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ABSTRACT The orientation of proteins in ordered biological samples can be investigated using steady-state polarized
fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit
rapid orientational motion (“wobble”) with respect to the protein backbone. Here we present a method for characterizing the
extent of this wobble and for removing its effects from the available information about the static orientational distribution of
the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale
of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are
cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state
decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the
director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements
of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation
and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or
perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters
(^P2& and ^P4&) of the angular distribution of c relative to F, and ^P2a& and ^P2e&, the average second-rank order parameters of
the angular distribution for wobble of the absorption and emission transition dipole moments relative to c. The method can
also be applied to other cylindrically ordered systems such as oriented lipid bilayer membranes and to processes slower than
fluorescence that may be observed using longer-lived optically excited states.

INTRODUCTION

Intrinsic and extrinsic luminescent (fluorescent and phos-
phorescent) probes have been highly successful tools in
investigations of the orientation of the components of mac-
romolecular and supramolecular structures. Steady-state
and time-resolved measurements of polarized luminescence
have revealed rotational motions in these systems over a
range of time scales from nanoseconds to milliseconds (see,
e.g., Munro et al., 1979; Jovin et al., 1981). In these studies,
it is necessary to distinguish the local orientational distri-
bution and motions of the reporter groups relative to the
macromolecules from those of the macromolecules them-
selves, which are usually more functionally relevant. The
intrinsic protein fluorophore tryptophan, for instance, ex-
hibits restricted orientational motion with respect to the
protein frame (Beechem and Brand, 1985). Extrinsic probes
that are covalently bound to proteins also rotate around their
linkers and wobble within restricted angular ranges on the
subnanosecond time scale (Brochon et al., 1972; Wahl et al.,
1978). The segmental flexibility of neighboring peptide
regions leads to similar restricted probe rotations on some-
what longer time scales (Yguerabide et al., 1970). Such
local motions depolarize the emission from the probes and

must be taken into account when fluorescence polarization
is used to analyze protein orientation and motion. Local
probe motions are usually sufficiently restricted that they do
not obscure information about the orientation of the protein.

The rate and extent of restricted probe rotations in su-
pramolecular structures, which occur on the nanosecond or
subnanosecond time scale, are usually determined from the
decay of fluorescence anisotropy (see, e.g., Munro et al.,
1979), using isotropic samples, for example, suspensions of
myofibrils (Ishiwata et al., 1987; Ludescher and Thomas,
1988) or myosin synthetic filaments (Kinosita et al., 1984).
However, there are several potential problems with this
approach. Preparation of soluble or suspendable compo-
nents of the sample and maintenance of an isotropic orien-
tation are not always straightforward. Critically, the mea-
sured properties of the isotropic sample, including the
angular probe mobility, may be different from those in the
native, fully constituted system. Techniques for measuring
nanosecond anisotropy decays are relatively complex, re-
quiring specialized apparatus and, usually, long data acqui-
sition times (Badea and Brand, 1979; Lakowicz and Mali-
wal, 1985), limiting their usefulness for dynamic or unstable
supramolecular systems.

An ordered sample is required to characterize orienta-
tional distributions relative to a symmetry axis in the sys-
tem. It has been shown previously that dynamics can also be
characterized in ordered systems by polarized fluorescence
experiments without the need for nanosecond time-resolved
equipment (Kooyman et al., 1981, 1983). These measure-
ments can be made using static polarizers in the excitation
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and emission channels (e.g., Van Gurp et al., 1988a,b; Ling
et al., 1996) or electronically modulated polarizers, allow-
ing repeated measurements at submillisecond intervals if
light levels are sufficiently high (Irving et al., 1995; Allen et
al., 1996; Hopkins et al., 1998). Compared to nanosecond
time-resolved experiments, these methods offer conve-
nience and speed at the expense of more limited resolution
of the rotational dynamics.

In many cases the underlying distribution of protein ori-
entations, rather than the detailed behavior of the probe
relative to the protein, is the primary interest. A useful
analytical framework for interpreting fluorescence polariza-
tion measurements in cylindrically symmetrical systems has
been presented by Irving (1996). Equations for polarized
intensities in an ordered system, such as a muscle fiber,
were formulated to separate the effects of very rapid probe
wobble, considered to be restricted within a cone centered
on a stationary axis in the sample. With these equations,
fluorescence polarization data obtained from muscle fibers
during physiological events could be quantitatively inter-
preted by modeling the orientational distribution of the cone
axis (e.g., Allen et al., 1996; Ling et al., 1996; Hopkins et
al., 1998). However, the specific choice of the model ori-
entational distribution (e.g., a Gaussian) often affected the
results, thereby limiting the conclusions that could be
drawn. A more general analysis, not requiring the selection
of model distributions, would thus be advantageous.

In the present report, we show that, with several reason-
able assumptions about the characteristics of the local probe
motions, it is possible to take these into account without
adopting a specific form for either the static orientational
distribution or the motions of the probes. These basic as-
sumptions are 1) the restricted motions (“wobble”) of the
probes with respect to the protein frame are fast relative to
the decay of the optically excited state; 2) the orientational
distributions of the absorption and emission transition di-
pole moments are cylindrically symmetrical about an axis,
c, and the orientations relative toc are independent of the
orientation ofc in the ordered system; 3)c is fixed within
the protein, and protein reorientation is negligible on the
time scale of decay of the optically excited state; 4) the
ordered system under study has overall cylindrical symmetry.

The amplitude of the rapid wobble is characterized by the
two second-rank order parameters^P2a& and ^P2e& for the
absorption and emission transition dipole moments (a ande,
respectively) when they are not colinear, or by a single order
parameter̂P2d& whena ande are colinear. Other than the
condition embodied in assumption 1, the analysis does not
provide an estimate of the rate of this wobble. More impor-
tantly, the analysis yields estimates of the second-rank and
fourth-rank order parameters (^P2& and^P4&) describing the
static distribution ofc relative to the symmetry axis, free of
the effects of the wobble. Changes in the orientational
distribution ofc between different functional states, as re-
flected in ^P2& and ^P4&, may reveal structural and mecha-
nistic features of the system under study. The analysis is
described here for the example of a muscle fiber, but it is

also relevant to other ordered assemblies with effective
cylindrical symmetry, such as planar lipid bilayer mem-
branes, and to rotational events monitored on the longer
time scale of triplet excited-state decay. Part of this work
has previously been presented in abstract form (Dale et al.,
1997).

THEORY

The analysis is developed for the example of a muscle fiber
containing fluorophores bound at a specific site on a protein.
The inherent symmetries of the muscle filament lattice and
the azimuthally random orientations of the constituent myo-
fibrils impose effective cylindrical symmetry about the
muscle fiber axisF (the sample director). The common
average orientation of the absorption and emission transi-
tion dipole moments,a ande, of the probe (or that of the
common transition dipole momentd when they are colinear)
defines an axis,c, fixed within the labeled protein. The
distributions ofa and e, or of d, are assumed to be cylin-
drically symmetrical aboutc. The orientational distribution
of c relative to F is not specified, except that it is also
cylindrically symmetrical. Rotational correlation times for
motions of the protein within the muscle fiber are assumed
to be on the microsecond to millisecond time scale, much
longer than the fluorescence lifetime (see, e.g., Kinosita et
al., 1984; Ishiwata et al., 1987; Ludescher and Thomas,
1988; Stein et al., 1990). Thus, on the nanosecond time
scale of fluorescence, the protein orientational distribution,
and therefore that ofc, is treated as effectively static.

