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Dynamic Properties of an Extended Polymer in Solution
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Extended polymers are relevant in a variety of situations ranging from the classic coil-stretch problem
to recent single molecule polymer experiments with DNA. We present theoretical calculations and
computer simulations of the dynamic properties of extended single polymers. We discuss the effects
of tension and hydrodynamics on the fundamental relaxation time of the polymer, and find that
tension dominates the behavior of Furthermore, the symmetry breaking caused by extending the
polymer “splits” 7, leading to distinct longitudinal and transverse relaxation times. Our results are
in agreement with recent experiments, and we discuss implications for the coil-stretch transition.
[S0031-9007(99)09004-3]

PACS numbers: 83.10.Nn, 87.15.—-v

Extended polymers play an important role in manyKuhn length,kp is the Boltzmann constant, arfdis the
rheological problems: Under shear or strain forcestemperature. Other authors have considered the subtleties
polymers will extend. A classic example is the coil- of extending polyelectrolyte polymers with flows and
stretch transition, in which polymers in a strain flow will electric fields, but their primary results do not concern
undergo a phase transition from a coiled state to a highlyhe dynamics of the polymer [8,9].
stretched state when the strain rate exceeds a critical Polymer dynamics are usually considered within the
value [1]. The physics of this transition depend cruciallycontext of the Zimm and Rouse models [10]. The Rouse
on the relationship between hydrodynamic and entropienodel describes the polymer as a series of beads con-
forces as a polymer is extended. Recent experimentsected with Hookean springs and can be solved by
with single molecules of DNA [2,3] have revealed its decomposing the polymer's motion into a set of linear
importance in a context outside biology—as a modelnormal modes. In many practical situations, the behavior
system for studying polymer dynamics. When DNA is of the polymer is dominated by the fundamental mode.
partially extended, one can use optical microscopy tdrhe relaxation time of the fundamental mode is given
image the internal modes of the polymer and study thdy 7 = {&r/k, wherely is the friction coefficient of the
normal mode structure. However, to analyze the resultpolymer andk is the spring constant. However, an ac-
completely requires a detailed theory of the effects ofcurate description of the motion of an isolated polymer
extension. in a solvent accurately requires inclusion of the effects

Here we calculate the fundamental relaxation timeof hydrodynamic interactions. Unfortunately, this cou-
of a polymer as a function of its extension. Theples the equations of motion in a nonlinear fashion and
effects of nonlinear force curves and changing hydrodycannot be solved exactly. The Zimm model linearizes
namic interactions are incorporated in the theory. Wehe equations of motion by “preaveraging” the hydro-
have performed computer simulations of an extendedlynamic coupling tensor, that is, averaging it over the
polymer, the results of which are in agreement withequilibrium distribution of polymer configurations. This
the theory. The theoretical predictions are comparedestores the normal mode structure and gives the funda-
with the single molecule DNA data of Ref. [2], and mental moder; = {7 /k; {z = 1/H;; is the reciprocal
their implications for the coil-stretch transition are first eigenvalue of the preaveraged hydrodynamic ten-
discussed. sor H. To understand how changes with extension,

Earlier theoretical studies of the dynamics of extendedoth ¢ and k must be analyzed. Sincé; does not
polymers [4,5] have made use of the blob model [6].change as a function of extension, the Rouse model al-
However, the blob model gives an incorrect predictionlows one to separate the effects of tension from those of
of polymer forces, which limits its applicability. For hydrodynamics.
example, experiments with the synthetic polymer dextran Although polymers act as linear springs for small
have demonstrated that the force is best described by extensions, their finite length causes the force to become
modified freely jointed chain model [7]. We show below nonlinear as the polymer is extended farther. If the
that a proper understanding of the forces of an extendegolymer is at equilibrium, the fluctuations of the end
polymer is crucial in predicting the dynamics. In the casepoints will be small and the force can be expanded in
of DNA, its stiffness precludes the application of blobsa Taylor series. Thus the Rouse equations of motion do
since the assumptiofib/kgT < 1 is not generally met, not change as a function of extension; only the value of
where f is the force extending the polymeb, is the the spring constant varies.
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The anisotropy caused by extending a polymer introH(n — m) = (1/|n — m|nb) (I + 2%). For a fixed ex-
duces two distinct relaxation times, one each for theension there is a crossover length sdale between the
transverse and longitudinal dimensions. Consider théwo regimes which is determined by the spatial distri-
fluctuations of the end points of a polymer under con-bution of the polymer in the transverse direction and is
stant traction. Their motion will be a sum of all the analogous to the Pincus blob size. Thidscan be ap-
relaxation modes but will be dominated by the funda-proximated as

