Self-organized Beating and Swimming
of Internally Driven Filaments

Sébastien Camalet, Frank Julicher and Jacques Prost
Institut Curie, Physicochimie Curie, U.M.R. 168, 26 rue d’Ulm, 75248 Paris Cedex 05, France

We study a simple two-dimensional model for motion of an elastic fila-
ment subject to internally generated stresses and show that wave-like propa-
gating shapes which can propel the filament can be induced by a self-organized
mechanism via a dynamic instability. The resulting patterns of motion do not
depend on the microscopic mechanism of the instability but only of the fila-
ment rigidity and hydrodynamic friction. Our results suggest that simplified
systems, consisting only of molecular motors and filaments could be able to
show beating motion and self-propulsion.
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Cilia and flagella are hair-like appendages of many cells which generate motion and are
used for self-propulsion and to stir the surrounding fluid. They all share the characteristic
architecture of their core structure, the axoneme, a common structural motive that was
developed early in evolution. It is characterized by nine parallel pairs of microtubules,
which are long and rigid protein filaments, that are arranged in a circular fashion together
with a large number of dynein molecular motors [1]. In the presence of a fuel which is ATP,
the dynein motors attached to the microtubules generate relative forces while acting on
neighboring microtubules. The resulting internal stresses induce the bending and a wave-
like motion of the axoneme.

These biological systems are complex, they consist of a large number of different compo-
nents and various patterns of motion have been observed. Attempts to model their behavior
are either based on the assumption that some unknown control system generates oscillatory
motor activity [2] or that a self-organized mechanism is at work [3,4]. Generically, the latter
involves a dynamical instability. Theoretical studies of simple models for collective action
of molecular motors have demonstrated the possibility of such instabilities [3,5-7]. Several
examples of oscillatory motion of biological many-motor systems are known. Recently, it
was suggested that spontaneous oscillations observed in muscles could be a property of the
motor-filament system alone [6,8]. This idea is supported by the fact that the oscillations
continue to exist after all regulatory systems are removed [8] but also by the observation
that an in vitro motor-filament system shows the signature of a dynamic transition [9].
Furthermore, the observations that flagellar dyneins are able to generate oscillatory motion
on microtubules [10], and that isolated and de-membranated flagella in solution containing
ATP above a threshold concentration swim with a simple wave-like motion [11] support the
idea that basic types of flagellar beating could result from a dynamic instability.

In this article, we introduce a simple two-dimensional model which reveals many physical
aspects of the motion of an elastic filament driven by internal forces, that should be relevant



FIG. 1. Snapshots of wave-like patterns generated by a motor-induced Hopf-bifurcation calcu-
lated for different boundary conditions (solid lines): (A) Clamped head, position and slope are
fixed. (B) Fixed head, position is fixed only. (C) Free head subject to a viscous load. The broken
lines represent earlier configurations. The arrows indicate the direction of wave propagation.

for flagellar beating. Our approach is inspired by studies of semiflexible filaments subject to
external forces [12-16], however, in our case all motion is induced by internal stresses. Our
model consists of two incompressible but elastic filaments of length L arranged at constant
distance a < L and rigidly attached only at one end which we call the head. A large number
of molecular motors and passive elements holding the filament pair together are assumed to
generate a coarse-grained force per unit length f which is an internal stress acting in opposite
directions on the two filaments and induces the bending of the filament pair. The dynamic
equations of this model define patterns of beating motion resulting from the internal forces
which are assumed to oscillate. More interestingly, we show that characteristic wave-like
patterns which propagate along the filament are generated most naturally by a dynamic
instability of the motor-filament system, see Fig. 1 for examples. As we show below, the
qualitative shapes of these patterns do not depend on the microscopic mechanism of force
generation but only on the elastic properties of the filaments and on hydrodynamic friction.
We demonstrate that these patterns lead to self-propulsion of the system and calculate the
velocity of motion.