In the following, we show that, under assumptions 1–4
listed in the Introduction, the effect of fast motions of the
absorption and emission transition dipole moments can be
factored out from the parameters describing the static ori-
entation of c. In the simplest case, the transition dipole
moments for absorption and emission are colinear within
the framework of the probe (a i e [ d), and three indepen-
dent polarization ratios (four independent polarized intensi-
ties) can be measured. The condition of dipole-moment
colinearity is reasonably well met for the longest-wave-
length strong absorption transition in many fluorophores.
The colinearity assumption can be relaxed, provided that the
distributions of the two transition dipole moments are cy-
lindrically symmetrical about the same axis,c (condition 2
in the Introduction). It is then necessary to determine a
fourth independent polarization ratio (or fifth polarized in-
tensity). This more general case will be developed first, and
the reduced result for colinear transition dipole moments
will be derived from it.

Legendre polynomial representation of
orientational distributions

Let f(bFc) be the orientational distribution ofc relative to the
fiber axisF, normalized such that*0

pf(bFc)sin bFc dbFc 5 1.
Then f(bFc) can be approximated to an arbitrary fidelity
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(depending on the number of terms,N) by an expansion of
the form

f ~bFc! > O
j50

N 2j 1 1

2
^Pj&Pj~cosbFc) (1)

(Zannoni, 1988), wherePj(z) is the jth Legendre polyno-
mial, e.g.,P0(z) 5 1, P1(z) 5 z, P2(z) 5 (3z2 2 1)/2,P3(z) 5
(5z3 2 3z)/2, P4(z) 5 (35z4 2 30z2 1 3)/8, etc., and̂Pj& is
the average value ofPj(cosbFc) over the normalized distri-
bution f(bFc):

^Pj& 5 E
0

p

Pj~cosbFc!f ~bFc! sin bFc dbFc j 5 @0, N#.

(2)

The Legendre polynomialsPj form a set of orthogonal
basis functions. An exact description of the orientational
distribution of the probe is provided by the infinite set of
these functions in the expansion of Eq. 1. The average
values,̂ Pj&, of these functions over the distribution (Eq. 2),
which are the scaling coefficients for the terms in Eq. 1, are
known as the order parameters of the distribution.

The probes are bound to a specific site on the protein that
determines their orientation relative to the protein coordi-
nates. They are assumed to rotate rapidly (wobble) over a
limited range in such a way that the orientational distribu-
tion of the absorption and emission transition dipole mo-
ments is cylindrically symmetrical aboutc. The amplitude
of this restricted rotation is characterized by its second-rank
order parameter, for example,^P2a& [ ^P2(cos bca)& 5
(3^cos2bca& 2 1)/2, wherebca is the instantaneous angle
between the mobile transition dipole momenta and the
stationary axisc. Starting from an appropriate set of fluo-
rescence polarization measurements, the analysis presented
here yields estimates of̂P2a& and ^P2e& (or ^P2d& if the

dipole moments are colinear) for the rapid wobble and the
second- and fourth-rank order parameters,^P2& [ ^P2(cos
bFc)& and ^P4& [ ^P4(cos bFc)&, of the orientational distri-
bution of c relative toF.

Polarized fluorescence

The geometry for excitation and observation of polarized
components of fluorescence from an ensemble of probe
molecules in a muscle fiber is illustrated in Fig. 1. The fiber
axisF is oriented along thez-axis of the laboratory coordi-
nate system. The absorption and emission transition dipole
moments of the probe are designated by the unit vectorsa
and e, respectively. The observed intensity of linearly po-
larized fluorescence,EIE9, whereE and E9 are vectors de-
noting the orientation of polarizers in the paths of the
exciting and emitted beams, depends on the orientations of
a and e, the intensity of the excitation, the gain of the
detection system, the quantum efficiency of fluorescence,
and the effective fluorophore concentration. All of these
factors except the orientation dependence are taken up in a
scaling intensity (I). The polarized intensityEIE9 is then
given by

EIE9 5 I^~E z a!2~E9 z e!2& 5 I^cos2 bEa cos2bE9e&, (3)

in which the bracketŝ & indicate averaging over the ensem-
ble of probe molecules and over the time course of the
excited-state decay. The separation of the effects of very
rapid restricted rotations from those of static order under the
present set of assumptions is outlined below. A detailed
derivation in terms of simple trigonometric functions is
given in Appendix A, and a more general treatment, formu-
lated in terms of Wigner rotation matrices, appears in Ap-
pendix B.

The effects of rapid restricted rotation are conveniently
separated out before the details of the static orientational

FIGURE 1 Experimental geometry
for excitation (3) and observation
(33) of a fluorescently labeled mus-
cle fiber. Axis F is aligned along the
laboratoryz axis, with electric vectors
E andE9 for exciting and emitted light,
respectively. The absorption and emis-
sion transition dipole moments area
and e, respectively. The projections of
E andE9 onto thexy plane, perpendic-
ular to F, subtend an azimuthjEE9.
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distribution are considered. Equation 3 is first recast in the
form of second-rank Legendre polynomials (Van der Meer
et al., 1982):

EIE9 5
I

9
@1 1 2^P2~cosbEa!& 1 2^P2~cosbE9e!&

1 4^P2~cosbEa!P2~cosbE9e!&#,

(4)

where all of the angle brackets denote averaging over the
ensemble of probe molecules, but those around the product
term also imply time averaging over the decay of the excited
state. No assumptions are made about the symmetry of the
system in obtaining Eq. 4.

At the instant of excitation,a ande are correlated (even
if they are not colinear). If the restricted rotation is fast
compared to the decay of the excited state, all “memory” of
the probe orientation (within its restricted range) at the
instant of excitation is lost before the instant of emission.
Thus the orientation ofe, within its restricted range, at
emission is independent of the orientation ofa, within its
restricted range, at excitation. If the distributions ofa ande
are cylindrically symmetrical about a unique axisc in the
frame of the protein to which the probe is attached, then, as
shown in Appendices A and B (Eqs. A2, A4, A5, and
B16–B18), the averaged second-rank order parameters in
Eq. 4 can be expressed as the products of those for the
orientations ofa ande with respect toc and those for the
orientation of c with respect toE and E9, respectively,
leading to

EIE9 5
I

9
@1 1 2^P2a&^P2~cosbEc!& 1 2^P2e&^P2~cosbE9c!&

1 4^P2a&^P2e&^P2~cosbEc!P2~cosbE9c!&#.
(5)

This result is still independent of any symmetry of the
orientational distribution ofc. However, if the distribu-
tion of c is now assumed to be cylindrically symmetrical
aboutF, the terms^P2(cos bEc)& and ^P2(cos bE9c)& ap-
pearing in Eq. 5 factorize intoP2(cosuEF) ^P2(cosbFc)& and
P2(cosuE9F) ^P2(cosbFc)&, respectively, as also detailed in
Appendices A and B (Eqs. A8–A9, and B26–B27), thus
separating the parameters related to the experimental geom-
etry from those describing the orientational distribution of
the sample.