mental. In the longitudinal direction, for an average ex- 1 5

tensionk, the forceF (E) is parallel to this direction, and Jomn — m™nb L fn=ml < A%

for small changes in the extensiobw, F(E + 6x) = H(n — m) = s

F(E) + (dF/dx)|gdx. Thus the force required for a ————— (I + %) |n—m| > A2
. X s o In — mOnb

longitudinal displacemen®x from equilibrium is lin )

ear with effective spring constant = (dF /dx)lz. In A gepends on extension and is a dimensionless measure
the transverse direction one can calculate the restofss the root mean square distribution of the polymer in
ing force if the polymer is displaced at its end point e ransverse direction, whikis chosen to continuously
by a small amoun®éy. By simple vector algebra, the ioin the curves. The longitudinal and transverse axes
force f(26y) tozdlsplac;e the 2end poindy is f(8y) =  Gre distinguished by a prefactor of order unity. A crude
(8y/VE? + 8y?)F(JE? + 5y?), and by expanding t0 estimate ofA is obtained by treating the polymer as
first order insy, f(6y) = [F(E)/E]8y. Thus the spring  an v step random walk which can be decomposed into
constant in the transverse directionkis = F(E)/E. We  yransverse and longitudinal directions, wheve= L/b.
note that the transverse and longitudinal spring constantgynroximatelyN e steps will be longitudinal, where =
are identical when the force is linear as is the case fog/; is the fractional extension of the polymer. Thus the
small extensions. This is required by symmetry: whenyansverse random walk haé(l1 — ) steps and radius
the polymer is coiled, it is isotropic and there should beyt gyrationA ~ \/N(1 — ). ThenbA is the root mean
a single relaxa_non time. When the po!ymer is extendedSquare displacement of the polymer in the transverse
th_e_symmetry is broken, an_d th_e nonllnea_r fort_:es creatgirection, HA? is approximately the length of polymer
distinct transverse and longitudinal relaxation times:  haaded to achieve this displacement, and as required
_ ¢ { ¢ | E A%(L) = 0 andA%(0) = N.
Tk T @F/anle T ke FE) H,1(E) can be calculated by using the sine basis as an
(1) approximation of the normal mode decomposition of an

Force versus extension curves have been calculated
and measured experimentally on single polymers. Fora 2.0
simple freely jointed chainF(x) = (kgT/b)L ~'(x/L),
where the Langevin functio («) = cothla) — (1/a),
kg is the Boltzmann constant is the temperature,

b is the Kuhn length of the polymer, and is the
length of the polymer [11]. For a wormlike chain such
as DNA, the force is typically approximated by the
function F(x) = (2kgT/b)[5(1 — x/L)"2 —  + x/L]
[12]. These formulas foF(x) can be used with Eq. (1)
to calculate the relaxation times as a function of exten-
sion for the Rouse model (Figs. 1 and 3).

We now turn to the Zimm model. In order to in-
corporate the effects of hydrodynamic interactions, one
must calculate the preaveraged hydrodynamic tensor as
a function of extension. The exact form of the hydro-
dynamic tensor iH(r) = (1/87nr)(I + £f), wherer FIG. 1. Relaxation times for a Rouse polymer as a function of
is the vector connecting the interacting points. For #£nd-to-end extension. Theoretical predictions for the transverse

. : solid line) and longitudinal (dotted line) relaxation times of a
coiled polymer, the preaveraging has been calculate reely jointed chain are compared to the results of the simu-

H(n — m) = (1/y/6m|n — m|®>nb)I, wheren andm  |ations (closed and open circles, respectively). Hydrodynamic
index beads in the polymer [10]. For moderate exteninteractions are not included in this case. The data points
sions, we expect this description to remain valid onare derived from single exponential fits to the autocorrelation
short length scales, i.e., whem — m| is small. For function of the first sine mode (see text for details). Each

. . . gutocorrelation function was calculated with 3 sec of data. The
long length scales and high extensions, the beads aligil|ative extension is a dimensionless variable computed by
along the longitudinal axis, anR, — R,| = [n — m|,  normalizing the end-to-end extension by the total length of the
so that if the polymer is extended along theaxis, polymer.
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extended polymer. It has been shown experimentally thadnalytic model and the preaveraged values computed from
the error introduced by this approximation is small, on thethe simulation. A similar result is expected for the worm-

order of 5% [2]. Then like chain, since the gross spatial polymer distribution is
similar. The simulations thus agree with the calculations
1 _ H that 7 will decrease with extension.
11 .. . .
{z These predictions can also be tested with experimental

