therefore, the optimal value of x should behave as Xopt ~ T'/U which explains the temperature-dependence of the
maximum in Fig. 7 (c).
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FIG. 7. Energy transduction of system C with a/l = 0.1. (a) Maximal efficiency 1 as a function of Au/U for xy = ¢lPw/U = 5,
Uy /U = 1.2 and different reduced temperatures T/U. (b) Relative dissipation n; 4 7. in the potentials as well as the dissipation
of transitions 7, and ng corresponding to (a). (c¢) Maximal efficiency as a function of y for Au/U = 1.2 and different
temperatures.

D. Approximation for small forces

The efficiency far from equilibrium for Ay /T > 1 but for small forces can be understood by a simple approximation
which we discuss for system A. In the limit of large Ay and U/T we ignore spontaneous hopping events over the
maxima of potential W;. Every ATP consumption event corresponds to a transition to the second state from which
the particle will eventually decay to the first state. During this process, it undergoes a forward step with probability
P+, a backward step with probability p_ or it will return to the initial position with probability pg. Here, we have
ignored multiple steps, see Fig. 8.
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FIG. 8. Schematic diagram of events after consumption of one fuel molecule. Forward steps occur with probability py = pip2,
(1 — p2)(1 — p1) and neutral steps with po = p2(1 — p1) + p1(1 — p2)

backward steps with probability p_ =

In the presence of an external force foxt, the efficiency can thus be estimated as

n:—fz);<r> , (43)

where
<z>~l(py —po)=v/r (44)

is the average displacement per consumed ATP. The probabilities p+ can be written as

p+ =p2(0)p2(d) , p- = (1—p2(0))(1 —p:(d)) (45)
Here, we have introduced the probabilities p,(z) for motion in the forward direction after a particle appears in state
o at position . Similarly, 1 — p,(z) is the probability for backward motion, see Fig. 8. Since the two potentials are
shifted with respect to each other pa(z) = p1(x — d). The probability p; requires two subsequent forward movements
of this type, p_ results from two backward movements. As described in appendix B, the probabilities p,(z) can be
calculated approximatively for large U/T. Fig. 4 (a) shows the efficiency estimated by Eqns. (44) and (45) together
with the numerically obtained values for comparison. For small forces the agreement is good, thus confirming our

simplified picture of energy transduction in this regime.
V. CONCLUDING REMARKS

In the previous sections, we have studied the efficiency of energy transduction from chemical energy to mechanical
work using a simple two-state model under isothermal conditions. We considered three different examples: system A
with two shifted potentials and both active and thermal transitions between the two states localized at the potential
minima; system B with an additional symmetry between the two states and no passive thermal transitions; and
finally system C with a flat weakly bound state and non-localized passive transitions. We demonstrated that energy
transduction can be very efficient in the systems A and B with localized transitions and shifted potentials and is at
least two orders of magnitude smaller in system C which requires diffusive steps for motion to occur. Interestingly,
the largest efficiency can occur far from equilibrium. This is in particular the case for systems A and C which both

are not very efficient in the linear response regime.
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A. Isothermal motors, heat engines and Brownian ratchets

Efficiencies of energy transduction have been studied and discussed for a long time. Of particular significance
is the concept of Carnot which defines the efficiency of macroscopic heat engines coupled to two thermal baths at
temperatures 7% and 7t > 7~ as

fext v
Q+

: (46)

NCarnot =— —

where Q+ is the rate of heat transfer from the hot reservoir. This definition then leads to an upper limit of the
efficiency ncarmot < (It —T7)/T* which cannot be surpassed by any heat engine. In order to characterize energy
transduction in biological systems, a natural choice is [23]

i fextv

4
rAu (47)