P2(cosbEc) andP2(cosbE9c) also appear as the average of
their product in the fourth term in Eq. 5. This average
depends on the correlation betweenbEc at the instant of
excitation andbE9c at the instant of emission. The condition
thatc is stationary over this time period (condition 3 in the
Introduction) is now introduced. Averaging this product
over the azimuthal distributions leads to three terms, in
which parameters related to the experimental geometry are
again separated from those describing the orientational dis-
tribution of the sample (Appendices A and B, Eqs. A12 and
B31).

The final result forEIE9 may be expressed in the form

given by Van der Meer et al. (1982):

EIE9 5
I

9
@1 1 ~3 cos2uEF 2 1!Sa 1 ~3 cos2uE9F 2 1!Se

1 ~3 cos2uEF 2 1!~3 cos2uE9F 2 1!G0

1 ~3 sin 2uEF sin 2uE9F cosjEE9!G1

1 ~3 sin2uEF sin2uE9F cos 2jEE9!G2#,

(6)

in which the parameters related to the experimental geom-
etry, uEF, uE9F and their azimuthjEE9 in the plane perpen-
dicular toF are defined in Fig. 1.Sa andSe are the second-
rank order parameters fora ande with respect to the fiber
axisF, and theGi are correlation functions fora ande with
respect toF, and are defined by

Sa 5 ^P2a&^P2& (7)

Se 5 ^P2e&^P2& (8)

G0 5 ^P2a&^P2e&^P2
2~cosbFc!&

5 ^P2a&^P2e&S15 1
2

7
^P2& 1

18

35
^P4&D

(9)

G1 5 ^P2a&^P2e&K38 sin2 2bFcL
5 ^P2a&^P2e&S15 1

1

7
^P2& 2

12

35
^P4&D

(10)

G2 5 ^P2a&^P2e&K38 sin4bFcL
5 ^P2a&^P2e&S15 2

2

7
^P2& 1

3

35
^P4&D,

(11)

where^P2& [ ^P2(cosbFc)& and ^P4& [ ^P4(cosbFc)&.
In practice, onlySa, Se, G0, and G2 are determined ex-

perimentally. However, from Eqs. 9–11, theGi are related
by

G0 1 2~G1 1 G2! 5 ^P2a&^P2e&, (12)

so that only two of them are independent. This is useful
because, as discussed in the Experimental Section, direct
measurement ofG1 is not straightforward in highly birefrin-
gent samples like muscle fibers. Thus, in practice, the four
independent order parameters^P2a&, ^P2e&, ^P2&, and^P4& are
obtained by inversion of Eqs. 7–9 and 11:

^P2a& 5 SaS1 1 Î1 1
6G2 2 G0

SaSe
D (13)

^P2e& 5 SeS1 1 Î1 1
6G2 2 G0

SaSe
D (14)

^P2& 5
Sa

^P2a&
5

Se

^P2e&
(15)
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^P4& 5
5

3SG0 1 G2

^P2a&^P2e&
D 2

2

3
. (16)

When a and e are colinear, and the orientational distri-
butions of the rapid local wobble are identical for the
ground and excited states,^P2d& can be substituted for both
^P2a& and^P2e& in Eqs. 5 and 7–16 above. ThenSa 5 Se [
Sd and Eqs. 13 and 14 reduce to

^P2d& 5 Sd 1 Î Sd
2 1 6G2 2 G0 . (17)

EXPERIMENTAL CONSIDERATIONS

In the previous section, it was shown how the order param-
eters for the static part of the distribution of the probes in the
sample are obtained fromSa, Se, G0, and G2, free of the
effects of rapid probe motion. In this section, it is shown
how Sa, Se, G0, and G2 are obtained from the polarized
intensities or polarization ratios measured experimentally.

The experimental geometries commonly used in fluores-
cence polarization experiments on oriented samples like
muscle fibers are the epifluorescence or upright fluores-
cence microscope, with 0° or 180° between the propagation
axes of the exciting and observed beams (i.e., in-line,x-il-
lumination) and the T-format or L-format (spectro)fluorim-
eter, with 90° between the propagation axes (right-angle,
y-illumination). Hopkins et al. (1998) have described a
T-format system usefully combining both in-line and right-
angle illumination. In these geometries, all of the available
information about the orientational distribution of samples
with the symmetries and motional time regimes considered
here can be obtained from five independent polarized fluo-
rescence intensities (EIE9) measured with exciting and emit-
ted beams polarized parallel or perpendicular to the sample
director F, the fiber axis. These are\I\, \I', and 'I\, the
values of which are the same in thex- and y-illumination
geometries,'

x I' (jEE9 5 0 or p; Fig. 1) and'
y I' (jEE9 5

p/2). Substitution ofuEF 5 0, uE9F 5 0 for parallel polar-
izations, anduEF 5 p/2, uE9F 5 p/2 for perpendicular
polarizations, into Eq. 6 gives

\I\ 5
I

9
~1 1 2Sa 1 2Se 1 4G0! (18)

\I' 5
I

9
~1 1 2Sa 2 Se 2 2G0! (19)

'I\ 5
I

9
~1 2 Sa 1 2Se 2 2G0! (20)

'
x I' 5

I

9
~1 2 Sa 2 Se 1 G0 1 3G2! (21)

'
y I' 5

I

9
~1 2 Sa 2 Se 1 G0 2 3G2! (22)

(see also Van Gurp et al., 1988a; Van der Heide et al.,
1994).G1 does not appear in these relationships, because of

the choice ofx- and y-illumination together with parallel
and perpendicular polarizations. However,G1 gives no ex-
tra information about probe orientation under the assump-
tions made in the present analysis, as already discussed
(Eq. 12).

Equations 18–22 can be inverted to give expressions for
Sa, Se, G0, G2 and the total intensity,I, in terms of the
polarized intensities:

Sa 5 1 2
3

I
~'I\ 1 '

x I' 1 '
y I'! (23)

Se 5 1 2
3

I
~\I' 1 '

x I' 1 '
y I'! (24)

G0 5
3

2I
~\I\ 1 '

x I' 1 '
y I'! 2

1

2
(25)

G2 5
3

2I
~'
x I' 2 '

y I'! (26)

I 5 \I\ 1 2~'I\ 1 \I' 1 '
x I' 1 '

y I'!. (27)

Experimentally, relative polarized fluorescence intensi-
ties are often derived from direct measurements of polar-
ization ratios (classically, degree of polarization, or simply
polarization), which are independent of the absolute fluo-
rescence intensity (e.g., Tregear and Mendelson, 1975; Irv-
ing et al., 1995; Hopkins et al., 1998). The polarization
ratios commonly used are

Q\ 5 ~\I\ 2 'I\!/~\I\ 1 'I\! (28)

xQ' 5 ~'
x I' 2 \I'!/~'

x I' 1 \I'! (29)

yQ' 5 ~'
y I' 2 \I'!/~'

y I' 1 \I'! (30)

and

P\ 5 ~\I\ 2 \I'!/~\I\ 1 \I'! (31)

xP' 5 ~'
x I' 2 'I\!/~'

x I' 1 'I\! (32)

yP' 5 ~'
y I' 2 'I\!/~'

y I' 1 'I\!. (33)

Polarized intensities relative to a chosen reference inten-
sity are obtained by inversion of Eqs. 28–33. For example,
using \I\ as the reference intensity, these are

'Ri 5
'Ii

iIi
5

1 2 Qi

1 1 Qi
(34)

\R' 5
\I'

\I\
5

1 2 P\

1 1 P\
(35)

'
x R' 5

'
x I'

\I\
5 S1 1 xQ'

1 2 xQ'
DS1 2 P\

1 1 P\
D 5 S1 1 xP'

1 2 xP'
DS1 2 Q\

1 1 Q\
D

(36)

'
y R' 5

'
y I'

\I\
5 S1 1 yQ'

1 2 yQ'
DS1 2 P\

1 1 P\
D 5 S1 1 yP'

1 2 yP'
DS1 2 Q\

1 1 Q\
D.