1 N N (mw\ . [(n data from DNA, which has been shown to behave like
N2 ]0 jo H(n — m) sm<7>sm<—>dm dn.  a wormlike chain. Figure 3 shows the relaxation times

3) measured in Ref. [2] compared to the theoretieal

where the force constait, for the wormlike chain curve
Numerical evaluation of Eq. (3) for various values df and the preaveragef) from Eqgs. (2) and (3) were used.
shows that/, increases by only 20% as the polymer The agreement is good, except at the highest extension. In
is extended from a coil to 90% extension. Thus, thefact, tension dominates to the extent that the agreement
hydrodynamic interactions have a much smaller influencés equally good if the hydrodynamics corrections are
on the fundamental relaxation time than the tensionnpeglected.
which can change by more than an order of magnitude. These results have important implications for the coil-
The net effect is to lead to a reduction of the relaxationstretch transition. The relaxation time of the polymer
time with extension. plays an important role in the coil-stretch transition since

We performed computer simulations of a freely jointedthe critical strain rate is of the order of the reciprocal
chain in order to test these predictions. The simulation®f the relaxation time. It has been suggested that hy-
used chains of 21 beads of radius 10 nm connected bgrodynamic effects will change dramatically for a highly
20 massless rods; each bead moved freely within thetretched chain, leading to Rouse-like dynamic behavior
constraint that the rod was rigid and of constant lengti1]. Furthermore, it was suggested that this would be the
50 nm. The beads were subject to randomly fluctuatinglominant influence for the relaxation time, leading to in-
Brownian forces at temperature 300 K, and the constraintsreased relaxation times at higher extensions. Such an
were enforced with Langrange multipliers. For each timeeffect would cause hysteresis in the coil-stretch transi-
step of the simulation, the beads moved simultaneouslfion—the critical strain rate to extend a polymer would be
while constraint forces were iteratively computed [13].greater than the rate to relax the polymer [1,4]. It is true
The end beads were held fixed at an extendionThe that for a fixed extension if hydrodynamic interactions are
polymer was started in an arbitrary configuration and
allowed to thermalize for more thatO7r. In order to
calculate the transverse relaxation time at each extensior 1,00 |
the sine transform was calculated. The autocorrelation o'
the lowest sine mode was fit with an exponential, yielding @
7. This closely follows the experimental data analysis — 0-75 1
from Ref. [2] and gives a direct measurementrof For
the longitudinal relaxation times, the same procedure wast
followed.

The simulation does not include hydrodynamic interac-
tions, and thus givesg as a function of extension for a
freely jointed chain. Figure 1 shows the simulation results o
compared to the theory, with no adjusted parameters. The
relaxation times clearly decrease as a function of exten-
sion, and the extension symmetry breaking does introduce
a difference between the longitudinal and transverse relax-
ation times. The agreement between the simulation anBIG. 2. Relaxation time as a function of extension, including
analytic model is good, and we conclude that for a Rous@reaveraged hydrodynamics. The theoretical model (solid line:

polymer, the dominant cause of the decreasing relaxatio ansverse relaxation time; dotted line: longitudinal relaxation
' ime) is compared to simulation results (closed circles: longitu-

time with extension 'S_S'mP'Y the nonlinear spring force. dinal relaxation time; open circles: transverse relaxation times).
The data from the simulations was also used to computehe simulation results were used to calculate the preaveraged
the preaveraged hydrodynamic tendb{z — m). Com-  hydrodynamics tensor as a function of extension. This tensor
puting the largest eigenvalue d(n — m) effectively — was used with the Rouse matrix in order to numerically com-
gives a measurement g, from which 7, can be com- pute the slowest relaxation time. Incorporating hydrodynam-

. . . ics leads to generally shorter relaxation times. Inset: drawin
puted. The values af; derived from the simulation vary showing the gro|e ofAyin Eq. (2). Hydrodynamics will domi- :

0"_")’ slightly over a large range of extensions, consistenfate on length scales less than and will be less pronounced
with Eq. (2). Figure 22 shows a comparison between then longer length scales.
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5 calculations and simulations, and with experiments with
single molecules of DNA. We conclude that hysteresis
most likely exists only in the highly idealized case of an
infinite length polymer.
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