77:

which we have adopted in this paper, see Eq. (6), and which is based on the chemical potential difference between
fuel and reaction products. As we have discussed, this efficiency obeys n < 1 in order to satisfy the first law of
thermodynamics, but there is no nontrivial upper bound. In addition to the obvious fact that ncarnet describes a heat
engine and 7 an isothermal motor, there remains a fundamental difference between the two cases: the definition of
NCarnot assumes that all heat dissipated in the bath 7~ is lost. This is true in most practical cases, however if the
bath at T~ was also used as the hot bath of a second heat engine, some of this energy could in principle be reused.
Similarly, the definition of 7 takes into account the energy of the lower-energy reservoir, thus assuming that the energy
of the reaction products remains available. One might think that it is possible to avoid this difference between the
two definitions by choosing:

e (48)
THA
where pa4 would be the chemical potential of the fuel (ATP). This definition would share with Carnot’s definition
the viewpoint that the energy of the reaction products are not useful, and since n’ = nAu/pa would lead to the
upper bound ' < (pa — ptp)/pa- Such a choice, however, suffers from a serious shortcoming: only chemical potential
differences are physically meaningful. Depending on the state of reference used for defining g4, the value of g4 could
be positive, negative or even vanish.

The example given above demonstrates that comparing efficiencies can be dangerous as they may be based on
different definitions corresponding to different points of view. This is also the case for ratchet models which have been
studied in many variants and under widely varying physical conditions. All definitions described above have been used
in the literature: The definition Ncamet for systems driven by temperature differences [9,12,14,16,17], the definition
for n given by Eq. (6) [23,8,15] as well as 5’ [13]. Alternative definitions have been proposed for situations where the
chemical reaction is not fully specified [11,18]. Other definitions of energy transduction efficiencies have been used for
systems which are driven by stochastic or deterministic forces [12,19-21]. Recently, Sekimoto has presented a unified
picture which includes most systems in a common framework [12]. However, in general, a given definition is adapted
to one particular physical situation.

B. The two-state model and biological motors

One important motivation of this work is to clarify the general properties of energy transduction of biological motors.
The characteristic behaviors of our system A and B with localized transitions and shifted potentials are similar to
those observed for processive biological motors such as e.g. kinesins which move along microtubules and for which the
consumption of ATP and the subsequent stepping are strongly correlated for small external forces [29,31,32]. Kinesin
motors consist of two identical active head groups which both hydrolize ATP [33]. There is evidence suggesting that
the motor could “walk” in a head-over-head fashion along microtubules, detaching a head in the back and reattaching
in front of the molecule while keeping the second head bound [34,35]. In such a picture each ATP-hydrolysis cycle
leads to a new situation where both heads have exchanged their roles and the center of mass of the molecule has
advanced one filament period. This type of motion is captured in a simple way in the variant B of our model which
is symmetric with respect to the two states. Because of this symmetry, both states are indistinguishable but the
corresponding potentials are shifted by {/2: Wy(z) = Wi (z —1/2). We therefore identify each of the two states with
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one kinesin head and /2 with the filament period, see Fig. 2 (b). Recently, system C with a structureless excited state
has been used for single kinesin heads which were observed to move processively along a microtubule [36]. Models of
this type have typically been considered in the context of non-processive motors such as myosins which have a weakly
bound state during their interaction cycle. Myosins interact with a filament to generate displacements of the order of
several nm, but they do not continuously move along a filament as individual motors since they easily lose their track
and diffuse away [37,38]. The latter phenomenon is not captured in the one-dimensional two-state model, however
the flat potential of system C requires diffusive steps for average motion and the efficiency is therefore smaller than
for systems A and B. Under physiological conditions non-processive motors operate not as isolated enzymes but move
together in large groups. In this situation, however, diffusive steps become unimportant and the efficiency becomes
large and reaches the same orders of magnitude as for model A and B described here [39,40,11].