(37)
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On definingR 5 (I/\I\) 5 1 1 2('R\ 1 \R' 1 '
x R' 1

'
y R'), the order parameters and correlation functionsSa, Se,
G0, andG2 are obtained as

Sa 5 1 2
3

R
~'R\ 1 '

x R' 1 '
y R'! (38)

Se 5 1 2
3

R
~\R' 1 '

x R' 1 '
y R'! (39)

G0 5
3

2R
~1 1 '

x R' 1 '
y R'! 2

1

2
(40)

G2 5
3

2R
~'
x R' 2 '

y R'!. (41)

Using Eqs. 34–41,Sa, Se, G0, andG2 can thus be calcu-
lated from the experimentally determined polarization ratios
Q andP. Equations 13–16 are then used to calculate^P2&,
^P4&, ^P2a&, and ^P2e&. If the absorption and emission tran-
sition dipole moments are colinear and the orientational
distributions of the rapid wobble are identical in the ground
and excited states,'I\ 5 \I', and each polarization ratioP
is equal to the corresponding ratioQ, so that either set may
be used in Eqs. 34–37, and'R\ 5 \R', Sa 5 Se [ Sd. The
analysis then yieldŝP2&, ^P4&, and^P2d&.

DISCUSSION

We have described a simple method for analyzing and
interpreting data from fluorescence polarization experi-
ments on cylindrically symmetrical ordered samples. The
results yield estimates of the second-rank and fourth-rank
order parameters,^P2& and^P4&, for c, the static part of the
orientational distribution of the fluorophore, with respect to
the sample directorF. Estimates of the second-rank order
parameterŝP2a& and^P2e& characterizing the extent of rapid
wobble of the absorption and emission transition dipole
moments of the probe aroundc are also obtained. This
method characterizes the static part of the orientational
distribution of the fluorophore, while avoiding detailed
modeling of its rapid restricted wobble. An additional ad-
vantage of this approach over model-based analyses is that
it provides a unique mapping from four linearly independent
observed quantities, e.g., the fluorescence polarization ra-
tios Q\, P\,

xQ', andyQ', to the four extracted parameters,
^P2&, ^P4&, ^P2a&, and^P2e&, using all of the experimentally
accessible information. There is no restriction on the form
of the static orientational distribution ofc, other than that it
is cylindrically symmetrical about the director (fiber axis).

Colinear transition dipole moments

The absorption and emission transition dipole moments (a
ande) can often be considered to be colinear. This holds at
least approximately when these involve the same electronic
levels, e.g., for fluorescence and the strong, longest wave-

length absorption in xanthene-derivative fluorophores like
rhodamine and fluorescein (Chen and Bowman, 1965), the
transition dipole moments being closely aligned with the
long axis of the xanthene conjugated-ring system (Penz-
kofer and Wiedmann, 1980). However, recent experimental
evidence indicates that these transition dipole moments in
eosin, another xanthene derivative, may not be colinear
(Van der Heide et al., 1992b).

It is also usually assumed that the equilibrium ground-
and excited-state molecular orientational distributions are
identical, but because the ground and excited states are
chemically and physically distinct, this assumption may not
be valid (Razi Naqvi, 1981). Nonequivalence of these dis-
tributions provides a possible alternative explanation for
differing experimental values ofSa and Se, with fluoro-
phores nominally having colinear absorption and emission
transition moments (Johansson, 1985; Mulders et al., 1986).
Under the assumptions made in the present analysis, the
effects of differing ground- and excited-state orientational
distributions are not distinguishable from those of fast ro-
tation of noncolinear transition dipolesa and e about the
same axisc.

In the case of colinear transition dipole moments behav-
ing identically in ground and excited states, the method
generateŝP2&, ^P4&, and^P2d&, the shared second-rank order
parameter for the orientational distribution of the restricted
probe wobble, from three linearly independent observables,
e.g., the threeQ polarization ratios.

Symmetry considerations

The present analysis can be applied to cylindrically sym-
metrical systems such as oriented muscle fibers, where the
symmetry axis (sample director) is the axis of the fiber, and
oriented lipid membranes, where the sample director is the
normal to the plane of the membrane. The approach is also
valid for ordered samples with five-fold or greater azi-
muthal symmetry around the sample director. This criterion
is met in individual myosin filaments of vertebrate striated
muscle, which have ninefold azimuthal symmetry. More-
over, in a muscle fiber, the random azimuthal orientations of
the constituent myofibrils ensure effective cylindrical sym-
metry. In lipid membranes, random azimuthal orientation is
ensured by the absence of long-range order in the plane of
the membrane.

Cylindrically symmetrical samples often exhibit addi-
tional symmetry about the plane perpendicular to the direc-
tor. Muscle sarcomeres and whole fibers exhibit twofold
rotational symmetry about this plane. Probes attached asym-
metrically to components of bilayer membranes are also
twofold symmetrical about the plane of the membrane,
whereas mirror symmetry across this plane is typical for
probes dissolved directly in the lipid bilayer. These sym-
metries are compatible with the analysis developed here, but
they are not required, and the analysis is also valid for
systems without twofold or mirror symmetry, such as single
half-sarcomeres or lipid monolayers.
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Time regimes for probe and protein rotations

The difference in size between the protein and the attached
fluorophore typically leads to rotational diffusion on very
different time scales. The correlation time,w, for rotational
diffusion of a spherical protein in solution is given approx-
imately byhV/RT, whereh is the effective viscosity of the
medium,V is the molar volume of the hydrated protein,R is
the gas constant, andT is the absolute temperature (Lakow-
icz, 1983). Thus, in a dilute aqueous buffer at room tem-
perature, a compact globular protein the size of myosin
subfragment 1 (S-1, molecular mass;130 kDa) would be
expected to exhibit a rotational correlation time of;60 ns.
Correlation times for axial rotation can be appreciably
greater if the macromolecule is elongated. For example,
myosin S-1 has a length-to-width ratio of;4:1 and exhibits
average rotational correlation times of;200 ns in aqueous
solutions (Mendelson et al., 1973; Van der Heide et al.,
1992a). The protein may also be in a viscous or anisotropic
medium or integrated into a larger ordered structure, which
would limit and slow its rotation. In these situations, the
observed correlation times can extend into the microsecond
and even millisecond time ranges, as in isolated myofibrils
(Ishiwata et al., 1987; Ludescher and Thomas, 1988) or
muscle fiber bundles (Stein et al., 1990).