In order to define our model and to derive the dynamic equations, we start from the
enthalpy functional

G= [ [5C) 4 F)AE) + M), ds (1)

where 7(s) is a parameterization of the shape of the filament pair by the arclength s, &
is the bending rigidity, and C' = 7 - 3?7 is the local curvature with the filament normal
n. The internal force density f couples to the relative local displacement of the filament
pair A(s) = a [y C(s")ds’ [12]. In order to impose the constraint of local incompressibility



(0,7)* = 1, we have introduced the Lagrange multiplier A(s). The equation of motion can

be written as
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where it and 77 are projectors on the filament tangent and normal, and we assume lo-
cal anisotropic friction with tangent and normal coefficients { and £, respectively. The
Lagrange multiplier is determined by the condition (9,7)3;0s7 = 0 [13].

In order to keep the description simple, we consider small deformations of a filament
parallel to the z-axis, 7(s) = (s + u(s), h(s)), which we describe by an expansion in the
transverse and longitudinal displacements A and w. To quadratic order in d,h(z) we can
write

G~ /OL [g(aghf + af(2)(Boh(z) — 8:h(0)] de (3)

where we use the z-coordinate as parameter. We first discuss transverse motion which
for small deformations is independent of longitudinal forces [17] and satisfies the equation
£1.0:h = —kD2h + a0,.f together with two boundary conditions at the head with z = 0
and two conditions at the tail for x = L. We assume a free tail which implies 9?A(L) = 0
and k02h(L) = af(L). At the head, we distinguish three different cases as shown in Fig.
I: (A) clamped head with ~(0) = 0 and 9,h(0) = 0; (B) fixed head with A(0) = 0 and
kO2R(0) = —a I f(z)dz; and (C) a viscous load at @ = 0 with friction coefficient 1 for
which the condition on 2(0) in (B) is replaced by nd;h(0) = af(0) — k021(0).

We demonstrate the basic properties of this model, by first assuming that an oscillating
force density with constant amplitude is generated by some unspecified mechanism: f,,(t) =
Re(foem). The total force density f acting on the filament pair is the sum of the force f,,,
internal dissipative forces and in general the forces of elastic elements which locally connect
the filaments. Introducing the complex Fourier amplitude %, where h(z,t) = Re(fNL(x)eM),
we can express the total force density as f = xo + fo, where & ~ iwa(@ziz(,r) — @JL(O))
is the complex amplitude of the local sliding velocity v = ;A. The coefficient y = (A +
K /iw) describes a viscoelastic response of the material between the filaments with dissipation
coefficient A and elastic modulus K. The oscillating state is characterized by
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The homogeneous active force fo only enters via boundary conditions. Eq. (4) and bound-
ary conditions represent an inhomogeneous linear system which is solved by h = Aek=/L
leading to four complex values of k. The corresponding coefficients A are adjusted to satisfy
the boundary conditions which leads to a solution with an amplitude proportional to the
internal force iL(m) ~ fo. We can distinguish two different regimes: (i) hydrodynamic friction
dominates |y|* < k€, /wa*; (ii) internal viscoelasticity dominates |x|? > k€, /wa*. We can
neglect in Eq. (4), x in case (i) and £, in case (ii). Fig. 2 shows examples of the amplitude
H and the gradient of the phase ¢ of }Nl(l‘) = H(z)e " for x = 0 and different boundary

conditions as dashed lines. The corresponding time dependent solutions

h(z,t) = H(x) cos(wt — ¢(z)) (5)

3



are propagating wave-like shapes qualitatively similar to those shown in Fig. 1. The sign of
the local propagation velocity v, = w/0,¢ of the phase allows us to determine the direction
of apparent wave propagation.