When comparing our simple models with biological motors, the value of the adimensional parameter y = wél?/U
introduced in Eq. (41) is crucial. The relevant orders of magnitude for most parameters are well known: Energy
scales are U ~ 107" [23], typical time scales of conformational changes are w™! ~ 1ms and the relevant length scale
is | ~ 5 — 10nm [37]. However, the friction coefficient £ is unknown and difficult to estimate. Therefore, we do not
know at which value of x biological motors operate. The role of y on the functioning of the system can be discussed
by comparing both the maximal efficiency and the dimensionless velocity v/wl as a function of x, see Fig. 9.
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FIG. 9. Maximal efficiencies (broken line) and normalized velocities (solid line) as a function of x for system B and

Ap/U = 0.6 and T/U = 0.05.

The diagram reveals that for large values of x for which the efficiency is large the velocities become small. For
small x velocities are optimal but efficiency becomes negligible. This observation suggests that optimal conditions
are obtained in the intermediate regime x ~ 0.1 — 1 where chemical times and sliding times along the potential slopes
become comparable.

If linear molecular motors operate in this regime, the microscopic friction coefficient ¢ is of the order of 1077 —
106 kg/s. If we estimate ¢ from simple hydrodynamic arguments (& ~ 67nyisl), where nyis is some measure of a
“local” viscosity, we find nis ~ 10 — 100 Poise, 103 — 10* times the viscosity of water, values compatible with dense
macromolecular solutions. Interestingly, this order of magnitude, corresponds to a diffusion coefficient of 4 - 10714
m?/s, a value reported recently for single headed kinesin [36]. This observation together with our estimate suggest
that linear molecular motors are optimized both from the velocity and the efficiency standpoint.
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APPENDIX A: ONSAGER COEFFICIENTS

In linear response theory, the behavior of the system is completely defined by the Onsager coefficients A;;. The
Onsager symmetry relation (10) follows from general thermodynamic arguments and the microscopic reversibility. The
calculation of Onsager coefficients is difficult, however the symmetry relation can be verified by general arguments as
shown in section A 1. In section A 2 we obtain explicit expressions for the coefficients A;; for a many-motor system
as introduced in [8,11].

1. Symmetry relation for a single motor

In order to demonstrate the symmetry relation of Onsager coefficients for the two-state model, we start from the
probability distributions at equilibrium (fext = 0, Ap = 0) as

P = Ne=Wo@)/T (A1)

bl

with a normalization factor

!
N_1£Z/ dg e=Wo/T (A2)
—Jo

For small fex:!/T < 1 and Ap/T <« 1 we define deviations p,(z) from equilibrium which obey
Py(z) = Ne=Wo/T (1 4 p,(z)) . (A3)

Without loss of generality we consider the case where only the transitions a, and §, occur but 7, = 0. To linear
order in Ay, the transition rates can be written as

o= (ot 212238 g

wo(z) = w(x)e2/T (A4)

with o = ase"2/T and w(z) = (a2 + ﬁg)e_WQ/T. Using Eq. (13) we find to linear order

00 (T2 00 4 (o)1 - ) = ()

_gax (e#mﬁpr) —w(@)(p1 — p2) = ha(z) . (A5)

The fields hy(z) are nonzero in the presence of mechanical or chemical forces:

hi (@) = —a(@) Ap/T = Bpe™ "0 fore /€
hy(z) = a(2) Ap/T — dee™ T furt /€ (A6)

Eq. (A5) represents a linear relation between p, and h, which can be inverted and which thus defines a response
kernel

polz) = /0 dx'xop (2, 2 )b, (') . (A7)

This allows us to express the velocity and the fuel consumption rate within linear response theory:
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! w1 Wa
= / dzx |:€_16_T (fext - Taxpl) + 5_16_T (fext - Taxp2) (AS)
0

r= / dz a(z) [(p1 — p2) + Ap/T] (A9)

The Onsager coefficients A;; can be written in terms of the response functions x.,(z,’). In particular, we find for
the coefficients of mechano-chemical coupling

_Wi(e)
A1z = 8A / dl?/ da' B (3xX11(l‘;=’L‘/)—3a:X12($;1‘/))
_ Wh(x)
(9,01 (2, ) — axm(x,z'))} a(z) (A10)

W (=)

Aoy = / dm/ de'o(z [XH(:L' z') — X21(:L‘,.z"))£_13£16_ T
afext

+(x12(2, 2") = x22(2, l‘/))f_laxfe_ e )] . (A11)

Performing a partial integration in Eq. (A10), we find that the Onsager symmetry relation (10) is satisfied exactly if
the response functions obey the symmetry relation

Xap(zaml) = Xpo('x/;x) . (Al?)