On the other hand, free probes with molecular masses of
only a few hundred daltons typically have intrinsic rota-
tional correlation times of less than a few tenths of a
nanosecond in aqueous solution. When covalently bound or
adsorbed at the surface of a macromolecule, such a probe is
thus expected to exhibit similarly rapid but restricted rotational
diffusion around the bonds linking it to the macromolecule.
The protein backbone is not rigid either, and local segmental
flexibility of the polypeptide chain at the binding site, as well
as “breathing motions” of protein subdomains, are also likely
to contribute to the overall probe wobble. Correlation times for
motions of these larger regions will more closely match the
nanosecond lifetime of the excited state (Burghardt and
Thompson, 1985; Van der Heide et al., 1992a).

The distinct time scales of the fast motions of the probe
relative to the protein and the slower motions of the protein
itself provide the rationale for the present analysis. It is
strictly applicable only when all of the local restricted
motions of the probe are much faster than its excited-state
decay and the longer time-scale protein motions are much
slower than this decay. Definitive characterization of the
time course of probe motions requires nanosecond time-
resolved measurements of polarized intensities. If the local
restricted motions of the probe are not sufficiently fast
compared with its excited-state decay, the order parameters
^P2a& and^P2e& (or ^P2d&) will tend to be overestimated, and
the order parameters^P2& and^P4& describing the static part
of the distribution will be underestimated (see Eqs. 15 and
16). Different orientational distributions of the probe in the
ground and excited states would lead to further systematic
errors in the analysis if the motions of the probe are not
sufficiently fast.

Rotational motions on longer time scales, out to the
microsecond and millisecond region, may be measured us-
ing triplet-state techniques (see, e.g., Jovin et al., 1981).
Motions on the nanosecond time scale, like probe wobble
and localized protein segmental reorientation, are effec-
tively instantaneous on the microsecond to millisecond time
scale of the triplet-state lifetime. Assuming as above that
these are cylindrically symmetrical about a fixed axis in the
macromolecule, application of the present analysis to data
from the longer lifetime probes would include these motions
in ^P2a& and ^P2e&.

Comparison with earlier work

The analysis presented here is consistent with an earlier
treatment for oriented membrane systems in which fluoro-
phores exhibited “fast and slow orientational fluctuations”
(Vogel and Ja¨hnig, 1985), although the results presented
there were limited to the case of colineara and e and
expressed in a more complicated form for a specific exper-
imental geometry applicable to membrane systems. Stein et
al. (1990) subsequently adapted the treatment of Vogel and
Jähnig to polarized phosphorescence experiments in ori-
ented muscle fibers. The present analysis is also consistent
with the “compound motion” model derived for membrane
systems in a more general manner (Van der Heide et al.,
1993; Van der Sijs et al., 1993) and with the general treatment
for muscle fibers given by Van der Heide et al. (1994).

The model of fast restricted probe rotation used in many
previous studies of muscle fibers (Stein et al., 1990; Allen et
al., 1996; Berger et al., 1996; Irving et al., 1995; Ling et al.,
1996; Hopkins et al., 1998) assumes that the transition
dipole moments are distributed uniformly within a cone of
half-angled. This model was originally developed for mem-
brane probes (Kinosita et al., 1977). However, the dipole
orientations may not be uniformly distributed within the
accessible range, for instance, in the presence of a central
restoring force. The model invoked here is more general,
because it applies to any cylindrically symmetrical distribu-
tion. The relationship betweend for the wobble-in-a-cone
model and̂ P2d& is given by

^P2d& 5

E
0

d

P2~cosbcd! sin bcd dbcd

E
0

d

sin bcd dbcd

5

1

2E
0

d

~3 cos2bcd 2 1! sin bcd dbcd

E
0

d

sin bcd dbcd

5
1

2
cosd ~1 1 cosd! (42)
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(Kinosita et al., 1977), and correspondingly for^P2a& and
^P2e&.

Example of application to labeled muscle fibers

Hopkins et al. (1998) presented steady-state polarization
ratios obtained from skeletal muscle fibers containing reg-
ulatory light chains labeled with the 5- or 6-isomer of
iodoacetamidotetramethylrhodamine (IATR), and fitted
specific models of the static orientational distribution and
wobble of the probes to these polarization ratios. Table 1 of
the present paper shows the order parameters^P2&, ^P4&, and
^P2d& calculated from these polarization ratios for the
6-IATR isomer in two experimental conditions: active con-
traction and rigor.

Some insight into the orientational distributions of the
probe can be gained directly from the order parameters,
without the use of specific orientation models. For both
active contraction and rigor, the^P2& is negative, indicating
that the probe orientational distribution with respect to the
fiber axis is biased toward angles greater than 54.7°. Both
^P2& and^P4& are closer to zero in active contraction than in
rigor, indicating decreased order of the probes during active
contraction. The value of̂P2d& is similar in active contrac-
tion and rigor, and close to unity, indicating that the extent
of wobble is small and relatively independent of the phys-
iological state.

Interpretation of the order parameters
^P2& and ^P4&

Only two order parameters,^P2& and ^P4&, in the Legendre
polynomial expansion for the probe distribution function,
f(bFc) (Eq. 1), are available from the polarized fluorescence
intensity data considered here. Although, as indicated
above, some insight into the features of the orientational
distribution can be obtained directly from them, these two
order parameters alone cannot give, in general, an accurate
representation of the underlying orientational distribution
(Zannoni, 1988).̂ P2& and ^P4& are still preferable to the
polarization ratios for comparison of orientational distribu-
tions in different experimental conditions, because they

exhibit a linear dependence on the fraction of probes in a
particular orientational distribution. Thus, for example, a
1:1 mixture of two orientational distributions would have
^P2& and^P4& values equal to the mean of the corresponding
values for the two component distributions.

^P2& and ^P4& do fully constrain simple two-parameter
model distributions, such as an equal probability between
two limiting angles (Stein et al., 1990), a Gaussian distri-
bution characterized by its width and peak angle (Allen et
al., 1996; Ling et al., 1996), or a two-population ensemble
in which a fraction of the probes are randomly oriented and
the remainder have a unique axial angle—the helix-plus-
isotropic model (Tregear and Mendelson, 1975; Mendelson
and Morales, 1977). The polarization ratios obtained in
muscle fibers to date can generally be fitted by these dis-
tributions, but the interpretation may then depend on the
specific model chosen.

A more general approach is to use information theory to
derive a “maximum entropy” distribution that is the broad-
est distribution compatible with the data (Kooyman et al.,
1983; Zannoni, 1988; Van der Heide et al., 1998). Finally,
if ^P2& and ^P4& can be measured for several probes with
different known orientations in the protein coordinate
frame, the orientational distribution of the tilt and twist of
the protein itself can be determined with respect to the fiber
axis (Hopkins et al., 1997; Sabido-David et al., 1997).