We have thus developed the framework to calculate and analyze wave-propagating so-
lutions of our model and can now study motion generated by the properties of the motor-
filament system via a Hopf bifurcation. We assume that the material between the two
filaments which contains both molecular motors and passive elements has properties which
can be characterized on a coarse-grained level by a nonlinear history-dependent response
function. We will study the instability of a non-moving solution h(z) = 0 towards wave-like
patterns. For this case it is sufficient to consider only small amplitudes, |0.h| < 1 as de-
scribed above. Furthermore, in this regime the local sliding velocity v is small and we can
ignore nonlinearities in v and restrict ourselves to the frequency dependent linear response
f = x0. Here, we have set the artificially introduced force fo = 0 and characterize both
passive and active material properties by the complex response function x(w, ) which can
e.g. be calculated explicitly for a simple model [6] or measured experimentally [18]. The
out-of-equilibrium nature of the system is characterized by the parameter ) which can for
example be identified with the ATP concentration. Note, that for an active system y can
have unusual behaviors which formally correspond to a negative friction (Re(x) < 0) or a
negative elastic response (Im(y) > 0).

In the case fo = 0, Eq. (4) and boundary conditions becomes a homogeneous linear
system which always has the solution ;L( ) = 0 and which can now be reinterpreted as
an eigenvalue problem for x. Spontaneous motion corresponds to nontrivial solutions to
this problem. A discrete set of such solutions h; exists, each h; corresponds to a complex
eigenvalue x = x;(w), t = 1,2... 00 which we order accordmg to |xi(w)| < [Xit1(w)].

Consider now a system initially at equilibrium with = 0. If Q is increased, an instability
occurs as soon as a critical value €Q, is reached for which y(w., Q.) = x:(w.) for a frequency w..
In the vicinity of this point, the system develops for €2 > €}, motion with this frequency and a
shape characterized by the nontrivial solution fNLZ("c) This scenario applies to a supercritical
bifurcation. Nonlinear terms of the response function and nonlinear corrections to the simple
Monge representation can become important for larger ), or they could change the nature
of the bifurcation to subcritical. Typically, the instability occurs for the smallest value y =
X1(w) since larger |x| require larger values of Q which correspond to more system activity.
Note, that the resulting pattern of motion is independent of the microscopic mechanism
which leads to the instability. It is sufficient that the active material is capable to generate
the response x = y; [19].

Fig. 2 displays examples of the amplitude and the gradient of the phase of h 1(z) for
boundary conditions (A) and (B), snapshots of the corresponding motion are shown in Fig.
1. The boundary conditions play an essential role in selecting different types of motion.
Observing the sign of d,¢ which determines the direction of the phase velocity we find that
for clamped head (A) the wave propagates from the tail towards the head while for case
(B) it propagates in the opposite direction. The amplitude H(z) also differs significantly
between cases (A) and (B), see Fig. 2. The case (C) of a free head with viscous load 7 is
similar to case (B) and therefore not shown in Fig. 2. For this example, the qualitative
properties of motion induced by the dynamic instability are the same as those of the system
driven by a homogeneous force fo, see Fig. 2. In fact, for the parameters chosen, |x;|? <
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FIG. 2. (a) Amplitude H(z) (in arbitrary units) of the wave-like motion characterized by Eq.
(5) as a function of the position = along the filament axis for boundary conditions (A) as defined in
Fig. 1 and & wl*/k = 2500. (b) same plot for boundary conditions (B). (c) Gradient d,¢ of the
phase along the filament axis for the same systems. The solid lines correspond to motion induced
by a Hopf-bifurcation for the smallest response coefficient x1, the broken lines to motion induced

by a homogeneous internal force and x = 0.



k€1 /(wa*) and the corresponding solution is not far from the solution for y = 0. The case of
homogeneous force fo is simple and allows us to explain the effect of boundary conditions. A
homogeneous internal force fo can be rewritten as boundary terms in the expression of the
energy: G ~ afoh(L) — afoh(0) — aL fo0,h(0) + [F dx (02h)*k/2. Tts action is equivalent to
two opposite transverse forces afy acting at both ends together with a torque al fy applied
at the head. In the case of a clamped head this apparent force and torque are suppressed and
the system is driven by a virtual force at the tail, propagating the wave towards the head
[16]. If the head is not clamped, the virtual oscillating torque at the head can propagate a
wave in the opposite direction.