This symmetry relation follows from the hermiticity of the linear operator £ defined in Eq. (Ab5) which can be

expressed as
D1 hy
L = , Al3
<P2) <h2) (AL3)

where
(4w —w
L= < —w ﬁz-l-w) (Al4)
with
Li= —6 1T +20, . (A15)

The operator £ is hermitian since the matrix (A14) is symmetric and £; itself is hermitian. The latter is easily verified
by partial integration:

W, ()

/Oda:q(z)(ﬁxe#l(z)axp(x)):/o drp(m)(axe_ T dgq(x)) . (A16)

2. Onsager coefficients for many rigidly coupled motors

Onsager coeflicients can be calculated explicitly for a model of rigidly coupled motors. In this model, the two states
are defined in the same way as before, but the current term in Eq. (13) is replaced by a convective term since all
particles move with the same velocity. The transport equations are given by [11,8]

0:P1 + v0p Py = —w1 (2) Py 4 wa(2) Ps
(%Pg—i—vﬁ Pg—(.dl( )Pl—(.JQ( )P2 5 (Al?)

the velocity v is determined by the force balance condition

!
v=¢" lfext - / dz (P10 W1 + P20, Wa)| . (A18)
0
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Steady state distributions P; and P, = 1/l — P; are solutions to
U@xpl = ((.01 +CJ2)P1 + (.JQ/Z . (Alg)

Using a power expansion in the velocity, P; can be written to lowest order

Pi(z) = P () + PV (2)v + O(?) (A20)
with Pl(o) = ws /(w1 + ws)!, and
w_ 1 (0)
Pl =—— +wza“fP1 . (A21)

As in the last section we use a reaction scheme with 7, = 0 in order to keep the expressions simple. Also, without
loss of generality we consider the case where oy depends on Ay but as remains constant. For small Ap/T < 1, we
express the transition rates of Eq. (22) as

wi =wee AT (14 a) | (A22)
where @ = asApu/wsT. The force-velocity relation for small v is given by
fext = f(o) + (5_1 + f(l))v + O(vz) ) (A23)

with coefficients
l
Fo) = / dePMOAW (A24)
0
which depend on Au. We can now calculate the Onsager coefficients. The effective friction

(A25)

can be determined from Eq. (A23):

Lt e AT (9, AW)?
-1 _ =1 ) T
Al =€ +_ZT ; dxwg(l—ke—AW/T)?’ . (A?G)

Similarly,
3'0 afext
A1z = =-An , A27
0Ap Fext=0 OAp v=0 ( )
leads to
af A e 8WIT 9 AW
A1z = = Ay / =-= z— —AW/T)2 (A28)
AL | Ap=o IT Jo " wa(1l+e=8W/T)
The second cross-coefficient
or or
Aol = 57— =11 ) (A29)
O fext Apu=0 dv Au=0
is determined from the fuel consumption rate r(v, Au). Using Eqns. (23), (A29) and (A21), we obtain
or !
8_' = / dzx (ag—l—al)@UPl]
v Ap=0 0 Au=0
L[ gl (AW)em AT
_ __/ L 220:(AW)e , (A30)
T J, wa(l + e~ AW/T)2
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and thus as required A19 = Ag1. Finally,

Ny — or B or n or
2 3A,u fext=0 o 81} Ap=0 6A}L v=0
A2, or
=12 A3l
)\11 3A,u v=0 ’ ( )
which requires to calculate
or t 3P1(0) (0 0
= P — A32
55a| /0 (o) + P05 (a1 o (A32)

Using Eqns (22) and (23), we obtain

! —AW/T
B R B L . (A33)
o T ey g

Note that both A;; and As; are positive while Ajs can have either sign.

or
OAp

APPENDIX B: DIFFUSION CLOSE TO A POTENTIAL MAXIMUM

In Section IV D, we introduced the probabilities p,(z) that a particle which initially starts at position  close to
a potential maximum will finally escape in the positive direction. We will calculate this probability for a piecewise
linear potential as shown in Fig. 10 in the limit where the potential slopes extend to infinity which corresponds to
large potential amplitudes U/T > 1.