APPENDIX A: EXPANSION OF ORDER
PARAMETERS AND CORRELATION FUNCTIONS
USING VECTOR ROTATION GEOMETRY

In this appendix, Eqs. 5 and 6 in the Theory section of the text are derived
from Eq. 4 in terms of simple trigonometric functions under the assump-
tions listed in the Introduction. First, average order parameters,^P2a& and
^P2e&, for the rapid restricted reorientation of the transition dipole moments
a ande about the fixed axisc are factored out of those for the orientations
of a ande with respect toE andE9, which appear in Eq. 4 both separately,
^P2(cos bEa)& and ^P2(cos bE9e)&, and in the form of their correlation
function, ^P2(cos bEa)P2(cos bE9e)&. This factorization establishes Eq. 5.
Next, the parameters describing the orientation of the electric vectors of
exciting light,E, and observed emission,E9, with respect to the fiber axis,
F, are separated from the order parameter describing the orientation ofc
with respect toF, yielding the first two terms on the right-hand side of Eq.
6. Finally, the correlation function that appears as the average of the
product of the second-rank Legendre polynomials describing the orienta-
tion of c with respect toE andE9 in Eq. 5, ^P2(cosbEc)P2(cosbE9c)&, is
likewise expanded to give the last three terms in Eq. 6.

The angles between the absorption transition dipole momenta, the axis
c, which is fixed in the frame of an immobile protein (assumption 3 in the
Introduction), and the electric vector of the exciting lightE (Fig. 2) are
related by the completion theorem:

cosbEa 5 cosbEc cosbca 1 sin bEc sin bca coshEa. (A1)

Cylindrical symmetry of the distribution ofa aboutc (assumption 2 in
the Introduction) corresponds to the condition that all azimuthshEa of a
aboutc (see Fig. 2) are equally probable. Squaring Eq. A1, averaging over
hEa, and expressing the result in the form of second-rank Legendre poly-

TABLE 1 Example polarization ratios and derived order
parameters

Rigor n Active n

Q\ 0.1446 0.014 4 0.2866 0.028 16
xQ' 0.4866 0.012 4 0.4256 0.019 16
yQ' 0.0606 0.017 5 0.0036 0.006 5
^P2d& 0.9246 0.027 0.9056 0.025
^P2& 20.1366 0.008 20.0596 0.013
^P4& 20.0846 0.016 20.0696 0.015

Steady-state polarization ratios from Hopkins et al. (1998) and derived
values of the order parameters^P2d&, ^P2&, and^P4& with propagated error
estimates given as standard deviations. The values given above of the
standard deviations for theQ ratios were erroneously presented as standard
errors of the mean (SEMs) in table 2 of Hopkins et al. (1998).
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nomials leads to

^P2~cosbEa!& 5
3

2
^cos2bEa& 2

1

2

5
9

4
^cos2bEc&^cos2bca& 2

3

4
^cos2bEc&

2
3

4
^cos2bca& 1

1

4

5 ^P2~cosbca!&^P2~cosbEc!&

5 ^P2a&^P2~cosbEc!&, (A2)

where^ & explicitly signifies ensemble averaging over the azimuthal dis-
tribution of a with respect toc, and of c with respect toE, but also
implicitly includes averaging over the distributions ofbca and of bEc,
respectively. This separation of the averages is justified by the indepen-
dence of the orientational distribution ofa aboutc from that of c in the
system (assumption 2 in the Introduction). Application of the correspond-
ing completion theorem relationship fore, c, andE9,

cosuE9e 5 cosuE9c cosbce 1 sin uE9c sin bce coshE9e,
(A3)

with averaging over the azimuthhE9e, leads to the analogous result for the
emission transition dipole moment:

^P2~cosbE9e!& 5 ^P2~cosbce!&^P2~cosbE9c!&

5 ^P2e&^P2~cosbE9c!&.
(A4)

The correlation term̂P2(cosbEa)P2(cosbE9e)& in Eq. 4 is now consid-
ered. When the motion ofe aboutc is very rapid (assumption 1 in the
Introduction), its orientation within the restricted distribution aboutc
becomes completely randomized before appreciable emission has occurred.
Thus, within their respective distributions aboutc, the orientation ofe at
the moment of emission is independent of the orientation ofa at the
moment of excitation. Under this condition,^P2a& and ^P2e& are mutually

independent and can be factored out of the correlation term:

^P2~cosbEa!P2~cosbE9e!&

5 ^P2a&^P2e&^P2~cosbEc!P2~cosbE9c!&.

(A5)

Substitution of Eqs. A2, A4, and A5 into Eq. 4 in the Theory section
leads to Eq. 5. Note that no restriction has yet been placed on the symmetry
of the distributions ofbEc andbE9c.

If c is cylindrically symmetrical about the fiber axisF (assumption 4 in
the Introduction), with azimuthhEc with respect toE andhE9c with respect
to E9, the expansions of the terms^P2(cosbEc)& and^P2(cosbE9c)& in Eq.
5 follow from the completion theorem relationships:

cosbEc 5 cosbEF cosbFc 1 sin bEF sin bFc coshEc (A6)

cosbE9c 5 cosbE9F cosbFc 1 sin bE9F sin bFc coshE9c

(A7)

in a manner analogous to those of^P2(cosbEa)& and^P2(cosbE9e)& above,
leading to

^P2~cosbEc!& 5 P2~cosbEF!^P2~cosbFc)& (A8)

^P2~cosbE9c!& 5 P2~cosbE9F!^P2~cosbFc!&, (A9)

where again̂ & explicitly signifies averaging over the azimuths and in-
cludes implicit averaging over the distribution ofbFc. The terms inbEF and
bE9F factor out of these averages, because they are constants of the
geometrical set-up. Substitution of Eqs. A8 and A9 into Eq. 5 in the text
gives rise to the terms in Eq. 6 containingSa and Se (defined in Eqs. 7
and 8).

It remains to expand the correlation function^P2(cosbEc)P2(cosbE9c)&
appearing in Eq. 5 to separate the geometrical factors relatingE andE9 to
F from those relatingc to F. Under the condition of cylindrical symmetry
of c aboutF (assumption 4 in the Introduction), this involves averaging
over the azimuthshEc andhE9c, which are related byhE9c 5 hEc 1 jEE9,
wherejEE9 is a constant of the geometry of excitation and observation (see
Fig. 1). The completion theorem relationship forbE9c (Eq. A7) in terms of
hE9c 5 hEc 1 jEE9 becomes

cosbE9c 5 cosuE9F cosbFc 1 sinuE9F sinbFc cos(hEc 1 jEE9)

5 cosuE9F cosbFc 1 sinuE9F sinbFc

(coshEc cosjEE9 2 sinhEc sinjEE9). (A10)

Expansion of̂ P2(cosbEc)P2(cosbE9c)& leads to

^P2~cosbEc!P2~cosbE9c!& 5
9

4
^cos2bEc cos2bE9c&

2
3

4
^cos2bEc& 2

3

4
^cos2bE9c& 1

1

4
,

(A11)

in which the averages of cos2bEc and cos2bE9c over hEc andhE9c, respec-
tively, are already implicit in Eqs. A8 and A9, the latter average also being
obtainable by squaring Eq. A10 and averaging overhEc.

