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ABSTRACT Descriptions are given of three kinds of
symmetries encountered in studies of bacterial locomotion,
and of the ways in which they are circumvented or broken. A
bacterium swims at very low Reynolds number: it cannot
propel itself using reciprocal motion (by moving through a
sequence of shapes, first forward and then in reverse); cyclic
motion is required. A common solution is rotation of a helical
filament, either right- or left-handed. The flagellar rotary
motor that drives each filament generates the same torque
whether spinning clockwise or counterclockwise. This sym-
metry is broken by coupling to the filament. Finally, bacterial
populations, grown in a nutrient medium from an inoculum
placed at a single point, usually move outward in symmetric
circular rings. Under certain conditions, the cells excrete a
chemoattractant, and the rings break up into discrete aggre-
gates that can display remarkable geometric order.

Biology is an historical science. Nature fiddles around and
figures out how to build something, and then it improves upon
it in a cut-and-try fashion. The rule is: if a perturbation (or
mutation) works, keep it; if it does not, throw it away. Physics
tells you about the design constraints and whether the solution
found is nearly optimum, but it does not tell you what the actual
solution must be. Once the latter is known, it is fun to say,
“Gee, this symmetry was met and that was broken.” But this
is after the fact. Symmetries do not help you solve problems in
quite the profound way that they do, for example, in theoretical
physics. Having said that, I probably should sit down or go
home. Instead, I am going to describe three symmetries
encountered in studies of the motile behavior of bacteria.

Cyclic Motion

The bacterium that most of us study is Escherichia coli, a
species that lives in an aqueous medium, including your gut. It
is very small, about 1 um in diameter by about twice as long.
It is propelled by the rotation of several left-handed helical
filaments that extend out into the external medium. They have
a wavelength of about 2.5 um, a helix diameter of about 0.5
pum, and they can be up to 10-um long (see ref. 1 for review).
When these filaments turn counterclockwise (CCW, when
viewed along the helical axis looking toward the cell body) they
coalesce into a bundle that pushes the cell forward, at speeds
of order 30 um/s.

The Reynolds number, R = lvp/n, is a dimensionless
parameter indicating the relative importance, in the equations
of motion of a fluid, of inertial as compared with viscous
forces. Here [ is the size of the swimming organism, v its
velocity, p the specific gravity of the fluid, and 7 its viscosity.
For E. coli in water, [ ~ 107* cm,v ~ 3 X 103 cm/s, p ~ 1
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g/cm3 and n ~ 1072 g/cm's, so R ~ 3 X 107>. Motion of a
bacterium is completely dominated by viscous forces.

Viscous drag on a thin filament is asymmetric. If you drop
a thin metal rod in molasses, it falls straight down twice as fast
when oriented vertically than when oriented horizontally.
However, if you drop it slantwise, it falls slantwise. This is
because the component of force (due to gravity) parallel to the
rod carries the rod farther in that direction in a given time than
the component of force normal to the rod carries it in the
perpendicular direction. Segments of a rotating helical fila-
ment move slantwise through the medium. Components of
viscous drag in a direction parallel to the helical axis add up
and, thus, generate thrust (see figure 6.3 of ref. 2). Rotation of
the helix is cyclic: after each revolution the filament looks the
same, but if left-handed and turning CCW, the wave crests
always travel from base to tip.

