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Extended polymers are relevant in a variety of situations ranging from the classic coil-stretch prob
to recent single molecule polymer experiments with DNA. We present theoretical calculations
computer simulations of the dynamic properties of extended single polymers. We discuss the ef
of tension and hydrodynamics ont, the fundamental relaxation time of the polymer, and find tha
tension dominates the behavior oft. Furthermore, the symmetry breaking caused by extending th
polymer “splits” t, leading to distinct longitudinal and transverse relaxation times. Our results a
in agreement with recent experiments, and we discuss implications for the coil-stretch transi
[S0031-9007(99)09004-3]
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Extended polymers play an important role in man
rheological problems: Under shear or strain force
polymers will extend. A classic example is the coil
stretch transition, in which polymers in a strain flow wil
undergo a phase transition from a coiled state to a high
stretched state when the strain rate exceeds a criti
value [1]. The physics of this transition depend cruciall
on the relationship between hydrodynamic and entrop
forces as a polymer is extended. Recent experime
with single molecules of DNA [2,3] have revealed its
importance in a context outside biology—as a mod
system for studying polymer dynamics. When DNA i
partially extended, one can use optical microscopy
image the internal modes of the polymer and study th
normal mode structure. However, to analyze the resu
completely requires a detailed theory of the effects
extension.

Here we calculate the fundamental relaxation tim
of a polymer as a function of its extension. Th
effects of nonlinear force curves and changing hydrod
namic interactions are incorporated in the theory. W
have performed computer simulations of an extend
polymer, the results of which are in agreement wit
the theory. The theoretical predictions are compar
with the single molecule DNA data of Ref. [2], and
their implications for the coil-stretch transition are
discussed.

Earlier theoretical studies of the dynamics of extende
polymers [4,5] have made use of the blob model [6
However, the blob model gives an incorrect predictio
of polymer forces, which limits its applicability. For
example, experiments with the synthetic polymer dextra
have demonstrated that the force is best described b
modified freely jointed chain model [7]. We show below
that a proper understanding of the forces of an extend
polymer is crucial in predicting the dynamics. In the cas
of DNA, its stiffness precludes the application of blob
since the assumptionfbykBT ø 1 is not generally met,
where f is the force extending the polymer,b is the
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Kuhn length,kB is the Boltzmann constant, andT is the
temperature. Other authors have considered the subtle
of extending polyelectrolyte polymers with flows an
electric fields, but their primary results do not conce
the dynamics of the polymer [8,9].

Polymer dynamics are usually considered within th
context of the Zimm and Rouse models [10]. The Rou
model describes the polymer as a series of beads c
nected with Hookean springs and can be solved
decomposing the polymer’s motion into a set of line
normal modes. In many practical situations, the behav
of the polymer is dominated by the fundamental mod
The relaxation time of the fundamental mode is give
by tR ­ zRyk, wherezR is the friction coefficient of the
polymer andk is the spring constant. However, an ac
curate description of the motion of an isolated polym
in a solvent accurately requires inclusion of the effec
of hydrodynamic interactions. Unfortunately, this cou
ples the equations of motion in a nonlinear fashion a
cannot be solved exactly. The Zimm model lineariz
the equations of motion by “preaveraging” the hydro
dynamic coupling tensor, that is, averaging it over th
equilibrium distribution of polymer configurations. This
restores the normal mode structure and gives the fun
mental modetZ ­ zZyk; zZ ­ 1yH11 is the reciprocal
first eigenvalue of the preaveraged hydrodynamic te
sor H. To understand howt changes with extension,
both z and k must be analyzed. SincezR does not
change as a function of extension, the Rouse model
lows one to separate the effects of tension from those
hydrodynamics.

Although polymers act as linear springs for sma
extensions, their finite length causes the force to beco
nonlinear as the polymer is extended farther. If th
polymer is at equilibrium, the fluctuations of the en
points will be small and the force can be expanded
a Taylor series. Thus the Rouse equations of motion
not change as a function of extension; only the value
the spring constant varies.
© 1999 The American Physical Society
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The anisotropy caused by extending a polymer intr
duces two distinct relaxation times, one each for th
transverse and longitudinal dimensions. Consider t
fluctuations of the end points of a polymer under con
stant traction. Their motion will be a sum of all the
relaxation modes but will be dominated by the funda
mental. In the longitudinal direction, for an average ex
tensionE, the forceFsEd is parallel to this direction, and
for small changes in the extensiondx, FsE 1 dxd ø
FsEd 1 sdFydxdjEdx. Thus the force required for a
longitudinal displacementdx from equilibrium is lin-
ear with effective spring constantkk ­ sdFydxdjE. In
the transverse direction one can calculate the rest
ing force if the polymer is displaced at its end poin
by a small amountdy. By simple vector algebra, the
force fsdyd to displace the end pointdy is fsdyd ­
sdyy

p
E2 1 dy2dFs

p
E2 1 dy2d, and by expanding to

first order indy, fsdyd ­ fFsEdyEgdy. Thus the spring
constant in the transverse direction isk' ­ FsEdyE. We
note that the transverse and longitudinal spring consta
are identical when the force is linear as is the case f
small extensions. This is required by symmetry: whe
the polymer is coiled, it is isotropic and there should b
a single relaxation time. When the polymer is extende
the symmetry is broken, and the nonlinear forces crea
distinct transverse and longitudinal relaxation times:

tk ­
z

kk

­
z

sdFydxdjE
t' ­

z

k'

­ z
E

FsEd
.