Can these beating patterns propel the filament? Time-reversal symmetry has to be
broken, h(x,—t) # h(z,t), for propulsion to be possible [20]. According to Eq. (5), this
requirement is fulfilled since d,¢ # 0. Because of the symmetry h(z,t) = —h(z,t + 7/w),
there can be no net motion in the transverse direction. In order to estimate longitudinal
motion, we have to study the displacement u(z). To second order in d,h, we can write

u(z) ~u(0) — % ; (0zh)*dz’ (6)
indicating that the dynamics of u(z) is governed by the motion h(z,?). Note that u(x)—wu(0)
is small, but the filament displacement «(0) can become large. The longitudinal component
fi of the hydrodynamic force density —(& nn + §||{{) - 0y acting locally on the filament is
given by fi >~ (§L — &)0:h0ih — §0su(x, 1) in our approximation. The velocity of motion V'
is the time-average of d;u(0) and follows from the condition that the total longitudinal force
vanishes. If an isotropic viscous load is attached to the head, this condition is foL fidx +

n0u(0) = 0 and we find V = V5/(1 4+ n/§ L) where

£L w [k .
%——(5—”—1)%/0 H(z) 0:¢ dx (7)
is the no-load velocity. If the head is not permitted to move, the filament generates a force
F = Vo§ L at the head. Note, that for isotropic friction both V' and F' vanish. For a
semiflexible rod-like filament £, /¢ ~ 2 [21] and the direction of motion is opposite to the
direction of phase propagation.

The parameters chosen in Figs. 1 and 2 correspond e.g. to L ~ 40um, a ~ 20nm,
€1 ~2-107*Ns/m?, k ~ 4-107?*Nm?, which is the elastic modulus of about 20 Microtubules
[22], and a frequency w/(27) =~ 30s™'. For this choice, we find a critical value y; =~
(=10 + 20i)Ns/m?.  We choose an amplitude of h; with maximal value H/L ~ 0.1. In
this case, the maximal local sliding velocity is v ~ 8um/s. In axoneme, dynein motors are
spaced every 24nm along the microtubules. Assuming that only one microtubule pair is
active, we estimate that for this choice a force per motor of 4pN corresponds to the critical
value f ~ |yi|v. This is a typical force created by molecular motors. Larger forces could be
necessary to generate beating with larger amplitudes. Our result suggests that in this case
several microtubule pairs could be active at the same time thus allowing for smaller forces
per motor. Using the motion hy obtained for boundary conditions (C) with a viscous load
n=>5-10"*Ns/m, we find a spontaneous velocity of lateral motion V' ~ 40um/s, which
is significantly larger than local sliding velocities and not far from experimentally observed
values.



We have demonstrated that a pair of elastic filaments held together by an active, force-
generating material, can induce wave-like patterns by a dynamic instability of the system.
This study is motivated by biological flagella such as those of sperms which use such motion
for self-propulsion. Our model suggests that the boundary conditions imposed at the ends
select the type of beating pattern observed. This could be tested by micro-manipulation
experiments which apply external forces and torques at the ends of beating flagella. We
have restricted our study to a two-dimensional system, small deformations and the linear
regime of the instability. Nonlinearities could play an important role in the regime of rapid
self-propulsion with large amplitudes. Furthermore, the possibility of torsional motion in
three-dimensional systems could allow for new types of behavior.

The observation that wave-like motion can be generated in a self-organized way raises
the idea that sophisticated control mechanisms may have evolved after the development of
the basic axonemal structure in order to fine-tune the system and to create more complex
types of motion. This concept suggests that artificially constructed systems consisting only
of motors and filaments could already undergo beating motion and self-propulsion.
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