Sir Geoffrey Taylor is often credited with the first theoret-
ical work showing how microorganisms generate thrust at low
Reynolds number (3, 4). However, that credit should go to
Wilhelm Ludwig who wrote a monumental paper on the
subject in 1930 (ref. 5, a journal of comparative physiology, not
read by applied mathematicians). Ludwig realized that the
relevant equations of motion do not depend explicitly on time:
if a microscopic organism moves its appendages one way and
then moves them back, retracing their steps in a reciprocal
manner, then it does not go anywhere (see figure 2 of ref. 5,
or its reprint, figure 2 of ref. 6). Ludwig’s organism is shown
in Fig. 1. A simpler organism, one with a single hinge con-
necting two rigid parts, was envisaged by Edward M. Purcell;
he called it a scallop (see figure 6 of ref. 7). If macroscopic, the
scallop could swim by opening its shell slowly and closing it
rapidly. It would coast further after the power stroke than after
the recovery stroke and, thus, progress hinge first. However, if
microscopic, it would just return to its initial position. After
discussing the “Scallop Theorem,” namely that at low Reyn-
olds number reciprocal motion does not work, Purcell noted
that a microscopic organism with two hinges could swim if it
strokes, instead, in a cyclic manner (figure 7 of ref. 7). Ludwig’s
organism could do this by moving its oars independently, in the
manner described in Fig. 1b. Purcell argued that such an
organism would swim to the right, but he left the proof as an
exercise for the student. Another way that Ludwig’s organism
could swim would be to feather its oars on the return stroke
(i.e., change their shape, so that on the return stroke, they are
closer to the cell body). This is, in fact, how many ciliated
organisms swim, as noted by Ludwig, e.g., Chlamydomonas.
Finally, to set the record straight, a real scallop does not swim
hinge first, as Purcell imagined, but hinge last (Charles W.
McCutchen, letter to Purcell dated February 28, 1977)! So a
real scallop is more complicated.

The most dramatic way I know of illustrating the Scallop
Theorem is by stirring and then unstirring a viscous fluid, e.g.,
glycerol, contained between two concentric cylinders, Fig. 2.

Abbreviations: CW, clockwise; CCW, counterclockwise.
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Fic. 1. An organism propelled by two rigid oars. (a) If the
organism strokes reciprocally, pulling both oars rapidly downwards,
then returning them slowly upwards, and repeating this motion, it
could swim upwards if macroscopic but not if microscopic (5). The
position of the oars at the beginning of the power stroke is shown by
the solid lines. Their position at the end of the power stroke is shown
by the dotted lines. (b) If, instead, the organism stroked cyclically by
moving its oars one by one, in the sequence right down, left down, right
up, left up, and repeating this motion, it could swim, even if micro-
scopic (7). The position of the oars at the end of the first step of the
cycle is shown by the solid lines.

Taylor demonstrated this experiment in a movie (now a video)
on low Reynolds-number flows, using an inner cylinder of
relatively small diameter and viewing the assembly from the
top (8). It is more devious to use an inner cylinder of relatively
large diameter and to view the assembly from the side, where
one cannot see what is really going on, Fig. 2a. What happens
when one rotates the inner cylinder is that the stripe of dye
(Fig. 2b) gets spread out into a spiral. The end of the stripe at
the Pyrex wall stays put, while the end at the lucite wall gets
dragged around with the inner cylinder. After three revolu-
tions, say, the spiral has three turns. Seen from above, the dye
layer is razor thin, rolled up like toilet paper on a roll. Seen
from the side, the solution looks homogeneous. When one
rotates the inner cylinder back the other way, retracing one’s
steps, the spiral unrolls, and the stripe of dye returns to its
original configuration. Seen from the side, it appears that the
solution has been mixed and then unmixed, an unexpected
result! The experiment works, not simply because of low
Reynolds number, but because the dye, in a highly viscous
medium, has a small diffusion coefficient and, thus, accurately
tracks bulk flow.