(1)

Force versus extension curves have been calcula
and measured experimentally on single polymers. For
simple freely jointed chainFsxd ­ skBTybdL 21sxyLd,
where the Langevin functionL sad ­ cothsad 2 s1yad,
kB is the Boltzmann constant,T is the temperature,
b is the Kuhn length of the polymer, andL is the
length of the polymer [11]. For a wormlike chain such
as DNA, the force is typically approximated by the
function Fsxd ­ s2kBTybd f 1

4 s1 2 xyLd22 2
1
4 1 xyLg

[12]. These formulas forFsxd can be used with Eq. (1)
to calculate the relaxation times as a function of exte
sion for the Rouse model (Figs. 1 and 3).

We now turn to the Zimm model. In order to in-
corporate the effects of hydrodynamic interactions, on
must calculate the preaveraged hydrodynamic tensor
a function of extension. The exact form of the hydro
dynamic tensor isHsrd ­ s1y8phrd sI 1 r̂r̂d, wherer
is the vector connecting the interacting points. For
coiled polymer, the preaveraging has been calculate
Hsn 2 md ø s1y

p
6p3jn 2 mj0.5hbdI, wheren and m

index beads in the polymer [10]. For moderate exte
sions, we expect this description to remain valid o
short length scales, i.e., whenjn 2 mj is small. For
long length scales and high extensions, the beads al
along the longitudinal axis, andjRn 2 Rmj ø jn 2 mj,
so that if the polymer is extended along thex axis,
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Hsn 2 md ø s1yjn 2 mjhbd sI 1 x̂x̂d. For a fixed ex-
tension there is a crossover length scalebD between the
two regimes which is determined by the spatial distri
bution of the polymer in the transverse direction and i
analogous to the Pincus blob size. ThusH can be ap-
proximated as

Hsn 2 md ø

8>>><>>>:
1

p
6p3 jn 2 mj0.5hb

I jn2mj , D2,

d

jn 2 mj1.0hb
sI 1 x̂x̂d jn2mj . D2.

(2)
D depends on extension and is a dimensionless meas
of the root mean square distribution of the polymer in
the transverse direction, whiled is chosen to continuously
join the curves. The longitudinal and transverse axe
are distinguished by a prefactor of order unity. A crud
estimate ofD is obtained by treating the polymer as
an N step random walk which can be decomposed int
transverse and longitudinal directions, whereN ­ Lyb.
ApproximatelyN´ steps will be longitudinal, wheré ­
EyL is the fractional extension of the polymer. Thus the
transverse random walk hasNs1 2 ´d steps and radius
of gyrationD ø

p
Ns1 2 ´d. ThenbD is the root mean

square displacement of the polymer in the transver
direction, bD2 is approximately the length of polymer
needed to achieve this displacement, and as require
D2sLd ­ 0 andD2s0d ­ N .

H11sEd can be calculated by using the sine basis as a
approximation of the normal mode decomposition of a

FIG. 1. Relaxation times for a Rouse polymer as a function o
end-to-end extension. Theoretical predictions for the transver
(solid line) and longitudinal (dotted line) relaxation times of a
freely jointed chain are compared to the results of the simu
lations (closed and open circles, respectively). Hydrodynam
interactions are not included in this case. The data poin
are derived from single exponential fits to the autocorrelatio
function of the first sine mode (see text for details). Eac
autocorrelation function was calculated with 3 sec of data. Th
relative extension is a dimensionless variable computed b
normalizing the end-to-end extension by the total length of th
polymer.
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extended polymer. It has been shown experimentally th
the error introduced by this approximation is small, on th
order of 5% [2]. Then

1
zZ

­ H11

­
1

N2

Z N

0

Z N

0
Hsn 2 md sin

µ
mp

N

∂
sin

µ
np

N

∂
dm dn .

(3)

Numerical evaluation of Eq. (3) for various values ofD

shows thatzZ increases by only 20% as the polyme
is extended from a coil to 90% extension. Thus, th
hydrodynamic interactions have a much smaller influen
on the fundamental relaxation time than the tensio
which can changet by more than an order of magnitude
The net effect is to lead to a reduction of the relaxatio
time with extension.