P(x,t=0)=0(X-x0)

Q«’ p

A g

<
@ e 4, JC
RS

V- s
Y 'a
~.......
o

o

L 3

FIG. 10. Schematic representation of diffusion near a potential maximum which can be divided in three different regions
A, B and C. For a particle which initially appears at = xo, we are interested in the probability p that it will finally move
forward. This probability is related to the current Jo which can be calculated in the limit of long times.
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We consider the Fokker-Planck Equation

OP+0.,J=0 , (B1)
with
J=—("HT0,P+ PO,W — Pfoxt] (B2)
for initial condition
P(z,t=0)=d(x —z0) . (B3)

In order to determine what fraction of particles move to the right after a long time, we define the Laplace transform
P(r,s) :/ dtP(z,t)e™ " (B4)
0

of the distribution and j(]:, s) = —¢71 [T@xﬁ’ + PO, W — F’fext] of the current. The average number of particles which
pass at position z after long times is given by

/wdtJ(r,t):j(x,s:O) . (B5)

Noting that
~ —st a
dte™*' = P(x,t) = —P(x,0) + sP(z,s) , (B6)
0 ot

we obtain an equation for P:

€719, [Taxﬁ +(BW — fext)ﬁ} —sP=—P(z,0) . (B7)
Since we are interested in s = 0 we have to solve
O, [Taxﬁ +(BaW — fext)ﬁ} = —&6(z —zo) . (BS)
All quantities of interest can be easily calculated if we we assume a piecewise linear potential

we={ i rsh (Bo)

with the potential slopes f_ = U/a and fy = U/(l — a). We distinguish three different regions A, B and C along the
z-axis, see Fig. 10. Within each region, the solution to Eq. (B8) is

P(z) = Co + Crem W) —ala)/T (B10)

with two constants Cp and C'; which have to be determined for each of the three regions. We denote the correspondmg
solutions PA, PB and Pc Since we are looking for solutions which do not diverge for £ — do0, we have C’1 = C’1 =0
in regions A and C and therefore P, = C3' and Pc = C§. This boundary condition for large z can also be derived
more carefully by first imposing the condition

lim P(a: s)=0 (B11)

r—+oo

for s > 0 and taking the limit s — 0 afterwards. Additional boundary conditions are the conditions of continuity of
P(x,0)at =0 and & = x¢

P4(0) = Pg(0)
Pg(20) = Po(xo) (B12)

and the matching conditions
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05 Pa(0) = 8; Pp(0) — Pa(0)(f4 + f-)/T
8xPp(z0) = 8xPo(z0) +€/T (B13)

which follow from integrating Eq. (B8) at the singularities of the potential slope at # = 0 and the delta-function at
z = xg. With these conditions, all free parameters can be determined and we obtain

C(‘)A = ﬁe_(f‘F‘l’fext)l'D/T (B14)
COC_ £ 1-— f feXt _(.f++fext)-’L'D/T (B15)

_f++fext f—+f+ ’
The corresponding currents j(a:, s = 0) are constant in region A and C:
jA = _g_l(f— - fext)ch (B16)
JC g_l(f+ +fext)coc 3 (B17)

which satisfy the normalization condition Jo — J4 = 1. The probability p(zg) for forward motion of a particle which
initially was at z¢ is equal to J¢:

1 j;_ +f:;it o= (Frtfea)zo/T (B18)

The probabilities introduced in Eq. (45) are given by p2(0) = p({ —9), p1(6) = p(6 — a).

p(zo) =
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