Substituting cosbEc and cos bE9c from Eqs. A6 and A10 into
^cos2bEc cos2bE9c& in Eq. A11, multiplying out the product, and averaging
overhEc leads to terms whosejEE9 dependence can be expressed as cosines
of integer multiples ofjEE9 (noting that cos 2jEE9 5 2cos2jEE9 2 1) and
jEE9-independent terms. The latter, together with the remainder of the terms
on the right-hand side of Eq. A11, can then be reexpressed via cosine
powers and factored intobEF-, bE9F-, and bFc-dependent terms, leading

FIGURE 2 Geometrical relationship between the absorption transition
dipole momenta of a fluorophore, the electric vector of exciting lightE,
and the axisc fixed in the labeled component.a is assumed to take up
random azimuthshEa with respect toE aboutc, and to have a distribution
of polar anglesbca about c, represented diagrammatically here by the
bell-shaped outline centered onc.
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finally to

^P2~cosbEc!P2~cosbE9c!& 5 S32 cos2bEF 2
1

2DS32 cos2bE9F 2
1

2D
z KS32 cos2bFc 2

1

2D
2L 1

9

2
~cosuEF sin uEF!

z ~cosuE9F sin uE9F! cosjEE9 ^cos2bFc sin2bFc&

1
9

32
sin2uEF sin2uE9F cos 2jEE9 ^sin4bFc&.

(A12)

Substitution of Eq. A12 into Eq. A5 and of the result into Eq. 5 in the
Theory section completes the derivation of Eq. 6, accounting for its last
three terms containingG0, G1, andG2 as defined in Eqs. 9–11.

APPENDIX B: WIGNER ROTATION
MATRIX DERIVATIONS

In this Appendix we derive Eqs. 5 and 6 in the Theory section, using the
Wigner rotation matrix formalism. In Eq. 5, rapid motions of the probes
relative to the protein are factored out of the terms describing the protein
orientation distribution. In Eq. 6, the factors describing the experimental
geometry are separated from the order parameters and correlation functions
Sa, Se, G0, G1, and G2 (Eqs. 7–11 in the text), which contain all of the
information available from steady-state polarized fluorescence intensities
about the orientational distribution and rotational motions of the probe
molecules in the sample (Kooyman et al., 1981; Van Gurp et al., 1988b).

In these derivations, we use the elementsDm,n
L (a, b, g) of the Wigner

rotation matrix DL. These elements form a set of functions that are
conveniently used to rotate a frame through the three Euler anglesa, b, and
g. An orientational distribution function can be expressed as a series
expansion of the Wigner matrix elements because they form a complete set
of orthogonal functions. These are defined here, according to the conven-
tion of Rose (1957), as

Dm,n
L ~a, b, g! 5 e2imadm,n

L ~b!e2ing (B1)

with the small Wigner functionsdm,n
L (b) given by

dm,n
L ~b!

5 O
p50

` S~21! p
Î~L 1 m!!~L 2 m!!~L 1 n!!~L 2 n!!

~L 2 m2 p!!~L 1 n 2 p!!~m2 n 1 p!!p!

z FcosSb

2DG
2L2m1n22pF2sinSb

2DG
m2n12pD. (B2)

In the above definition, the factorial of a negative number is taken to be
infinite, so the summation will have a limited number of nonzero terms (at
mostL 1 1 such terms forL . 0). From Eqs. B1 and B2, it can be shown
that

D0,0
L ~b! ; d0,0

L ~b! 5 PL~cosb!, (B3)

which form the set of Legendre polynomials (see the definitions after Eq.
1 in the text). The other small Wigner functions used in this Appendix are

d1,0
2 ~b! 5 2d0,1

2 ~b! 5 d0,21
2 ~b! 5 2d21,0

2 ~b!

5 2Î3

2
sin(b)cos(b)

(B4)

d2,0
2 ~b! 5 d0,2

2 ~b! 5 d0,22
2 ~b! 5 d22,0

2 ~b! 5
1

2 Î3

2
sin2~b!.

(B5)

For a general configuration of linearly polarized excitation and fluores-
cence detection as defined in the text and in Fig. 1, the observed intensity
is given by

EIE9 5
I

9
@1 1 2^P2~cosbEa!& 1 2^P2~cosbE9e!&

1 4^P2~cosbEa!P2~cosbE9e!&#,
(B6)

which is Eq. 4 in the text. First we modify Eq. B6 to separate terms that
describe motions of the probe relative to an axisc, fixed in the protein,
from those describing the orientation ofc relative to the electric vectors of
excitation and emission,E andE9, respectively (Fig. 1). To this end, the
rotations fromE andE9 to the transition dipole momentsa ande, respec-
tively, are resolved into two consecutive rotations: first from the direction
of the electric vector to the frame connected withc (aEc, bEc, gEc) for the
excitation and similarly (aE9c, bE9c, gE9c) for the emission, and then of the
c-frame to that connected with the absorption dipole moment (aca, bca, gca)
or with the emission dipole moment (ace, bce, gce), respectively. The
rotation (aEc, bEc, gEc), for instance, thus specifies the orientation ofc with
respect toE. The overall rotations are expressed in terms of these consec-
utive rotations by applying the closure relation for elements of the Wigner
rotation matrices:

Dm,n
L ~aEa, bEa, gEa!

5 O
j52L

L

Dm,j
L ~aEc, bEc, gEc!Dj,n

L ~aca, bca, gca!

(B7)

Dm,n
L ~aE9e, bE9e, gE9e!

5 O
k52L

L

Dm,k
L ~aE9c, bE9c, gE9c!Dk,n

L ~ace, bce, gce!

(B8)

(Rose, 1957; Zannoni et al., 1983; Van der Heide et al., 1994). The
ensemble averages of the second-rank Legendre polynomials and their
product in Eq. B6 then become

^P2~cosbEa!& 5 ^D0,0
2 ~bEa!&

5 O
j522

2

^D0, j
2 ~bEc, gEc!Dj,0

2 ~aca, bca!&

(B9)

^P2~cosbE9e!& 5 ^D0,0
2 ~bE9e!&

5 O
k522

2

^D0,k
2 ~bE9c, gE9c!Dk,0

2 ~ace, bce!&

(B10)

^P2~cosbEa!P2~cosbE9e!& 5 ^D0,0
2 ~bEa!D0,0

2 ~bE9e!&

5 O
j522

2 O
k522

2

^D0,j
2 ~bEc, gEc!Dj,0

2 ~aca, bca!

z D0, k
2 ~bE9c, gE9c!Dk,0

2 ~ace, bce!&.

(B11)
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Assuming that the orientational distributions ofa ande with respect to
c are independent of the orientation of the protein (second part of assump-
tion 2 in the Introduction), the ensemble averages on the right-hand sides
of Eqs. B9–B11 are each equal to the product of two separate ensemble
averages (Szabo, 1980):

^P2~cosbEa!& 5 O
j522

2

^D0,j
2 ~bEc, gEc!&^Dj,0

2 ~aca, bca!& (B12)

^P2~cosbE9e!& 5 O
k522

2

^D0,k
2 ~bE9c, gE9c!&^Dk,0

2 ~ace, bce!& (B13)

^P2~cosbEa!P2~cosbE9e!&

5 O
j522

2 O
k522

2

^D0,j
2 ~bEc, gEc!D0,k

2 ~bE9c, gE9c!&

z ^Dj,0
2 ~aca(0), bca(0)!Dk,0

2 ~ace(t), bce(t)!&.