Rotary Motor

The motor that drives the helical filament is at its base,
embedded in the cell wall and cytoplasmic membrane, Fig. 3.
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F1G.2. Two concentric cylinders used to stir a viscous medium. (a)
Viewed from the side. (b) Viewed from the top. The inner cylinder can
be rotated about its long axis. The space between the cylinders is filled
with a viscous medium (e.g., glycerol), marked with a dyed sample of
the same medium (e.g., glycerol containing amido black), as shown by
the squiggly line. The cylinders actually used in the demonstration
were a 400 ml Pyrex beaker (7 cm i.d., 10 cm high) and a closed lucite
pipe (5 cm o.d., 7 cm high) mounted on the shaft of an old double-
ended potentiometer, fixed to a delrin cap, fitted to the beaker. An
access hole cut through the cap allowed the dyed sample to be added
with the aide of a hypodermic syringe. In this setup/ ~ 1 cm, v ~ 3
cm/s (at ~5 s per revolution), p ~ 1.3 g/cm?, and n ~ 14 g/cms, so
R ~03.
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F1G.3. A scale drawing of the bacterial flagellar motor. Structural
components are named after their genes, which fall in classes flg, flh,
fli (originally called fla). Null mutants in the fla class are nonflagellate.
Null mutants in the mot class are flagellate but nonmotile. The switch
controls the direction of rotation. It interacts with certain cytoplasmic
proteins, part of the cell’s sensory system (not shown). The transport
apparatus (as yet poorly defined) controls the excretion of axial motor
components. The motor is assembled from the inside-out, with new
components added at its distal end (1).

This figure shows 20 or so components identified according to
the names of genes by which they are encoded (named, in turn,
from the phenotypes of defective products). The component of
largest diameter (about 50 nm) is the C-ring (FliG, M, and N),
located in the cytoplasm. Next comes the MS-ring (FliF),
embedded in the cytoplasmic membrane. Then comes the rod
or drive shaft (FlgB, C, F, and G) that passes through a bushing
(the P- and L-rings, Flgl and FlgH) and connects to a flexible
coupling (the hook, FIgE) and thence to the flagellar filament
(FliC). Note the other components of the Gram-negative cell
wall (peptidoglycan layer and outer membrane). It’s the pep-
tidoglycan that provides the rigid framework.

Torque is thought to be generated by the interaction of the
transmembrane components MotA and MotB, linked to the
peptidoglycan, with proteins attached to the MS-ring, probably
FliG (ref. 9; see ref. 10 for review). This interaction is coupled
to translocation of protons (or hydronium ions) across the
cytoplasmic membrane from the outside to the inside of the
cell. Force generation does not involve hydrolysis of ATP (11).

The simplest way to study flagellar rotation is to fix one
flagellar filament to a microscope slide or coverslip and watch
the motion of the cell body: it spins alternately clockwise (CW)
or CCW (12). The torque-speed relationship is symmetric, i.e.,
the same whether the motor turns CW or CCW (see figure 2b
of ref. 13). If one watches a cell spin, writes down the time
intervals during which it turns CW or CCW, and plots the
corresponding interval-length distributions (not worrying
about very short intervals, that are hard to study) they prove
to be exponential, with decay times of order 1 s (see figure 2
of ref. 14). The motor of a wild-type cell behaves as a two-state
system, with constant probabilities per unit time of changing
from one state to the other. The dwell times in these states are
approximately equal.

These symmetries are broken when motors are coupled to
flagellar filaments. Swimming cells execute a random walk.
They swim steadily forward (or run) for a period averaging
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about 1 s, then move erratically in place (or tumble) for a
period averaging about 0.1 s, and then run again, choosing a
new direction approximately at random (15). Both run and
tumble intervals are exponentially distributed. This asymmetry
arises for the following reason. The flagellar filaments rotate
synchronously and form a bundle when the motors spin CCW:
the bundle pushes the cell steadily forward. The bundle flies
apart when the motors spin CW: the different filaments not
only pull the cell in different directions, they also change their
shape (snap from a left- to a right-handed conformation, with
half the pitch) making the motion even more chaotic (16). For
a discussion of bundle dynamics, see (17).

If a tethered cell is exposed to a chemical attractant (e.g., an
exponentially increasing temporal gradient of the amino acid
aspartate), the rate constant for the CCW — CW transition
shifts to a lower value, while the rate constant for the CW —
CCW transition shifts to a higher value. As a consequence, the
motor spends more time spinning CCW (see figure 5 of ref.
14). The reverse is not true unless gradients are very large, i.e.,
a decreasing temporal gradient of an attractant is usually
ignored.