We performed computer simulations of a freely jointe
chain in order to test these predictions. The simulatio
used chains of 21 beads of radius 10 nm connected
20 massless rods; each bead moved freely within t
constraint that the rod was rigid and of constant leng
50 nm. The beads were subject to randomly fluctuatin
Brownian forces at temperature 300 K, and the constrain
were enforced with Langrange multipliers. For each tim
step of the simulation, the beads moved simultaneou
while constraint forces were iteratively computed [13
The end beads were held fixed at an extensionE. The
polymer was started in an arbitrary configuration an
allowed to thermalize for more than10t. In order to
calculate the transverse relaxation time at each extensi
the sine transform was calculated. The autocorrelation
the lowest sine mode was fit with an exponential, yieldin
t. This closely follows the experimental data analys
from Ref. [2] and gives a direct measurement oft. For
the longitudinal relaxation times, the same procedure w
followed.

The simulation does not include hydrodynamic intera
tions, and thus givestR as a function of extension for a
freely jointed chain. Figure 1 shows the simulation resul
compared to the theory, with no adjusted parameters. T
relaxation times clearly decrease as a function of exte
sion, and the extension symmetry breaking does introdu
a difference between the longitudinal and transverse rela
ation times. The agreement between the simulation a
analytic model is good, and we conclude that for a Rou
polymer, the dominant cause of the decreasing relaxat
time with extension is simply the nonlinear spring force.

The data from the simulations was also used to compu
the preaveraged hydrodynamic tensorHsn 2 md. Com-
puting the largest eigenvalue ofHsn 2 md effectively
gives a measurement ofzZ , from which tZ can be com-
puted. The values ofzZ derived from the simulation vary
only slightly over a large range of extensions, consiste
with Eq. (2). Figure 22 shows a comparison between t
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analytic model and the preaveraged values computed fro
the simulation. A similar result is expected for the worm
like chain, since the gross spatial polymer distribution
similar. The simulations thus agree with the calculation
thatt will decrease with extension.

These predictions can also be tested with experimen
data from DNA, which has been shown to behave lik
a wormlike chain. Figure 3 shows the relaxation time
measured in Ref. [2] compared to the theoreticaltZ ,
where the force constantk' for the wormlike chain curve
and the preaveragedzZ from Eqs. (2) and (3) were used.
The agreement is good, except at the highest extension.
fact, tension dominatest to the extent that the agreemen
is equally good if the hydrodynamics corrections ar
neglected.

These results have important implications for the coi
stretch transition. The relaxation time of the polyme
plays an important role in the coil-stretch transition sinc
the critical strain rate is of the order of the reciproca
of the relaxation time. It has been suggested that h
drodynamic effects will change dramatically for a highly
stretched chain, leading to Rouse-like dynamic behavi
[1]. Furthermore, it was suggested that this would be th
dominant influence for the relaxation time, leading to in
creased relaxation times at higher extensions. Such
effect would cause hysteresis in the coil-stretch trans
tion—the critical strain rate to extend a polymer would b
greater than the rate to relax the polymer [1,4]. It is tru
that for a fixed extension if hydrodynamic interactions ar

FIG. 2. Relaxation time as a function of extension, includin
preaveraged hydrodynamics. The theoretical model (solid lin
transverse relaxation time; dotted line: longitudinal relaxatio
time) is compared to simulation results (closed circles: longitu
dinal relaxation time; open circles: transverse relaxation times
The simulation results were used to calculate the preaverag
hydrodynamics tensor as a function of extension. This tens
was used with the Rouse matrix in order to numerically com
pute the slowest relaxation time. Incorporating hydrodynam
ics leads to generally shorter relaxation times. Inset: drawin
showing the role ofD in Eq. (2). Hydrodynamics will domi-
nate on length scales less thanbD and will be less pronounced
on longer length scales.
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FIG. 3. Comparison of theory with experiment. Theoretica
predictions for the transverse relaxation time of a wormlik
chain (solid line) are compared to recent experimental resu
with single molecules of DNA from Ref. [2] (closed circles).
Also shown is the predicted longitudinal relaxation time (dotte
line). The theoretical calculation uses the relaxation times fro
Eq. (1), wherez is replaced with the Zimm friction coefficient
zZ calcluated from Eqs. (2) and (3).

switched “off,” the relaxation time increases. Howeve
as the extension is varied the relaxation time is affect
more by the changing tension than by the changin
hydrodynamics. Thus the notion that extended polyme
have longer relaxation times is inconsistent with ou
l
e
lts

d
m

r,
ed
g
rs
r

calculations and simulations, and with experiments wi
single molecules of DNA. We conclude that hysteres
most likely exists only in the highly idealized case of a
infinite length polymer.
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