(B14)

The last ensemble average in Eq. B14 represents the correlation be-
tween the orientation ofa at the moment of excitation (t 5 0) ande at the
moment of emission,t. Therefore this ensemble average is sensitive to the
motion of e before emission. At the instant of excitation,a and e are
correlated (even if they are not colinear). When rotational relaxation is
complete, then all “memory” of the orientation (within its restricted range)
at the moment of excitation is lost. Thus the orientation ofe, within its
restricted range, att 5 `, is independent of the orientation ofa, within its
restricted range, at excitation. This ensemble average then simplifies to

O
j522

2 O
k522

2

^Dj,0
2 ~aca(0), bca(0)!Dk,0

2 ~ace(t5`), bce(t5`)!&

5 O
j522

2

^Dj,0
2 ~aca, bca!& O

k522

2

^Dk,0
2 ~ace, bce!&

(B15)

(Szabo, 1980; Zannoni et al., 1983).
If the rotation of the probe, and therefore the loss of correlation between

a at the moment of excitation ande at the moment of emission, is very fast
compared to the decay of the excited state (assumption 1) in the Introduc-
tion), then the time-dependent portion of Eq. B14 is negligible, and it is
justified to use Eq. B15 as an approximation of the last ensemble average
in Eq. B14.

So far we have not imposed any restrictions on the symmetry of the
distribution ofa ande relative toc. Assuming now that the distributions of
a ande are cylindrically symmetrical aboutc (assumption 2 in the Intro-
duction), the averages of exp(2ijaca) and exp(2ikace) implied in Eqs.
B12–B15 are nonzero only forj andk equal to zero. Then

^P2~cosbEa!& 5 ^D0,0
2 ~bca!&^D0,0

2 ~bEc!& (B16)

^P2~cosbE9e!& 5 ^D0,0
2 ~bce!&^D0,0

2 ~bE9c!& (B17)

^P2~cosbEa!P2~cosbE9e!&

5 ^D0,0
2 ~bca!&^D0,0

2 ~bce!&^D0,0
2 ~bEc!D0,0

2 ~bE9c!&,
(B18)

in which thet 5 ` simplification of Eq. B15 is included. Replacing these
Wigner functions with their equivalent Legendre polynomial forms, using
the definitions ^P2a& 5 ^P2(cos bca)& and ^P2e& 5 ^P2(cos bce)&, and

substituting into Eq. B6 leads to

EIE9 5
I

9
@1 1 2^P2a&^P2~cosbEc!& 1 2^P2e&^P2~cosbE9c!&

1 4^P2a&^P2e&^P2~cosbEc!P2~cosbE9c!&#, (B19)

which is Eq. 5 in the text.
Equation B19 separates the effects of rapid motion of the probe relative

to c from the parameters describing the orientational distribution ofc
relative toE andE9. Next the latter must be expanded to separate the parts
describing the experimental geometry from those describing the orientation
of c relative to the fiber axisF. To this end, we express the rotation from
each of the electric vectorsE andE9 to c into two consecutive rotations,
first from E or E9 to F, and then fromF to c. This separation is again
expressed in terms of the Wigner rotation matrices by applying the closure
relation (cf. Eqs. B7 and B8):

^P2~cosbEc!& 5 ^D0,0
2 ~bEc!&

5 O
j522

2

^D0,j
2 ~uEF, fEF!Dj,0

2 ~aFc, bFc!&

(B20)

^P2~cosbE9c!& 5 ^D0,0
2 ~bE9c!&

5 O
k522

2

^D0,k
2 ~uE9F, fE9F!Dk,0

2 ~aFc, bFc!&

(B21)

^P2~cosbEc!P2~cosbE9c!&

(B22)
5 ^D0,0

2 ~bEc!D0,0
2 ~bE9c!&

5 O
j522

2 O
k522

2

^D0, j
2 ~uEF, fEF!Dj,0

2 ~aFc, bFc!

z D0,k
2 ~uE9F, fE9F!Dk,0

2 ~aFc, bFc!&,

where (uEF, fEF) and (uE9F, fE9F) define the orientations ofE andE9 in the
F frame,fEF andfE9F being the azimuths formed by the projections ofE
andE9 onto thexyplane perpendicular toF (see Fig. 1). The dihedral angle
between these projections isjEE9 5 fE9F 2 fEF. Because the orientations
of E andE9 relative toF are fixed, theEF- andE9F-dependent parameters
can be removed from the ensemble averages, giving

^P2~cosbEc!& 5 O
j522

2

D0, j
2 ~uEF, fEF!^Dj,0

2 ~aFc, bFc!& (B23)

^P2~cosbE9c!& 5 O
k522

2

D0,k
2 ~uE9F, fE9F!^Dk,0

2 ~aFc, bFc!& (B24)

^P2~cosbEc!P2~cosbE9c!&

5 O
j522

2 O
k522

2

D0,j
2 ~uEF, fEF!D0,k

2 ~uE9F, fE9F!

z ^Dj,0
2 ~aFc, bFc!Dk,0

2 ~aFc, bFc!&.

(B25)
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If the orientational distribution of the protein in the fiber is cylindrically
symmetrical aboutF (assumption 4 in the Introduction), only the terms
with j andk zero, respectively in Eqs. B22 and B23, survive, leading to

^P2~cosbEc!& 5 D0,0
2 ~uEF!^D0,0

2 ~bFc!& (B26)

^P2~cosbE9c!& 5 D0,0
2 ~uE9F!^D0,0

2 ~bFc!&. (B27)

In the average of the product exp(2i(j 1 k)aFc) implied in Eq. B25,
only those terms for whichj 5 2k survive. Thus,

^P2~cosbEc!P2~cosbE9c!&

5 O
j522

2

D0,j
2 ~uEF, fEF!D0,2j

2 ~uE9F, fE9F!

z ^Dj,0
2 ~aFc, bFc!D2j,0

2 ~aFc, bFc!&.

(B28)

We can now use the identities given in Eqs. B1–B5 to rewrite Eqs.
B26–B28 as

^P2~cosbEc!& 5 S32 cos2uEF 2
1

2DKS32 cos2bFc 2
1

2DL (B29)

^P2~cosbE9c!& 5 S32 cos2uE9F 2
1

2DKS32 cos2bFc 2
1

2DL
(B30)

^P2~cosbEc!P2~cosbE9c!&

(B31)

5 S32 cos2uEF 2
1

2DS32 cos2uE9F 2
1

2D
z KS32 cos2bFc 2

1

2D
2L 1

9

2
~cosuEF sin uEF!

z ~cosuE9F sin uE9F! cos~fE9F 2 fEF!^cos2bFc sin2bFc&

1
9

32
sin2uEFsin2uE9F cos 2(fE9F 2 fEF)^sin4bFc&.

Insertion of Eqs. B29–B31 into Eq. B18, together with the identity
jEE9 5 fE9F 2 fEF indicated above, yields Eq. 6 in the main text with the
definitions in Eqs. 7–11.
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