Thus, if a swimming cell is exposed to an increasing temporal
gradient of an attractant, e.g., if a run happens to carry the cell
up a spatial gradient of an attractant, that run is extended. If,
on the other hand, a run happens to carry a cell down a spatial
gradient of an attractant, then the run interval reverts to a
zero-stimulus value. Therefore, the cell drifts up a spatial
gradient following a biased random walk. The bias is positive,
not negative; runs are lengthened, not shortened (ref. 15; for
a review, see ref. 18).

Pattern Formation

The final part of my story concerns the migration of popula-
tions of cells. If cells are inoculated in a Petri plate containing
agar that is soft enough to allow them to migrate through the
gel but hard enough to suppress convection, and if the medium
contains a metabolizable attractant (or a mixture of such
attractants), the cells grow and divide, consume one attractant
after another, and spread out across the plate in a series of
symmetric circular chemotactic rings (19). The cells generate
spatial gradients of attractants by uptake and metabolism, and
then they pursue these gradients (19, 20). One set of cells
exhausts the first attractant, a second set the second, and so on.
Regions of high cell density scatter light, so chemotactic rings
are easy to see. Just illuminate the plate from behind and view
it against a dark background.

Elena O. Budrene found something different: if cells are
grown on relatively high concentrations of substances that are
components of the tricarboxylic-acid cycle, e.g., fumarate,
malate, or succinate (at best weak attractants), they excrete the
amino acid aspartate, a strong attractant (21, 22). What
happens depends on the concentration of the substrate (e.g.,
succinate), which determines both the final cell density and the
rate of excretion of aspartate: one goes from a single ring, to
radial arrays of spots, to spots on intersecting spirals, to similar
spots with tails, and finally to macroscopic ensembles that we
call slugs. The most elaborate patterns have been observed
with Salmonella typhimurium, a cousin of E. coli, that is
chemotactic toward (moves up gradients of) citrate, another
component of the tricarboxylic-acid cycle. In mixtures of
succinate and citrate, both mechanisms apply. The cells con-
sume citrate and chase the spatial gradient thus formed. They
also consume succinate and excrete aspartate. The patterns
formed are unexpectedly complex and remarkably beautiful.
Examples are shown in Fig. 4.

When S. typhimurium is grown on succinate alone, elements
of the patterns no longer line up on spokes of a wheel (23). This
alignment requires interactions between aggregates and an
advancing ring, from which they were spawned (22). In the
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Fic. 4. Petri plates (8.5 cm i.d.) containing aggregates of S.
typhimurium wild-type strain LT2 grown in M9 succinate, citrate for
72 h at 25°C: (a) 5 mM succinate and 1.5 mM citrate. (b) 5 mM
succinate and 1.7 mM citrate. The inoculum, a remnant of which can
be seen at the center of each plate, was 5 ul of a stationary-phase
culture grown on M9 glycerol. For other details, see figure 1 of ref. 21
or 22. Photographs courtesy of E. O. Budrene (Harvard University).

absence of metabolizable attractants, this ring appears with
wild-type cells of E. coli but not with S. typhimurium.

Summary

Flagellated bacteria swim at low Reynolds number, where
reciprocal motion is futile, by rotating thin helical filaments.
Each filament is driven at its base by a rotary motor that works
equally well whether turning CCW or CW. When several
filaments on the same call are driven CCW, they coalesce to
form a bundle that pushes the cell steadily forward. When they
are driven CW, the bundle flies apart, and the cell moves
erratically in place. By measuring the concentrations of chem-
ical attractants and extending CCW intervals when these
concentrations increase with time, a cell is able to move up a
spatial gradient of an attractant. When these gradients are
generated by metabolism of attractants, populations of grow-
ing cells migrate outwards in circular rings. However, when the
cells themselves excrete an attractant, rings can break up into
discrete aggregates. The symmetry of the ring is broken, but
higher-order symmetries appear.
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